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Preface to the Second Edition

The second edition follows the same basic format as the first, but it is updated to
improve clarity in some cases or to present material in a manner more useful for
engineering use, but mostly to reflect the advances in technology that have taken
place since the first edition’s publication in 1994. The goal of the text is the same:
to present the subject of arrays with the broad coverage of a “handbook” for
engineering use, but to include enough details so that the interested reader can
reproduce many of the more important results and benefit from the insights that
the mathematics provide. Equation (1.49) of Chapter 1 expresses the array far field
as the product of an element pattern and the time delayed array factor. This
equation does not represent any practical array and in fact the interesting aspects
of array technology are precisely those that are not included in this equation. The
equation does not even hint at the constraints that have been the real drivers of
array technology since the beginning.

Array technology has progressed primarily because of limitations imposed by
practical engineering; by the cost, size, weight, manufacturability, and the electro-
magnetic issues of polarization, sidelobe and gain requirements, the limitations of
phase, and amplitude control and reliability. These have driven the whole technol-
ogy to invention and progress. In the 11 years since the first publication of this
book, these stimuli have led to much more extensive use of printed antennas,
conformal arrays, solid-state T/R modules, time-delay devices, optical and digital
beamforming, and a variety of new and more powerful methods of computation
and synthesis.

This edition includes a number of new features and a large number of added
modern references. Sections on components and devices for array control and on
overall control choices have been added to Chapter 1 in order to highlight the
technologies involved in array architecture and to explain the design limitations
imposed by these components. This chapter also includes a revised section on array
noise calculation. Pattern synthesis has also progressed significantly throughout
the past 11 years since the first edition was published, but mostly through the
use of numerical optimization techniques like neural network synthesis, genetic
algorithms, and synthetic annealing. Although not able to devote the space for
complete discussions of these techniques, I did include enough detail to allow the
practical use of the alternating projection method because of its ready adaptability
to array synthesis and the ease of handling various constraints. Additional synthesis
topics included are the formation of troughs in array patterns by modifying the
array covariance matrix and a discussion and added references on array failure

Xi



Xii

Preface to the Second Edition

correction. Material and references have also been added to describe new elements
for arrays including microstrip, stripline, and wideband flared notch elements.

Chapter 8 has had significant changes and inclusion of new material, most
importantly to emphasize the new work of Skobelev and colleagues, who have
made a significant contribution to antennas that have a limited field of view. I
have included some new work on subarrays for including time delay for wider-
band arrays, including partially overlapped sections of overlapped subarrays and
some data on subarrays of irregular shapes.
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Preface to the First Edition

Any pile of tin with a transmission line exciting it may be called an antenna. It is
evident on physical grounds that such a pile of tin does not make a good antenna,
and it is worthwhile to search for some distinguishing characteristics that can be
used to differentiate between an ordinary pile of tin and one that makes a good
antenna.

This fascinating quote, discovered by my friend Phil Blacksmith, is taken out
of context from Volume 8 of the MIT Radiation Laboratory series The Principles
of Microwave Circuits (C. G. Montgomery et al., editors, McGraw-Hill, 1948). It
is a fitting introduction to a text that attempts to address today’s advanced state
of antenna array engineering. The present and future of antenna technology are
concerned with a degree of pattern control that goes well beyond the simple choice
of one or another pile of tin. Present antenna arrays are a union of antenna
technology and control technology; and they combine the radiation from thousands
of antennas to form precise patterns with beam peak directions that can be con-
trolled electronically, with very low sidelobe levels, and pattern nulls that are moved
to suppress radiation from unwanted directions.

Antenna technology remains interesting because it is dynamic. The past years
have seen the technology progress from frequency-scanned and electronically
steered arrays for scanning in one plane to the precise two-dimensional control
using digital systems that can include mutual interactions between elements. Adap-
tive control has been used to move antenna pattern nulls to suppress interfering
signals. Even the basic elements and transmission lines have changed, with a variety
of microstrip, stripline, and other radiators replacing the traditional dipoles or
slots fed by coaxial line or waveguides. Finally, the state of development in two
fields—devices and automation—has brought us to an era in which phased arrays
will be produced automatically, not assembled piece by piece, as has been the
standard to date. This revolution in fabrication and device integration will dictate
entirely new array architectures that emphasize monolithic fabrication with basic
new elements and the use of a variety of planar monolithic transmission media.

Using digital processing or analog devices, future arrays will finally have the
time-delay capability to make wideband performance possible. They will, in many
cases, have reconfigurable apertures to resonate at a number of frequencies or
allow the whole array surface to be restructured to form several arrays performing
separate functions. Finally, they will need to be reliable and to fail gracefully, so
they may incorporate sensing devices to measure the state of performance across
the aperture and redundant circuitry to reprogram around failed devices, elements,
or subarrays.

Xiii
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Preface to the First Edition

Although it contains some introductory material, this book is intended to
provide a collection of design data for radar and communication system designers
and array designers. Often the details of a derivation are omitted, except where
they are necessary to fundamental understanding. This is particularly true in the
sections on synthesis, where the subject matter is well developed in other texts. In
addition, the book only briefly addresses the details of electromagnetic analysis,
although that topic is the heart of antenna research. That subject is left as worthy
of more detail than can be given in such a broad text as this.

Chapter 1, “Phased Arrays for Radar and Communication Systems,” is written
from the perspective of one who wishes to use an array in a system. The chapter
emphasizes array selection and highlights those parameters that determine the
fundamental measurable properties of arrays: gain, beamwidth, bandwidth, size,
polarization, and grating lobe radiation. The chapter includes some information
to aid in the trade-off between so-called “active” arrays, with amplifiers at each
element, and ““passive” arrays, with a single power source. There are discussions
of the limitations in array performance due to phase versus time-delay control,
transmission feed-line losses, and tolerance effects. Finally, there are discussions
of special techniques for reducing the number of controls in arrays that scan
over a limited spatial sector and methods for introducing time delay to produce
broadband performance in an array antenna. The abbreviated structure of this
introductory, “system-level” chapter necessitated frequent references to subsequent
chapters that contain more detailed treatment of array design.

Chapter 2 and all the other chapters in the book are written to address the
needs of antenna designers. Chapter 2, ‘“Pattern Characteristics and Synthesis of
Linear and Planar Arrays,” includes the fundamental definitions of the radiation
integrals and describes many of the important issues of array design. Element
pattern effects and mutal coupling are treated in a qualitative way in this chapter
but in more detail in Chapter 6. The primary topics of this chapter are the character-
istics of antenna patterns and their directivity. The chapter also addresses several
special types of arrays, including those scanned to endfire and thinned arrays.

Chapter 3 is a brief treatment of array synthesis, and it lists basic formulas
and references on a wide variety of techniques for producing low sidelobe or
shaped antenna patterns. The chapter includes a discussion of pattern optimization
techniques, such as those for adaptive array antennas. Chapter 4 treats arrays on
nonplanar surfaces, and Chapter 5 describes the variety of array elements, relevant
transmission lines, and array architectures.

Chapters 6 and 7 treat several factors that limit the performance of array
antennas. Chapter 6 shows some of the effects of mutual coupling between array
elements. This interaction modifies the active array element patterns and can cause
significant impedance change with scan. This complex subject is treated with the
aid of two appendices. Chapter 7 describes pattern distortion due to random phase
and amplitude errors at the array elements and to phase and amplitude quantization
across the array.

Chapter 8, the final chapter, summarizes techniques for three kinds of special-
purpose arrays: multiple-beam systems, arrays for limited sector scan, and arrays
with wideband time-delay feeds. A vast technology has developed to satisfy these
special needs while minimizing cost, and this technology has produced affordable
high-gain electronic scanning systems using scanning arrays in conjunction with
microwave quasioptical systems or advanced subarray techniques.
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Phased Arrays in Radar and
Communication Systems

1.1 Introduction

Phased array antennas consist of multiple stationary antenna elements, which are
fed coherently and use variable phase or time-delay control at each element to scan
a beam to given angles in space. Variable amplitude control is sometimes also
provided for pattern shaping. Arrays are sometimes used in place of fixed aperture
antennas (reflectors, lenses), because the multiplicity of elements allows more pre-
cise control of the radiation pattern, thus resulting in lower sidelobes or careful
pattern shaping. However, the primary reason for using arrays is to produce a
directive beam that can be repositioned (scanned) electronically. Although arrays
with fixed (stationary) beams and multiple stationary beams will be discussed in this
text, the primary emphasis will be on those arrays that are scanned electronically.

The radar or communication system designer sees the array antenna as a
component (with measurable input and output) and a set of specifications. The
array designer sees the details of the array and the physical and electrical limitations
imposed by the radar or communications system, and within those constraints
seeks to optimize the design. This chapter is written from the perspective of, and
for, the system designer. The remainder of the text discusses array design issues.

1.1.1 System Requirements for Radar and Communication Antennas

In accordance with the principle of power conservation, the radiated power density
in watts/square meter at a distance R from a transmitter with an omnidirectional
antenna is given by

— L Prad
S= 4 (1.1)

where P4 is the total radiated power (watts), and the power density S is shown
here as scalar.

Directive Properties of Arrays

Figure 1.1 shows an array of aperture antennas and indicates the coordinate system
used throughout the text. If the antenna has a directional pattern with power
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Figure 1.1 Array and coordinate systems.

density S(6, ¢), then the antenna pattern directivity D (6, ¢) is defined so that the
power density in a specified polarization at some distant spherical surface a distance
R from the origin is:

PradD(ea ¢)
S = — 1.2
(6, ) = 720 (1.2)
so that
47R?S
D(6, ¢) = ”T(fgb) (1.3)
or
4
D6, ¢) = T 8) (1.4)
fsw, b) dQ

Q

where the last integral is over the solid angle that includes all of the radiation. In
the most general case it is

2 T
fsw, $) dQ = f dgbfd&S(H, ) sin 6 (1.5)
Q 0 0

The expression above (1.4) is the definition of directivity and implies that the
power density used is the total in both polarizations (i.e., the desired or copolariza-
tion, and the orthogonal or crossed polarization).
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If there is no direction (6, ¢) specified, then the directivity implied is the
maximum directivity, denoted D:

Do = max[D (6, ¢)] (1.6)

which is a meaningful parameter primarily for antennas with narrow beamwidths
(pencil beam antennas).

Directivity is the most fundamental quality of the antenna pattern, because it
is derived from only the pattern shape. The radiated power is less than the input
power Pj, by an efficiency factor €1, which accounts for circuit losses, and by the
reflected signal power

Prad = €L Pin(1 = [TP) (1.7)

where T" is the antenna reflection coefficient measured at the feed transmission
line; thus, it is appropriate to define array parameters that relate to measurable
parameters at the input transmission line.

The IEEE standard definition of antenna gain does not include reflection loss;
rather, it defines the antenna gain G (6, ¢) as the directivity for each polarization
reduced by the efficiency factor er. This definition is primarily useful for single,
nonscanned antennas that have a well-defined reflection coefficient at any fre-
quency. In that situation, the gain describes an antenna that is matched (I = 0).

The input impedance of an array changes with scan; thus, it is more appropriate
to define a parameter that Lee calls realized gain [1], which includes both the
reflection and dissipative losses, and for which I’ll use the symbol GR(o, ¢). It will
be shown later that this realized gain relates to a measurable property of an array
that is of sufficient fundamental nature to justify not using the IEEE standard.

The power density in the far field can thus be written in terms of a gain function
G (6, ¢), with

1 P
S0, ) =5 25 G (6, 9) (1.8)
where
GX(6, ¢) = er(1 - IT1*)D(6, ¢) (1.9)

Again, the peak value of the gain distribution is called the gain G.

G = max[GR(6, )] (1.10)

In practice, the maximum directivity of a planar aperture is achieved for uniform
amplitude and phase illumination of the aperture (except for the special case of
superdirectivity) [2] and is
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A
Do = 47 (1.11)

for an aperture with area A at the wavelength A.

In the case of a planar aperture with a large number of elements, it is also
convenient to define a term called aperture efficiency eA, which is not a real
efficiency in the sense of measuring power lost or reflected, but relates the directivity
to the maximum directivity D ,x. Thus, the realized gain G of a planar aperture
is often written

GE =ereall = |T1*) Dy (1.12)

The concept of an antenna aperture becomes meaningless for an array with
only a few elements or a linear (one-dimensional) array of dipoles or slots, and
one must either use the general equation (1.4) or rely on the concept of element
pattern gain to evaluate the array directivity and gain. This topic is discussed in
more detail in Chapter 2.

Array Noise Characterization

In addition to receiving the desired signal, every antenna system also receives a
part of the noise radiated from objects within the angular extent of its radiation
pattern. Any physical object at a temperature above zero kelvin has an equivalent
brightness temperature, or noise temperature, Tg, which is less than or approaching
the physical temperature. The body radiates a noise signal received by the antenna
and contributes to an effective antenna noise temperature. The antenna tempera-
ture for a lossless antenna is the integral of the observed brightness temperature
Tg(6, ¢) weighted by the antenna directive gain, or [3]

T

j Tg(6, #)D (6, @) sin 0 dOdd
0

o—5

Ty = (1.13)

27 7T

fJD(H, @) sin 0dO do
0 0

The denominator of this expression normalizes the temperature so that a uni-
form brightness temperature distribution Ty produces an antenna temperature
equal to the brightness temperature.

If there were no dissipative or mismatch loss in the antenna, the noise power
available at the antenna terminals would be

The term aperture efficiency as defined in (1.12) is sometimes called taper efficiency and, in early references,
as gain factor. Expressed in decibels, it is sometimes termed taper loss or illumination loss. An attempt
has been made throughout this text to use aperture efficiency in strict accordance with the definition
above, and to reserve the term taper efficiency to define a less rigorous parameter introduced later in this
chapter.
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NA =/eTAAf (1-14)

where k is Boltzmann’s constant (1.38 x 1073 J/K) and Ny is in watts. In this
expression, Af is the bandwidth of the receiver detecting the noise signal or the
bandwidth of the narrowest band component in the system. Since Af is constant
throughout the system calculations, it is convenient to work with the noise tempera-
ture alone.

The antenna temperature measured at the antenna terminals is modified by
losses. At the terminals of any real antenna, the noise temperature has two compo-
nents, as indicated in the insert to Figure 1.2(a). One noise component N4 is due
to the pattern itself, which is a function of the brightness temperature distribution
that the antenna “‘sees” within its receiving pattern. A second component is due
to dissipative losses within the antenna, couplers, or transmission medium preceding
the antenna terminals. Defining a transmission efficiency € as the ratio of power
at the output terminals of the transmission line to the total received power (note
that € < 1, and 10 logqg € is the loss in decibels of the transmission line), then if

Ny
n
>—\T/\L/\/—O T N; O—@Aé—o Tout
a n
Ta €
T
A Tin
=T — T=(F-T, — >
€ g
T, Tout
(a) (b)
Ta T
D\ e e\ 9 ;
O D VWO p WO
Sln SB
L-1)T, T=(F-1)T,

()

Figure 1.2 Antenna noise temperature flow graphs: (a) two-port network with loss; (b) two-port
network with amplification; and (c) lossy two port with following amplifier.
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the lossy material is at the temperature T}, the effective antenna temperature at
the antenna terminal is [4]

T,= €Ty +TL(1 - € (1.15)

It is convenient to define the loss L as the inverse of €, and rewrite (1.15) in a
form that can be illustrated by the power flow graph of Figure 1.2(a).

T, = €e[Ty + Ty(L - 1)] (1.16)

Often the array antenna element terminals are not accessible; they are directly
integrated into a solid-state module with a chain of preamplifiers and amplifiers,
as well as other devices that can be represented as two-port networks. In this case,
the concept of noise figure is commonly used to describe the noise characteristics
of amplifier networks. With reference to the insert in Figure 1.2(b), the noise figure
F of a two-port amplifier with gain g and internally generated noise Ny is defined
as the input signal-to-noise ratio divided by the output signal-to-noise ratio:
po (S/Ni) _gNin#Nn_, , Nn
(S/Nout) gNin gNin

(1.17)

The input noise Nj, is defined to be from an ideal matched generator at room
temperature Ty (290K), and so in the absence of an input external signal is the
thermal noise

Ny, = kToAf (1.18)
The noise contribution Ny at the output of the two-port network is due to
noise sources in the two-port network itself. Its equivalent temperature T is defined

as if it were the temperature of a resistor generating noise that is amplified by the
gain g of the two-port network.

Ny = gkTAf (1.19)
Thus, the noise figure of the two-port network is given as:

F=1+TIT, (1.20a)
and the equivalent two-port noise temperature T is

T=(F-1)T, (1.20b)

Now incorporating the noise figure expression into the expression for output noise
and assuming an input noise temperature T;,, we have the two-port relations

Nout = gNijp + NN = kAf[gTin +g(F-1)Ty] (1.21a)
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or

Toue = gl Tin + (F = 1)To] (1.21b)

This relationship is shown in the flow graph of Figure 1.2(b) and has the same
form as that of the two-port relation of the lossy network.

In the case of an attenuator or transmission line at temperature Typ, with
transmission line efficiency € and producing a noise power

Ny = (1 - kT pAf (1.22)

one can use (1.17) and (1.18) with g = € to show that the noise figure F is

_8Nin+ Ny _€Tp+ (1 -€Tp

F 1.23
gNin €Ty ( )

and the associated noise temperature from (1.20b) is:
T=(F-1)Ty = (1/e - 1)Typ (1.24)

If the physical temperature of the attenuator is Ty, then the noise figure F is equal
to the inverse of the transmission factor and (1.25) replaces (1.23)

F=1/e (1.25)

The temperature flow graph notation of Figure 1.2 allows evaluation of both signal
and noise calculation everywhere in the system by simply cascading diagrams for
the relevant circuit two ports, adding all of the noise contributions and multiplying
all of the gains and losses. Because every noise contribution is multiplied by the
amplifier gains g > 1 and the attenuation coefficient €, and the signal contribution
likewise, then the S/N (and antenna G/T) is constant throughout the cascaded

graphs.
For example, if the antenna with thermal temperature T4 is connected to a
cascade of amplifiers with gains g1, g, ... and noise temperatures T1, Ty ...,

then at the terminal output Ty, the effective noise temperature is:

Toue = (Ta +T1)g1 + T2)g2 + T3)g3 + . .. T,)gn (1.26)

or referring that temperature back to the antenna terminal becomes:

Tin:T+T1+2+L+...+L (1.27)
g1 £182 8182+ - &n

Again the received signal is transferred the same way, so the S/T is constant at
any point in the network.

As a second brief example, an antenna connected to a single-stage amplifier is
shown in Figure 1.2(c), along with its equivalent flow graph representation.
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At point B, the noise temperature is
Tp={[Ta+ (L -1)TLler + (F-1)Tplg (1.28)

and the signal at point B is just S;,€1g, so again the ratio of S/T is constant
throughout the network.

Sometimes it is convenient to use the term system noise factor (or system noise
figure), defined as NF = T,/T,, where T is the noise temperature referred to the
antenna terminals.

The Receiving Antenna in a Polarized Plane Wave Field

A receiving antenna immersed in an incident wave field receives power roughly
proportional to the amount of energy it intercepts. This leads to the concept of an
effective area A for the antenna, so that if the polarization of the receiving antenna
is the same as that of the incident wave, then the received power is given by

P, =AgS(0, ¢) (1.29)

The maximum value of the effective area is related to the antenna directivity
D by [5]

AZ
AE =—D0 (130)

max 4

and the practical value of the effective aperture accounts for reflection and dissipa-
tive loss and is (for the polarization matched case)

2

A
AL = 7= Doerr (1 = I, ) = (4247 Gy (1.31)

where egg is the loss efficiency for the receiving antenna.

The polarization match between the receiving antenna and the incident wave-
front is described in terms of a unit polarization vector of the incident wave py,
and the receiving antenna p,. Figure 1.3 illustrates an example of matched and
mismatched polarizations.

The dipole, or a thin wire with its axis in the z-direction as indicated in Figure
1.3, produces an electric field far from the antenna with only a @ component [6].
If an orthogonal set of dipoles were to receive that energy, the dipole oriented in
the ¢ direction receives no signal, while the #-oriented dipole receives maximum
energy. Most antennas have less ideal polarization characteristics, and so experi-
menters routinely take measurements of both polarizations. A formalism or notation
for the description of a polarized wave is summarized here. For a wave traveling
in the negative z-direction with electric field components,



1.1

Introduction 9

CROSSED DIPOLE
RECEIVE ELEMENT

CURRENT
ELEMENT

(Dipole ) Y
X
Figure 1.3 Polarization characteristics of ideal dipole antenna.
E =RE, /%) 4 gF oIkt ) (1.32)

The polarization unit vector of the wave is always defined in the coordinate
system looking in the direction of wave propagation and is written [7] as

_ )"(Exe/'(ﬁx + ?Eyei(p)v
[IEx|* +|Ey 1"

Pw (1.33)

A wave traveling in the +z direction would have a - sign before the £E,.

One can show that if E, and E, are equal and ¢, — ¢, = 90°, then the wave
is right-hand circularly polarized.

The polarization unit vector of the antenna is defined according to the wave
it excites or optimally receives. If a transmitting antenna excites a wave with the
wave unit vector given above, then its polarization vector is the same as that of
the wave.

An antenna that receives a wave has its effective aperture modified by the
polarization loss factor ep, with

€p = P Pl (1.34)

The total power received is given by
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P, = SAEEP

2
A 2
25—47TD0€ER6P(1 - I 1) (1.39)

= S(A%/4m)ep GR

To evaluate the received signal from a wave, one maintains the operating
coordinate system to be that of the incident wave, then determines the polarization
vector of the wave when viewed in the system of the receive antenna. The polariza-
tion vector of the receive antenna is defined as if it were in the transmit mode.

In addition to linearly polarized antennas, circularly polarized antennas are
often used for space communication or other applications in which the relative
orientations of transmit and receive antennas are unknown. In (1.32), the polariza-
tion unit vector is circularly polarized if Ex = Ey and 6, = 6, + (1/2 + 2n)# for
any integer 7.

System Considerations

The concept of an effective aperture for a receiving antenna, coupled with the
formulas for power density (1.2) and polarization efficiency, leads to the following
expression for the power received.

P, = PrGRA(47R)PGR &p (1.36)

which is known as the Friis transmission equation. The term [)\/(477'R)]2 is the
free-space loss factor and accounts for losses due to the spherical spreading of the
energy radiated by the antenna.

A similar form defining the received power for a monostatic radar system is
given by the following reduced form of the radar range equation:

(PrG%)

e o[ M@ATRY) PG ep (1.37)

P =

where, in this particular case, it is not assumed that Gl% = Gﬁ. The constant o is
the scattering cross section of the target, which is defined as if the target collects
power equal to its cross section multiplied by the incident power and then reradiates
it isotropically.

At the receiver input, the sensitivity is determined by the signal-to-noise ratio,
that is,

R 2
GRGP A
= (P+Gr) =R
N = PTOTV T RAT (4R P

=~

Communications (1.38)

P _(PrG1)Gr e Ao
N~ 47 Tg KAf [47R?]?

Radar (1.39)
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Subject to some minimum P/N ratio at the receiver, the range of a radar system
varies as the fourth root of GTPT—called the effective 1sotrop1c radiated power
(EIRP)—and as the fourth root of the receiver parameters G R/Tg

Other special criteria pertain to specific radar functions (e.g., the sensitivity of
a monostatic tracking radar is proportional to the transmitter power times the
frequency squared times the square of the aperture area). Search radar performance,
however, does not improve with increased frequency. This is because as frequency
is increased, the beamwidth is reduced, and the required time to search a given
volume increases. Search radar performance is therefore primarily determined by
the system power times aperture product.

Antenna beamwidth determines radar performance in several related ways.
First, it is the obvious factor limiting angular resolution. Second, for certain situa-
tions (space-based and airborne radar), it is the primary factor determining the
minimum detectable velocity.

Monopulse Beam Splitting

For radar applications, one of the most important properties of an array is the
ability to form a precisely located deep monopulse pattern null for angle tracking.
Figure 1.4 shows a 40-dB Bayliss pattern [8] (see Chapter 3), which is a frequently
used distribution for monopulse radars. The pattern characteristics of importance
to angle tracking are the antenna sum pattern gain and the difference pattern slope.
Kirkpatrick [9] is attributed with introducing the measure of difference pattern
slope k,, by which various antenna systems are compared. He also showed that
the maximum angular sensitivity (difference mode gain slope at boresight) is
obtained for an aperture illumination with a linear amplitude distribution and odd
symmetry about the antenna center.

Relative power (dB)

IWATATATAA

Figure 1.4 Low-sidelobe Bayliss radiation pattern.

sin 9
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The rms angle error of a monopulse measurement in a thermal noise environ-
ment is evaluated in terms of the monopulse difference slope k,,,. This is determined
from the measured 3 and A patterns as the derivative of the ratio of the difference
pattern divided by the sum pattern to the beamwidth divided by the sum beam-
width, or:

_d(Af3)
kn = Jai0) (1.40)

The resulting angle error is given by Barton [10] as:

_ 03 _ 03
Ry J2(S/N )t 2\ /(SIN)

o (1.41)

where S/N is the signal to noise ratio measured in the 3 channel with a target on the
beam axis, and 7 is the number of pulses received from the target. The normalized
monopulse difference slope k,, is approximated by /2.

1.2 Array Characterization for Radar and Communication Systems

The behavior of an array in a radar or communication system is far more complex
than that of a passive, mechanically positioned antenna, because the performance
characteristics vary with scan angle. This section describes the important array
phenomena that determine scanning performance, bandwidth, and sidelobe levels
of phased array systems.

1.2.1 Fundamental Results from Array Theory

A thorough mathematical treatment of phased array radiation, including mutual
interaction between elements, is formidable. Even the mathematics for a single
element can involve a detailed evaluation of vector field parameters, and the array
analysis must also include the interactions between each of the elements of the
array.

Fortunately, array theory provides the tool to do most array synthesis and
design without the need to derive exact electromagnetic models for each element.
This section consists primarily of the practical results of array theory; it is intended
to introduce the reader to the properties of arrays and, in conjunction with Section
1.2.2, can be used by system designers to determine the approximate array configu-
ration for a given application.

The sketch in Figure 1.5 portrays a generalized distribution of array elements,
here shown as small radiating surfaces. Each element radiates a vector directional
pattern that has both angle and radial dependence near the element. However, for
distances very far from the element, the radiation has the [exp (—jkR)]/R dependence
of a spherical wave multiplied by a vector function of angle f;(6, ¢), called the
element pattern. Although this vector function f;(6, ¢) depends on the kind of
element used, the far field of any ith element can be written
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P(X.Y,2)

Figure 1.5 Generalized array configuration.

Ei(r, 6, ¢) = f;(6, &) exp(-jkR;)/R; (1.42)
for
2 21172
Ri=[x=x)* + (v = 9i) + (2 = 2)1" (1.43)
and where k = 277/A is the free-space wave number at frequency /.

If the pattern is measured at a distance very far from the array, then the
exponential above can be approximated by reference to a distance R measured
from an arbitrary center of the coordinate system.

Since

Ri=R -1 rj (1.44)

then

exp(—jkR;) _ exp(~jkR)
R; R

exp(+jkr; - £)

for rj, the position vector of the ith element relative to the center of the chosen
coordiate system, and ¥, a unit vector in the direction of any point in space (R, 6, ¢).
These vectors are written
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r; = Xx; +yy; + 2z, (1.45)

-
e

+yv +Zcos 6 (1.46)

where # = sin 6 cos ¢ and v =sin 6 sin ¢ are the direction cosines. The required
distance R for which one can safely use the far-field approximation depends on
the degree of fine structure desired in the pattern. Using the distance

R =2L%/A (1.47)

for L the largest array dimension, is adequate for many pattern measurements, but
for measuring extremely low 51delobe patterns or patterns with deep nulled regions,
it may be necessary to use 10L 2/Aora greater distance [11, 12]. Far-field expressions
will be used throughout this book unless otherwise stated.

For an arbitrary array, one can generally write the pattern by superposition:

E(r) = MZa, £i(6, ¢) expljkr; - ) (1.48)

The expression above is very general in form because it is written in terms of
the unknown element patterns for each element in the presence of the whole array.
The coefficients a; are the applied element weights (voltages or currents) of the
incident signals. One could obtain equally valid representations derived directly
from actual (unknown) element currents or electric fields instead of the applied
weights, but in this case these are subsumed into the element pattern description
above. In general, the vector element patterns are different for each element in the
array, even in an array of like elements; the difference is usually due to the interaction
between elements near the array edge. However, throughout the rest of Chapter
1, it will be assumed that all patterns in a given array are the same. In this case,
(1.48) becomes

exp( -jkR)

= £(0, ¢) Y ai exp(+jkr; * ) (1.49)

It is customary to remove the factor {exp(—jkR)]/R} because the pattern is
usually described or measured on a sphere of constant radius and this factor is
just a normalizing constant. Thus, one can think of the pattern as being the product
of a vector element pattern f(6, ¢) and a scalar array factor F(6, ¢), where

) = Z a; exp (jkrj - t) (1.50)

Scanning and Collimation of Linear and Planar Arrays

Array scanning can be accomplished by applying the complex weights a; in the
form
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a; = |a;| exp (~jkr; - £9) (1.51)
to = Xug + yvg + Z cos 6 (1.52)
with
k=27l

These weights steer the beam peak to an angular position (6y, ¢¢), because
at that location the exponential terms in (1.51) cancel those in (1.50), and the
array factor is the sum of the weight amplitudes |a;|. With this choice of weights,
the pattern peak is stationary for all frequencies. This required exponential depen-
dence has a linear phase relationship with frequency that corresponds to inserting
time delays or lengths of transmission line. These are chosen so that the path length
differences for the generalized array locations of Figure 1.5 are compensated in
order to make the signals from all elements arrive together at some desired distant
point.

More commonly, the steering signal is controlled by phase shifters instead of
by switching in actual time delays. In this case, the weights have the form below
instead of that in (1.51):

a; = |a;| exp(—jkor; - o) (1.53)
with
ko =2m/Ag

for some frequency f( = c¢/Ag. In this form, the array pattern has its peak at a
location that depends on frequency. Throughout the rest of this section, the phase-
steered expression above will be used. The time-delayed expression can be recovered
by omitting the subscript.

Among the important parameters of array antennas, those of primary impor-
tance to system designers are the gain, beamwidth, sidelobe level, and bandwidth
of the array system. These subjects will be dealt with in greater detail in following
sections and in Chapter 2, but the definitions and relevant bounding values are
given here.

Phase Scanning in One Dimension (¢ = 0)

Figure 1.6 shows the several geometries used in the analysis of scanning in one
dimension. Consider an array of N elements arranged in a line as shown, with
element center locations x,, = nd,. The elements can be individual radiators, as
shown in Figure 1.6(a), or can themselves be columns of elements, as indicated in
Figure 1.6(b). Under the assumption that all element patterns are the same, the
normalized array radiation pattern in the far field is given at frequency f( by the
summation over all N-elements as
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}

Figure 1.6 Array geometries for scanning in one plane: (a) individual radiators; and (b) columns
of elements.

E(0) =£(0, ¢) ) a, expljko(ndyu)] (1.54)

for u =sin(6) cos(¢).
The a,, are complex weights assigned to each element, and f( 6, ¢) is the radiation
pattern (or element pattern) that is assumed the same for all elements. In this case,

at a fixed frequency one can create a maximum of E(6, ¢) in the direction (6, 0)
by choosing the weights a,, to be

an = la,| exp(-jkondyug) (1.55)

and so
F(0) =) lay| explindyko(u = ug)] (1.56)

where

uy = sin(6yp)
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This expression implies the use of phase shifters to set the complex weights
a,. Equation (1.56) shows that the array factor is a function of u# — u, so that if
the array were scanned to any angle, then the pattern would remain unchanged
except for a translation. This is the main reason for the use of the variables # and
v (often called sine space or direction cosine space) for plotting generalized array
patterns.

For an array with all elements located in the plane z =0, the pattern is symmetric
about 6= 77/2, and the array factor forms a second, mirror-image beam below the
plane z = 0. Most scanning arrays are required to have only a single main beam,
and this is achieved using elements with a ground screen to make the element
patterns nearly zero for the region behind the array.

The array factor of an array at frequency f( with all equal excitations is shown
in Figure 1.7 (solid) and can be derived from (1.56). Normalized to its peak value,
this expression is

F(u) = sin[Nwd,, (1 — ug)/Ag)/[N sin(md, (v — ug)/Ag)] (1.57)

In this figure, L = Nd, is the effective array length, N is 8, and the elements are
spaced one-half wavelength apart.

The 3-dB beamwidth (in radians) for this uniformly illuminated array at broad-
side is 0.8861(/L, which is the narrowest beamwidth (and highest directivity) of
any illumination, except for certain special superdirective illuminations associated
with rapid phase fluctuations and closely spaced elements. Except for very small
arrays, the superdirective illuminations [2] have proven impractical because they
have very large currents and high loss, and require very precise excitation. In most
cases, they are also very narrow-band. The level of the first sidelobes for the
uniformly illuminated linear array is relatively high (about —13 dB). Figure 1.7

0 ~ ! T T T T T T T T
‘\‘ Uniformly illuminated array
-10 - —40dB Taylor pattern .
_ /— e
m
z
2 20 -
o
Q
)]
2
& -30
]
o
40 |
i
0 1

Figure 1.7 Radiation characteristics of uniformly illuminated and low-sidelobe 16-element arrays.
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(dashed) shows the same array radiating a low-sidelobe (Taylor, 7z = 5) pattern, with
—40-dB sidelobe levels. This figure illustrates the beam broadening that generally
accompanies low sidelobe illuminations.

The beamwidth increases as the array is scanned. For a large array and not
near endfire, the beam broadens according to sec 6y, but the more general case is
given later in this section.

Two-Dimensional Scanning of Planar Arrays

The array factor for the two-dimensional array of Figure 1.8(a) with elements at
locations

Im,n = Xmd, + ynd, (1.58)

and using phase steering to place the beam peak at 6y, ¢ at frequency f is given
by the following:

F(8, ¢) = ) lamnl exp{jkolmdy (u = ug) + ndy (v = vo)l} (1.59)

myn

@ AV
/[

(b) ()

Figure 1.8 Array geometry for two-dimensional scanning: (a) generalized planar array geometry;
(b) equal line-length planar feed; and (c) equal line-length column feeds.
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Often, for a rectangular array aperture, a separable amplitude distribution is
chosen so that

Am,n = bmcn

and then the factor can be written as the product of two independent factors of u
and v.

F(6, ¢) = {Z bun explikomd (1 - uo)]}{z ¢ explikondy (v - vo>]}
(1.60)

Seen in this form, it is clear that the pattern of the linear array (1.56) is of vast
importance because of its relevance to planar arrays with separable distributions.

Beamwidth and Directivity of Scanning Arrays

The beamwidth and sidelobe level of an array antenna are governed by the chosen
aperture taper. An example of sidelobe reduction is shown by comparing the curves
in Figure 1.7. This figure shows antenna patterns for uniform illumination and a
low-sidelobe (=40 dB Taylor) illumination of a 16-element array. Antenna sidelobes
are reduced by tapering the array excitation so that elements at the array center
are excited more strongly than those near the edge. Some of the more useful
examples of tapering are described in Chapter 2. In addition to sidelobe reduction,
however, tapering broadens the array beamwidth. For this more general case, the
half-power beamwidth of the radiation pattern for a linear array or in the principal
planes of a rectangular array at broadside is

03 = 0.886B A/L (1.61)

where By, is called the beam broadening factor and is obviously chosen as unity
for the uniformly illuminated array.

Table 1.1 [13] shows the variation of beamwidth of a continuous line source
for several selected illuminations with varying sidelobe levels. The continuous line
source pattern is a good approximation of the pattern of a large array with elements
spaced a half wavelength or less apart. In this table, the parameter w is equal to
Lu/\. These data indicate a generalized pattern broadening and lowering of the
principal sidelobes as the aperture distributions are made smoother. Beyond that,
as pointed out by Jasik, the far-sidelobe decay is controlled by the derivatives of
the aperture illumination at the edge of the aperture. A uniform illumination, which
has a discontinuity in the function and its derivatives, has far sidelobes that vary
as (Lu/)t)_l. For the cosine or gabled distributions, which are continuous but have
discontinuous derivatives at the aperture edge, the far sidelobes have a (Lulr)™?
variation. The cosine squared illumination, which is continuous, has a continuous
first der3ivative and a discontinuous second derivative; the far sidelobes vary as
(Luia) ™.
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Table 1.1 Line-Source Distributions

Half Power Ar?gular .
Beamwidth Distance Intensity of

(Degrees) to First Zero  First Sidelobe

(Decibels
Type of Distribution Directivity Pattern _ﬂ_ A@' Below Gain

-1<sx<1 E(u) =]

Maximum) Factor

| |  Sin u 5084 5734 13.2 1.0

=1 Q +} u i ]
flx) =1
A A
z A 13.2 1.0
. a=10 5087 57.37
Sin u
I(1+1L)
T “oA=38 52.7% 60.7% 15.8 0.994
fa¥
Lo A A 17.1 0.970
flx)=1-(1-A)x? o A=S 55.67 65.37
L=(1-4)-— R R
du A=0 65.97 81.97 20.6 0.833
—LD—_. o+ ml_cosu 68.82 85.9% 23 0.810
7 2 2 ! ]
COoS 2 (j) _uz
=0+ L sinu 7> 83.2£ 114.6£ 1 0.667
2 TX 2 u _2_ 2 ] i
COS —— o u
2
P 0\
l sin E A A
-l 0 L A A
flx) =1 - x| 2| u 7347 114.6 7 26.4 0.75
2
Source: [13].

In his original paper on line source synthesis, Taylor [14] documented the
relationships between aperture edge behavior, far sidelobes, and array pattern zero
locations. His analysis and insights led to a most practical technique for the synthesis
of low-sidelobe beams and is described in Chapter 2, Section 2.2.

Table 1.1 also gives the gain factor for each illumination, which is the pattern
directivity normalized to the maximum directivity of the line source. This parameter
is analogous to the aperture efficiency of an aperture antenna. If a continuous
aperture antenna has the same illumination as the line source in both separable
dimensions, then the sidelobe values quoted in Table 1.1 pertain in the principal
planes (#, v) = (0, v) or (#, 0) and the sidelobes are far less in the diagonal planes
(and in fact are the product of the principal plane patterns).

Table 1.2 [13] shows the relative gain, beamwidth, and sidelobe level for a
circular aperture antenna with various continuous aperture illuminations. In this
case, the parameter w = (27a/A)u, where a is the aperture radius and D = 24 is
the diameter.
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Table 1.2 Circular-Aperture Distributions

Half Power gﬁgular '
Beamwidth Istance Intensity of
(Degrees) to First Zero  First Sidelobe
(Decibels
Type of Distribution Directivity Pattern /)"\ Below
0<r=<1 E(u) [aae! (] Maximum) Gain Factor
A A
-t 0 +I mo’ ]154) 5895 69.8 5 17.6 1.00
firy=(1-r°=1
A
I 0 + 27a” ]2# 72.7% 93.6% 24.6 0.75
fir)=(1-1% g
2 J3(u) A A 30.6 0.56
== o 25 84.3% 116.27

fir) = (1= 7%

Source: [13].

The aperture illuminations used in Tables 1.1 and 1.2 are relatively simple and
not specifically optimized for low sidelobes.

Figure 1.9 shows the normalized beamwidth for Chebyshev antenna patterns
as a function of design sidelobe level. This result uses an approximation due to
Drane [15] that is given in Chapter 2. Figure 1.9 shows the aperture (or taper)
efficiency for a 16-element Chebyshev array pattern as a function of sidelobe level.
This result was also computed using an approximation by Drane [15].

1.8

Beam broadening factor B,
(normalized beamwidth)
N >
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Chebyshev sidelobe level (dB)

Figure 1.9 Beam broadening (solid line) and taper efficiency (dashed line) versus sidelobe level.
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Equation (1.51) indicates that the pattern does not change with scan if plotted
in terms of the parameter # = sin §. When the beam is scanned to the angle 6 at
frequency [, the entire pattern is displaced from the broadside pattern. Though
constant in u#-space, the beamwidth is not constant in angle space, since it broadens
with scan angle according to (1.62), and the directivity changes accordingly.

03 = [sin" (sg + 0.443B A/L) — sin”'(sy — 0.443B}, A/L)] (1.62)
for
L = Nd,

This result is for a linear array of N elements or in the principal scan plane of
a rectangular array of length L in the plane of scan. Figure 1.10 shows this variation
with scan for arrays of various sizes. For a large array, the beamwidth computed
from the above expression increases approximately as 1/(cos #), and so in the large
array limit,

03 = 65 (broadside)/cos 6 (1.63)

This expression is valid for linear and in any scan plane (independent of ¢)

of large planar arrays.
Neither the cosine relationship nor (1.62) is valid for an array scanned within
a beamwidth of endfire (# = 7/2). Scanning to endfire is discussed in Chapter 2.
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Figure 1.10 Beamwidth variation with scan.
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Directivity of Linear Arrays

Although the above expressions give the proper beam broadening for linear arrays
scanned along their axis and for planar arrays, the gain degradation or scan loss
is quite different for aperture and linear arrays. For linear arrays, the scan loss
also depends on the directive gain in the plane orthogonal to the scan plane. There
is, however, one very simple and important case for linear arrays of isotropic
elements with spacings that are any integer number of half-wavelength. In this
case, Elliott [16] shows that the directivity is independent of scan angle and is
given by (see Chapter 2)

2
[2a,l

2
2ay|

0= (1.64)

A note of caution: one should not assume that the constant directivity of (1.64)
means that one can design a linear array with no scan loss. Increasing array
mismatch due to element mutual coupling negates this possibility, even for omni-
directional elements. In addition, the discussion in Chapter 2 indicates that arrays
with element patterns narrowed in the plane orthogonal to scan suffer substantially
increased losses when scanned to wide angles.

Since the maximum value of this expression (1.64) is equal to N and occurs
when all a,, values are the same, it is convenient to define a taper efficiency et
such that the above result for half-wavelength-spaced isotropic elements is thus

[17]
Dy = Ner (1.65)
where here
_ 1 [Sa,l
" N3,

This taper efficiency is the discrete analog of the gain factor used for continuous
apertures, as tabulated in Table 1.1.

Equation (1.64) is exact and pertains to omnidirectional elements with integer
half-wavelength spacings. A more general but approximate expression that illus-
trates the linear dependence of directivity and element spacing is due to King [18]
and given below [17]. This result applies for isotropic elements spaced less than a
wavelength apart and with the beam at broadside so that no grating lobes exist,
and for beam shapes that concentrate most of their power in the main beam. In
this case, the directivity is given approximately by

Do = [2d/A][eTN] (1.66)

Directivity of Planar Arrays

If the elements of the linear array have significantly narrowed patterns in the
orthogonal plane, then, in general, one must perform the integral of (1.4) to evaluate
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directivity for the scanning array. Section 2.1 gives equations for directivity of
more generalized arrays, but for the purposes of this section there is one very
convenient form for system applications. The beamwidth and directivity of a rela-
tively large planar array are related by the following approximate equation due to
Elliott [19]:

D = 32,400 cos 6p/(6x30y3) (1.67)

where 6,3 and 6,3 are the 3-dB beamwidths of the pencil or elliptical beam at
broadside. In this formula, the beamwidths are in degrees.

The formula is exact for a uniform matched aperture at broadside. It is a good
approximation for most other pencil beam array patterns and shows that the
directivity is decreased approximately by the product of the beam broadening
factors in each plane for a lower sidelobe array. Stegen [20] points out that the
numerator of this expression should be larger for low-sidelobe antennas. This
simple formula reveals the well-known cosine dependence of the directivity of large
planar arrays, but does not apply at endfire (6 = #/2), where it yields zero direc-
tivity. The endfire case is described in Section 2.1.

It is possible to test the expression in one limiting case for an aperture with a
uniform illumination. Using the uniform array beamwidths [from (1.61)] in the
above (at broadside) shows this equation to be consistent with the known relation
for the maximum directivity 47AIN? (1.11). The relationship to the number of
array elements is obtained in terms of the cell area A = L, L, = NAcgLL, where
AcgLL is the area of the grid occupied by a single element:

Doy = 47NACpLL/A? (1.68)

which is the maximum directivity except in the superdirective limit referred to
earlier. Again, introducing the concept of an aperture efficiency €4 and introducing
the scan loss for a large array, the actual directivity for a large scanned aperture
array is

Do = Dpax€a cos 6 (1.69)

47A
= 2 €4 cos 0

This expression can also be derived directly from the integral expression for directiv-
ity in the limit of a very large array.

Elliott [21] shows that for a relatively large rectangular array, with a separable
distribution and not scanned too close to endfire, the directivity is approximately
given by the following expression:

Dy=#D,D, (1.70)

where Dy and D, are the directivities of the linear arrays of isotropic elements
with the separable distributions. The elements in the planar array are assumed to
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have hemispherical element patterns. This expression is not exact, but it remains
useful for system sizing applications.

Array Realized Gain and Scan Loss

Since the directivity can be related to the beamwidth, and the variation of beam-
width with scan is well known, approaching the ideal 1/(cos #) dependence (1.62)
for large arrays, one might assume that the gain of a scanned array is also simply
established. However, the array gain and directivity are related by

GR=¢(1-ITP)Dy (1.71)

for T, the reflection coefficient of the array input terminals. The reflection coefficient
I" varies as a complex function of the scan angle because of the impedance mismatch
that results from interelement coupling, sometimes called mutual impedance.
Although (1.71) is regularly used to compute scan loss, it is often convenient
for planning purposes to combine both factors into one and assume scan loss in
the form of some power of the cosine (cos #)”. This has been done in Figure 1.11(a)
for n = 1, 3/2, and 2. These represent reasonable design goals depending on the
array elements and plane of scan. In addition, use of Figure 1.11 implies that the
element spacing is such that no grating lobes radiate. System designers can now
assume that with careful design, the cos 6 can be approached in one plane of scan
(out to 60° or so), but not often in both planes. This benign scan has been available
for many years for dipole and slot arrays as a result of extensive research on these
two configurations, but some work [22] has shown that the same sort of results

Scan loss

| 1 1 Il | 1 | J
10 20 30 40 50 60 70 80
Scan angle (degrees)

(@)

Figure 1.11 (a) Typical scan loss curves. (b) Scan loss with array blindness. (From: [23]. O 1968
IEEE. Reprinted with permission.)
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Figure 1.11 (Continued.)

can be obtained with patch arrays. For system design purposes, it is common
practice to assume that the cos®? @ curve is a reasonable dependence for both
planes. In addition, without careful design, some arrays can exhibit the catastrophic
pattern degradation called scan blindness, which results in almost complete cancel-
lation of all radiation for certain scan directions. This phenomenon is depicted in
Figure 1.11(b), due to Farrell and Kuhn [23]. In this figure, which shows the
characteristics of a triangular grid array, the distance A is the distance between
elements in the same row (H) plane, and the distance B is twice the distance between

the adjacent rows. The scan properties of specific array elements are discussed in
Chapter 6.
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Grating Lobes of a Linear Array

A linear array with its peak at 6 can also have other peak values subject to the
choice of spacing d,. This ambiguity is apparent, since the summation also has a
peak whenever the exponent is some multiple of 27. At frequency f and wavelength
A, this condition is

277% (sin @ —sin 6g) = 2p (1.72)

for all integers p. Such peaks are called grating lobes and are shown from the
above to occur at angles 6, such that

sin 6, =sin(fy) + zc)i_/\ (1.73)
p=x(1,2,...)

for values of p that define an angle with a real sine (|sin 6, < 1).

If the element spacing exceeds a critical dimension, grating lobes occur in the
array factor, as indicated in Figure 1.12. This figure shows several patterns of an
array of eight elements spaced one wavelength apart, excited by a Chebyshev
tapered illumination that would produce —25-dB sidelobes in an array with half-
wave spacing. The two sets of patterns are for scan angles of broadside and 30°
(ug = 0.5). The far-field pattern is the product of the element pattern (shown
dashed) and the array factor, shown solid in Figure 1.12(a, b). The grating lobe
may be suppressed somewhat by the element pattern zero for a broadside array
as shown in the figure. However, when the array is scanned (and the element
pattern is not), the grating lobe location moves away from the null and can be a
substantial source of radiation. In the case shown [Figure 1.12(d)], it is fully as
large as the desired main beam. A criterion for determining the maximum element
spacing for an array scanned to a given scan angle 6 at frequency [ is to set the
spacing so that the nearest grating lobe is at the horizon. Using (1.73), this leads
to the condition

d, 1

at the highest operating frequency f(, which requires spacing not much greater
than one-half wavelength for wide angles of scan. In practice, the spacing must
be further reduced in order to avoid the effects of array blindness, described in
Chapter 5.

Grating Lobes of a Planar Array

Similar relations hold for a planar array, since the grating lobe phenomenon occurs
in these cases also, and one can show for a rectangular grid array [Figure 1.8(c)]
with spacings d and d, that lobes occur at
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Figure 1.12 Array factors, element patterns, and grating lobes for a linear array: (a) —25-dB Cheby-
shev array factor for one wavelength spacing (solid line), assumed element pattern
(dashed line); (b) radiation pattern for part (a); (c) scanned array factor (solid line),
element pattern (dashed line); and (d) radiation pattern for part (c).

uy + pAld, p=0,%1,%2,... (1.75)

Up

Vyq

vo + gAld, qg=0,%1,+2, ...

This spectrum of grating lobes is shown graphically in the grating lobe lattice
of Figure 1.13, which shows the (#,, v,) grating lobe locations in #, v space for
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Figure 1.12 (Continued.)

a rectangular grid array. Not all values of p and g correspond to allowed angles
of radiation, however, since the angle (6,4) associated with grating lobe designated
by indices p and ¢ is defined by

cos Opg = (1 - u} = v3)" (1.76)

There can only be real values of 6, if the u, and v, are constrained to be
within the unit circle, or
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Rectangular grid
array

Figure 1.13 Grating lobe spectrum for planar arrays with rectangular grids.

up +vh<1 (1.77)

Grating lobes inside the unit circle correspond to real angles 6 and radiate, but
those outside the unit circle do not. As is the case for the linear array, this limits
element spacings to approximately a half-wavelength or slightly more for most
applications. The area occupied per element for a 60° scan is about 0.29A%. In
practice, it is necessary to reduce the element spacings further (by 5% to 10%) in
order to avoid the pattern deterioration associated with mutual coupling effects
[24].

Bandwidth

Array bandwidth [25, 26] can be limited by the bandwidth of the elements in
the array, but often the more severe limitation is caused by the use of phase
shifters to scan the beam instead of time-delay devices. The complex weights chosen
in (1.53) provide time delay, and so the beam peak occurs at (6, ¢g) for all
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frequencies. If phase shifters are used to scan the beam, the peak is scanned to the
desired angle only at center frequency f(. Otherwise, it is scanned to that angle
which makes the exponent of (1.51) equal and of opposite sign to the exponent
of (1.50). For phase steering in one dimension, the complex weighting has the form

-
4, = ag exp (—;T ndxu0> (1.78)

and the value of # corresponding to beam peak is given by
u = upfolf (1.79)

The result is pattern “squint” like that shown in Figure 1.14(a), in which the beam
peak angle is reduced for frequencies above the design frequency and increased for
frequencies below the design frequency. If the bandwidth is defined by the frequency
limits at which the gain is reduced to half power, the resulting fractional bandwidth
is given by

Af _Au_ 05

A
F = a0 S sn Oy 0.886Bb<—> (1.80)

L sin 6

for an array with beamwidth #3. The bandwidth becomes smaller as the array is
made larger or as the scan angle is increased. Figure 1.14(b) shows bandwidth
versus scan angle for various-length arrays.

For small scan angles, the following expression is convenient.

Aflfy = 1ng (1.81)

where 73 is the number of beamwidths scanned (in one dimension).

Another commonly used relationship can be derived from (1.80) for the limit
of wide-angle scan (+60°). Using the beamwidth of (1.61), expressed in degrees,
and choosing as the band edge the one-quarter beamwidth condition, which corre-
sponds to about 3/4-dB loss and not the 3-dB (half-power) limit used in previous
expressions, one obtains [27]

Bandwidth (percent) = beamwidth (degrees) (1.82)

If the 3-dB beamwidth criterion is used, or if a rectangular pulse is radiated, the
relation is:

Bandwidth (percent) =2 - beamwidth (degrees) (1.83)

The above relations relate to fractional and percentage bandwidth of an array.
However, there is a direct relationship between actual bandwidth and array size
implied by (1.80), irrespective of whatever the fractional bandwidth may be. From
(1.80) one obtains
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Figure 1.14 Wideband effects in phased array performance: (a) beam squint for a phased array
(wavefronts and beam peak motion); (b) array 3-dB bandwith versus (L/A)sin 6q (Bp
is beam broadening factor); (c) array or subarray length (L/A)sin 6 versus bandwith
(MHz) (B, is beam broadening factor); and (d) narrow pulse incident on array (array
fill time).

L sin 6y = 0.886B, (300)/Afy (1.84)

In this expression, Afys is the bandwidth in megahertz and L the array length in
meters. Thus, a 300-MHz signal bandwidth operating with a uniformly illuminated
array (Bp = 1) can have a maximum length of about one meter at 60° scan. Figure
1.14(c) gives the 3-dB bandwidth of arrays of various lengths and illustrates that
there is a maximum array size corresponding to a given array bandwidth.
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Figure 1.14 (Continued.)

An alternate perspective on array bandwidth comes from the concept of an
array “fill time” T. Figure 1.14(d) illustrates a pulsed waveform modulating a
plane wave incident upon the array at an angle # from the array normal. The
sketch shows that a very short pulse will arrive at different edges of the array at
entirely different times, and without delaying those signals received by the right
side of the array, there is no way to sum the signals at each element and thus
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benefit from the array gain. The pulse length has to be significantly larger than
the fill time, or for a pulse incident from angle 6,

7_>T:Ls1n6’

(1.895)

where c is the velocity of light, 7is the pulse length (duration), and T is the antenna
fill time.

Since any measure of pulse bandwidth is inversely proportional to the pulse
duration 7, the bandwidth is

Kp < KpC

Af= "7 Lsin 6 (1.86)
for proportionality constant Kp, which is on the order of one.
The fractional bandwidth thus assumes a form similar to (1.80):
Af  Kpa
T < L sin 6 (1.87)

Equation (1.80) was written for a continuous-wave (CW) signal and implied
an amplitude modulation of 3 dB at the band edges. Equation (1.87) merely states
a similar dependence for the pulse case, and is included here for purposes of
exposition. It is necessary to perform the more detailed spectral (transform plane)
analysis in order to compute a more realistic bandwidth based on tolerable pulse
distortion. Detailed treatments of the frequency response of arrays are given by
Kinsey and Horvath [25] for a center-fed array, and by Knittel [26] for a phase-
scanned array. Frank [27] gives both CW and pulse bandwidth criteria for various
series and parallel feeds and shows that for similar criteria of CW signal loss and
pulse spectrum loss, the bandwidth of an array passing a pulse with a uniform
spectrum is about twice that of the CW signal. Thus, in many cases one can
operate a wider bandwidth signal than is given by (1.80) without significant loss
of information.

The array bandwidth restriction is, in most cases, a severe limitation. It can
be removed only at great cost by replacing phase shifters by time-delay devices.
Moreover, present day time-delay units are switched transmission lines, and their
bulk and weight make them unsuitable for many array applications. Wideband
array techniques are addressed in Section 1.2.3.

1.2.2 Array Size Determination

Given the specifications required of an array antenna, the first task facing the
system designer is to determine the size of the aperture. Gain is one system parameter
that defines the size of an array, but when resolution is important, the array
beamwidth may be the determining factor. In addition, there are special instances
in which the number of elements in the array is governed by the scan volume or
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the ultimate depth of pattern nulls or null bandwidth. This section enumerates
some of the factors that influence the required array size.

EIRP and G/T for Large, Two-Dimensional Passive or Active Arrays

A fundamental consideration is whether the array should be active, with solid-
state amplifiers at each element, or passive, with a single RF power source and a
single receiver. In addition, there is an intermediate solution with active devices at
various levels within the array (at columns, rows, or groups of elements called
subarrays). The two basic organizations are indicated in Figure 1.15 (shown for
a transmitting array), but the only cases described here are the planar array, with
a single power supply P, (passive), the case with N amplifiers for a two-dimensional
array with N elements, and amplifier output P4 at each.

Equations (1.38) and (1.39) indicate that one important feature of the radar
or communications transmitter is the product of its gain and input power. This
term is called the effective isotropic radiated power (EIRP). For a large array with
N elements and array aperture area Nd, d,, the EIRP for active and passive arrays
with uniform illumination are given in the following expressions.

Passive Array

EIRP = Ne Py (Dcgrr) (1 - |T) (1.88)
Active Array
EIRP = N*Pyiop (Dcgrp) (1 = |T) (1.89)

where Dcgp L is the directivity of one cell of the periodic array (or one element)

and is defined

PHASE
CONTROLS /-ACTWE DEVICES { AMPLIFIERS)
{‘\ ACTIVE I
DEVICE
(AMPLIFIER )
(a) (b)

Figure 1.15 Active and passive array configurations: (a) passive array; and (b) active array.
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4
DcErL = F(dxdy) cos 6 (1.90)

For a 0.5A matched square lattice at broadside, Dcgrp = 7

The €; (loss efficiency) term used in the above equation for the passive array
is a dissipative loss and accounts for power lost in the array feed network and
phase shifters. This loss can be several decibels, and can therefore significantly
impact required array size, as shown in the next section.

In these expressions, the large-array assumption is used to require that each
element of the array sees the same reflection coefficient I'. This is a good approxima-
tion for a large array because most of the elements are far from the edges, and the
elements that are near the edges are not excited strongly.

A significant difference in the active and passive arrays is that for the active
arrays, EIRP varies like N 2 (increasing the number of elements increases both the
input power and the directivity), while the passive array EIRP varies directly with
N. If the distribution network were lossless, the ratio of EIRP to net RF power
would simply be the directivity and there would be no power balance difference
between the active and passive arrays. The remaining difference would lie in the
relative efficiency, output power, and cost of the RF amplifiers in the two cases.
However, for a lossy distribution network, the advantages of the active array are
readily apparent, as can be seen in the next section.

The receiving array in a communication or radar system is characterized by
the ratio G/Tg, as given below, with reference to Figures 1.2 and 1.15, assuming
uniform illumination.

Passive Array

Doer (1 -|T[%)

= e [Ty +Tr(L-1)] (1.91)
Ts=T,+ (Fr = 1)T

@
S %
non

where

Dy = NDcgLL

Active Array
G*=Do(1 - T?)
T, =Ty (1.92)
Ts=(F-1)Ty + T,

where €7 is the network loss factor for the passive array (the fraction of the power

received at the antenna terminals that reaches the receiver), F is the noise figure
of the active array receivers, Fp is the noise figure of the passive array receiver,
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and T, is the antenna temperature. Here the number of array elements N enters
only once in the array gain expression. All else being equal, the active array has
the advantage of lower T, with lossy distribution networks.

Gain Limitations Due to Circuit Losses

Equation (1.11) shows the array directivity increasing linearly with aperture area.
If the array is small enough and circuit losses not too large, then gain continues
to increase with size, but gain is ultimately limited if line losses are not negligible.
Figure 1.16(a) shows the gain of a square array of N elements like those of Figure
1.8, with interelement spacing d in either direction and with each element fed by
equal-length transmission lines of length (N 12 _ 1)d (as for the array shown in
the figure). In this case, the maximum array gain at broadside is just the gain of
(1.11) reduced by the loss of the line.

Line Attenuation
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Figure 1.16 Gain and G/T limitations due to circuit losses: (a) passive array gain; and (b) passive
and active array G/T (assuming matched array).



38

Phased Arrays in Radar and Communication Systems

Gain = FTA | )=(@0) (N2 -1) (agy)/10) (1.93)
/\2

where agpy, is the attenuation loss of the transmission line in decibels per wave-
length. In this formula, the array elements are assumed matched. This equation
does not include loss due to power dividers in the corporate feed network, a factor
which can be significant in some cases. Either of the equal-line-length feeds shown
in Figure 1.8(b) or Figure 1.8(c) contains Npp power dividers in series with the
element where, for an N-element square array,

NPD = 10g2(N) =3.32 loglO(N) (1.94)

and the loss of each power divider may need to be included in the calculation.

Figure 1.16(a) shows gain curves for a square passive array of matched elements
separated by 0.5\ on a square grid, and compares the available gain for various
values of attenuation. Except for the lossless case, gain does not increase monotoni-
cally with the number of elements, and in fact reaches a maximum value and then
decreases with further increase in size. The gain of an active array is shown in the
figure as the zero loss case because the amplifiers are at the element level. In the
active array case, the gain increases linearly without any saturation limit.

Figure 1.16(b) shows the G/T for passive and active receive arrays with the
line attenuation parameters used in Figure 1.16(a). In this figure, the passive array
curves are shown solid, while the active array curves are shown dashed. The
assumed phase shift loss is not shown, but should be included in the system
evaluation. The G/T is altered even more than the gain because the temperature
is increased by thermal loss in the line.

Transmission line loss is a major factor leading to the integration of solid-
state amplifiers into large arrays, and to the fabrication of arrays using several
transmission media. It is often convenient to do several layers of power division
in low-loss media like waveguides or coaxial lines instead of using a higher loss
media like microstrip transmission line throughout the array.

Directivity and lllumination Errors: Random Error and Quantization Error

The net antenna gain is the directive gain reduced by the various system losses.
Apart from the loss associated with aperture efficiency (1.12), which is deterministic
in nature and built into the choice of aperture illumination as a compromise between
gain and sidelobe level, there are usually two other factors that contribute to
reduced directivity. These factors are array tolerance errors and errors due to
phase, amplitude, or time-delay quantization. They reduce directivity (and gain)
by distorting the chosen aperture illumination.

Data describing peak sidelobes and pattern structure due to these effects are
given in Chapter 6. Equations for gain reduction and average sidelobe level are
given below for arrays with random phase and amplitude errors. The directivity
in the presence of amplitude and phase errors is

D _ 1

Ot e— (1.95)
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where 87 is the amplitude ratio variance normalized to unity, @2 is the phase error
variance in radians squared, and D) is the directivity without error.

The average sidelobe level, far from the beam peak and normalized to the peak,
is a constant given by

SL4p = 10 log;( o2 (1.96)

_2_52‘*32
7 - Ney

and ey is the aperture efficiency.

The above expressions pertain to linear and planar arrays. Since they are
normalized to the beam peak, the element pattern gain has been removed from the
expressions. Figure 1.17(a) shows the root-mean-square (rms) sidelobe level for a
square arrray as a function of array directivity for various phase errors (and no
amplitude errors). The dashed curve of Figure 1.17(a) gives sidelobe levels for an
array of the same size, but organized into columns for a one-dimensional scan. In
this case, the rms sidelobes cited are in the plane orthogonal to the axes of the
columns.

A particularly revealing way to restate the sidelobe results is the expression
given next, valid for a planar array with A/2 spacing [and element pattern broadside
gain 7, as in (1.90)]. In this expression, the sidelobe level is given relative to the
isotropic (zero gain) level as

o2=0>-Dy

= o(7Ney) (1.97)

(%2 + 32)7

This level is shown conveniently as a family of circles in Figure 1.17(b) [28].

A digitally controlled phase shifter with P bits has 2" phase states separated
by phase steps of 27/ (2F). If the array is made up of such phase shifters, then there
is an additional loss due to the staircase approximation of the required phase shift.
This loss and the resulting sidelobe level increase are described in much more detail
in Chapter 7. The resulting loss in directivity and the average sidelobe level produced
by the error are approximated [29] by the equations above using the phase error
variance:

2

P2 =

| 3

(1.98)

W =
~

22

which is evidently the mean square value of the triangular error distribution with
height one-half of the phase step. Figure 1.17(c) shows the average sidelobe level
for an array with N bits of phase quantization. Chapter 7 gives peak sidelobe levels
for such distributions, but standard practice is to break up the periodic error by



40

Phased Arrays in Radar and Communication Systems

s
T
wm
E > e =50
we
q
w 2.50
>
@ 90 100
w2z 10
¥ 50
(72}
o o 0.59
E o« 2.50
[11]
©
~ T i T
20 30 40
DIRECTIVITY (dB)
1159 0.2 -
10.0°¢ — —
w [72]
_ u Z
(7] —
E & 0o
= o a
g o ¢
e 579 041
@
w
(b) b
< o__ _
< 3.2
Q.
0.0° 0.0 T )
0.0 | 0.1 FRACTION| 0.2

0.5 dB 1.5dB

AMPLITUDE ERROR (rms)

COMBINATION OF RANDOM ERRORS (FROM RUZE)
FOR A /o SEPARATION

Figure 1.17 Tolerance effects in array antennas: (a) rms sidelobe level for square array with errors
at elements (solid lines) or columns (dashed lines) in plane orthogonal to columns
(reference to main beam); (b) average (rms) sidelobe level (relative to isotropic) for
array with amplitude and phase errors; and (c) rms sidelobes due to N-bit phase-shift
quantization (N = number of phase shifter bits).

several means, and so to make the error occur with a more random spatial dis-
tribution. In this case, as an approximation, one can assume that discrete peak
sidelobes resulting from this error are on the order of 10 dB above this level (see
Chapter 7).
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Minimum Number of Elements Versus Scan Coverage: Limited Field-of-View
Arrays

According to (1.74), there is a maximum spacing between array elements that
cannot be exceeded without exciting grating lobes. If not suppressed by the element
pattern, these lobes are as large as the main beam. The topic of limited field-of-
view arrays is treated in more detail in Chapter 8, but is included here for the
purposes of evaluating the array size and number of elements. Equation (1.74)
gives a condition for maximum spacing based on keeping all grating lobes out of
real space throughout the scan coverage. With this spacing, the minimum number
of elements in a conventional linear array of length L is

Niin = L/D ax (1.99)

=%(1 +sin )

where D, is the interelement spacing.

Although this expression leads to the use of fewer elements if the scan is limited,
this is still a restrictive condition, leading to an absolute minimum number of
elements of one per square wavelength even if the array is unscanned, or four per
square wavelength if the array is scanned to endfire.

If the array is periodic, however, there is a way to reduce the number of controls
by grouping the elements into subarrays that allow one to use extra large spacing
between these subarrays while suppressing the resulting grating lobes. This can be
done using networks that produce approximate flat-topped element patterns that
are nearly constant for |[D/A sin 6| < 0.5, and zero for |[D/A sin #]| = 0.5. With this
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element spacing (in one dimension), one can scan the array to the maximum scan
angle 0.y, which is related to the maximum intersubarray spacing D ,x by

(Dinax/A) Sin Oax = 0.5 (1.100)

and to the condition for the minimum number of controls for a one-dimensional
array of length L and beamwidth sin(63) = A/L:

o _ L sin O
Nimin = 5= 6,57 sin 3 (1.101)

This minimum number of controls is equal to the number of beams that an
orthogonal beam matrix can form over the given scan sector. Networks and circuits
for producing such element (or subarray) patterns are described in Chapter 8 and
have a variety of characteristics, some approaching this ideal element pattern. The
basic flat-topped pattern is produced by a technique called overlapped subarraying.
Most practical systems need several times the minimum number of elements given
in (1.101), but if the scan is restricted, this can be only a small fraction of the
elements for an array designed for wide-angle coverage. Array techniques that use
these features are called limited field-of-view or limited scan systems, but are
relatively complex compared to conventional arrays.

Section 1.3.2 describes a wideband array configuration that uses the same
overlapped networks that are used for limited field-of-view systems.

For a rectangular two-dimensional array, the minimum number of controls is
the product of two numbers of the form of (1.101).

2

max (1.102)

_sin 0&1“ sin 6
0.25 sin 0" sin 0%

min

Since the number N;, is the smallest achievable, it is convenient to define a term
called the element use factor N/N i, which measures the array against this stan-
dard [30]. An array with elements spaced dy and d, apart has the element use
factor N/N pin.

N gD, s
Nin dx dy .
~ 0.25A%
d, sin HI(Ifa)x dy sin Hga)x

Figure 1.18 shows the relative number of elements (controls) for a conventional
two-dimensional array with a conical scan sector as compared with the theoretical
minimum. This result is due to Stangel and is comparable to the result of using
(1.103). The techniques for achieving this reduction in controls and the relative
complexity of systems that approach this ideal are detailed in Chapter 8.
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Figure 1.18 Required controls for arrays with limited field of view.

1.2.3 Time-Delay Compensation

The bandwidth limitations imposed by (1.80) severely restrict the use of arrays in
many practical radar and communication systems. The use of time delays instead
of phase shifts can give enhanced bandwidth, but often at prohibitively large cost
and at the cost of other performance goals.

In order to maintain the beam peak at a constant angle 6 for all frequencies,
one needs time-delayed signals at each element. The excitation coefficients for a
linear array are given:

a, = exp[~j(2m/A)nd, sin 6] (1.104)

exp[j Py |
In terms of equivalent phases ®,, at each element, these phase shifts are
CI)n=—27T7dx sin 6 (1.105)
and thus need to vary linearly with frequency.

The customary way to provide time delay is to insert incremental lengths of
transmission line of length L, = nd, sin 6 to produce the time delays,
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:M:Ln/c (1.106)

Tn

using actual delay lines by switching sections of transmission lines behind each
element or group of elements. Since the phase shift inserted by length of line
L, is

_2xwL,

D, ;)

(1.107)
each line length (near the ends of the array) has to be variable over the range

-L L
5 sin g < L, < 5 sin 6 (1.108)

In this case, the negative value does not indicate a negative line length, since an
equal length of line is first added to each path. The required lengths of switched
line are extremely bulky and expensive for large arrays, and the large number of
discrete time-delay positions requires a highly complex switching network. Further-
more, the relative dispersion in the various transmission line sections may prohibit
accurate beam forming. For these reasons there are few fielded systems that are
designed around time delay controls, and to date these have been large ground-
based arrays.

The need for wideband array systems is increasing, and analog, optical, and
digital technologies can provide that function, although at a significant cost. These
will be discussed in Section 1.3.

1.3 Array Architecture and Control Technology

The architecture [30, 31] of an array encompasses all of the choices that the array
designer makes to bring together the electromagnetics of elements, aperture, power
division, and control. Architectural choices begin at the aperture and dictate how
the elements are to be grouped and fed. Behind the aperture is some means of
phase or time delay control, and this is followed by a network that combines the
power from the various elements, includes amplification as needed, and provides
amplitude weighting, time delay, and perhaps adaptive control for interference
suppression. The control aspect begins with the microwave phase shifters that have
been the mainstay of electronic scanning systems since the first arrays were built.
However, recent demands for wideband performance and highly flexible array
control, including adaptive and reconfigurable arrays, have highlighted the special
features offered by optical and digital control. The following sections treat these
topics briefly.

1.3.1 Array Aperture

Array cost continues to limit the use of arrays in systems. If cost were no consider-
ation, there would seldom be any need to use other than waveguide- or dipole-
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type elements. It is primarily this issue that continues to require more innovations
and creativity of the array designer, for the solution lies not in mass-produced
dipoles or waveguides, but in developed techniques that assemble the array in
relatively larger sections and that may incorporate elements or groups of elements,
controls, and devices, all in the same fabrication step and all assembled by automatic
processes. There is a need for special array architectures, specific ways of collecting,
assembling, and mounting array elements, and special types of array feeds to be
compatible with various ways of grouping elements.

Particular architectures seem to be appropriate to specific frequency ranges
and array geometry requirements (size and depth). Figure 1.19 shows the two basic
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array constructs and introduces the terms brick and tile constructs as coined by
Kinzel et al. [32]. Figure 1.19(a) shows an array of printed circuit dipoles in a
brick arrangement. The brick construct uses the depth dimension to provide the
functions that are accomplished in the multiple layers of the array with tile construc-
tion. Thus, each brick may contain a row or column power divider, phase shifters,
amplifiers, and other devices in addition to maintenance features and cooling. The
brick may be produced by monolithic integrated circuit technology, and so be fully
compatible with low-cost fabrication. Elements for the brick construction are also
quite reasonable, since horizontal dipoles, flared-notch elements, and a variety of
others can be integrated into this geometry. These elements generally have broader
bandwidth than microstrip patches and this may be a major advantage in some
system applications.

In the limiting case, a brick may be a single module and construction is reduced
to assembling the array face one element at a time. This has been the established
practice for most radar arrays at frequencies through 10 GHz. In this case, the
array element modules, which consist of an element and a phase shifter (and perhaps
the phase shifter driver circuitry) are inserted into a manifold that provides RF
power and phase shifter control. The modules can also include active devices,
amplifiers, and switches, and so may be complete transmit-receive front ends. In
this way, the transmitter and receiver chain is a part of the array face, and this
needs to be accounted for in thermal and mechancial design. The RF power division
is accomplished in the manifold, as is logic signal distribution and cooling. This
assembly technique is efficient and relatively easy to maintain, though not inexpen-
sive to produce. It seems clear that for frequencies up to K-band (roughly 15 GHz),
this type of assembly may always be the most practical because of element size
and separation. It now seems that at some time in the future, this architecture may
not be practical nor have the lowest cost at EHF and millimeter-wave frequencies,
and so may be replaced by brick construction with a multiplicity of elements in
each brick or by tile construction described below. The reason that frequency enters
into this selection is that semiconductor substrate size is limited. As frequency is
increased, it becomes possible to place more devices and elements on the same
chip. At these frequencies, the use of multiple-element brick and tile construction
becomes practical.

Figure 1.19(b) shows an architecture that Kinzel et al. [32] called tile construc-
tion, and that many have called monolithic array construction. It appears that the
term tile is more appropriate because these tiles often have a multiplicity of layers
(are not monolithic), and because other architectures seem to be as compatible
with monolithic integrated circuit technology and so as equally deserving of that
identification. The primary antenna elements used in this type of assembly are the
microstrip patch radiator or microstrip dipole, fed by microstrip transmission
line, although various other planar transmission lines have also been used to feed
microstrip and other planar antennas.

Whether tile or brick construction is used, there is still a significant architectural
issue that addresses how the proper array weights are applied to elements at the
array face. The array face itself is often organized into subarrays of rows, columns,
or areas with each subarray fed separately.
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The terms brick and tile relate to the way the array is assembled, not the
organization of the aperture. One could assemble an array of column subarrays
using the tile construct if the planar RF power dividers addressed columns of the
array, or one could assemble an area subarray by inserting the subarray as a brick
from behind the aperture. In terms of the quality of the array radiation pattern,
the column subarray organization is usually preferred to area subarrays, because
the power distribution network for each row can be made with the proper taper
for sidelobe reduction in the plane of the row or column axis. Sidelobe control in
the orthogonal plane is provided by a separate power divider. The fabrication of
a network to excite the column subarray can be accomplished using power dividers
below or in the plane of the aperture, but for most applications, where space
permits, the brick fabrication is preferred because it provides more room for phase
shifters, power dividers, and other components.

Area subarrays are useful primarily when the array is to be uniformly illumi-
nated, or at least when the area subarrays themselves can have uniform illumina-
tions. To achieve low sidelobes with area subarrays, the subarray amplitude taper
would need to be different with each subarray, and that is a costly constraint.
When the sidelobe requirements are not too severe, the subarray size can be chosen
to use equal amplitude subarrays and to use as amplitude distribution a series of
quantized steps. If the subarrays are the same size, then the periodic amplitude
error causes well-defined grating lobes to appear as shown in Chapter 7. These
lobes provide the ultimate limit to the sidelobe level.

1.3.2 Feed Architectures
Constrained Feeds for Arrays

Constrained feeds use a network of power dividers and transmission lines to bring
the signal to each element. The equal line-length feed networks of Figures 1.8 and
1.15 are called corporate feeds, and they provide equiphase signal distribution for
wideband arrays. Series-fed arrays, like that shown schematically in Figure 1.6,
produce beams with frequency-dependent scan angles and are often used for fre-
quency scanning. Some discussion of frequency scanning is included in Chapter 5.

Space-Fed Active Lens and Reflectarray Antennas

Figure 1.20(a) shows a space-fed lens array, which, in its simplest form, is just an
alternate to the constrained corporate feed of Figure 1.8(b, ¢). This configuration
shows an array face, fed by a single antenna that illuminates the back face of the
aperture. The lens is active in that there is phase control at every element in the
lens. The so-called reflectarray [33, 34] of Figure 1.20(b) has the feed in front of
an array aperture of shorted transmission lines loaded with phase shifters. In [34],
the array is not scanned, but the reflectarray concept is utilized only to cohere the
beam.

The main advantage of these configurations is that they reduce the cost and
weight of the system by eliminating the corporate feed. They are therefore applicable
to lower cost ground-based arrays as well as to very large space-based radar
and communication systems. At present, these space-fed scanning systems have
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Figure 1.20 Array space feed networks: (a) space-fed lens array; and (b) reflectarray.

instantaneous bandwidths limited by the use of phase control at the objective
aperture.

Multiple Beam Array Feeds

A special category of array feed is the multiple beam array shown schematically
in Figure 1.21, where each input port excites an independent beam in space. These
can be produced with a digital beamformer, but in addition there are a variety of
antenna hardware concepts that produce multiple beams. Butler matrices [35, 36]
(see Figure 1.22) are a circuit implementation of the fast Fourier transform and
radiate orthogonal sets of beams with uniform aperture illumination. Because the
beams of a matrix-fed array area phase are scanned, they are inherently modest
bandwidth systems. Multiple beam lens and reflector systems have the advantage
of being wideband scanners, as their beam locations do not vary with frequency.
A particularly convenient implementation is the Rotman lens [37] of Figure 1.23,
a variant of the earlier Gent bootlace lens [38] that has the special feature of
forming three points of perfect focus for one plane of scan. The Rotman lens can
provide good wide-angle scanning out to angles exceeding 45°. Figure 1.23 shows

YYYYYYYY

Multiple beam network

Figure 1.21 Multiple beam array.



1.3 Array Architecture and Control Technology 49

x = 7/8 radians phase shift
X Hybrid coupler convention: Straight through arms have no phase s

1L while coupled arms have 90° phase shift
2L 2R

3L 3R

4L 4R

Figure 1.22 Eight-element, eight-beam Butler matrix and radiated beams.

p——— -
————— -

-
-
-
-

0N OB WO

Wavefront

Rotman Lens, ray traces, and radiating wavefront

Figure 1.23 Rotman lens, ray traces, and radiated wavefront.



50

Phased Arrays in Radar and Communication Systems

a sketch of a Rotman lens, illustrating the several ray paths through the lens, and
the associated radiating wavefront. A microstrip version of this lens was developed
by Archer [39] and for some applications is a useful and inexpensive component
relative to the parallel plate version. Multiple beam lenses and reflectors have been
chosen for satellite communication systems, and in that application they serve to
produce either switched individual beams or clusters of beams to cover particular
areas on the earth.

Control for Wideband Arrays

The phenomenon called squint, as illustrated in Figure 1.14 and (1.79), dictates
the need for including time-delay steering for very wideband arrays and for very
large arrays with even modest fractional bandwidth. These two categories of wide-
band arrays are distinctly different and require completely different architectures.
Figures 1.24 and 1.25 outline several approaches to providing time delay for the
various relevant conditions. Figure 1.24 shows two possible architectures for very
wideband (octave or multioctave) or multiple-band control. The sketch at the left
shows one T/R module and one time delay unit (TDU) per element and provides
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Figure 1.24 Wideband array control: (a) array with TDUs; and (b) array with cascaded TDUs.
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Figure 1.25 Architectures for fractional bandwidth wideband arrays: (a) phased array with con-
tiguous time-delayed subarrays; and (b) phased array with time-delayed overlapped
subarrays.
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exact time delay and the ultimate bandwidth subject to antenna element design
(which can now be up to 10:1 in some cases). The T/R amplification at the elements
is necessary because TDUs are lossy (depending on their length and technology).
Recalling that an array that is 100 wavelengths long needs nearly 100 wavelengths
of excess line switched in series with the outermost elements for scan to 60°, it
becomes clear that significant loss can be expected. In addition to loss, there is
little room behind each element to include the TDUs and amplification, so this
most basic of architectures is impractical for most applications except for relatively
small, very wideband arrays.

The right side of Figure 1.24(b) shows a more practical configuration for
providing element-level time delay and, like the first, provides the exact time delay
at every element. This configuration provides small increments of time delay at
each element, perhaps up to two or three wavelengths. Then, after grouping these
elements into subarrays and amplifying, it provides longer delays at successive
levels of subarraying. Very long delays can then be provided by a beamformer
using optical, analog, or digital time delay. In this case, the optical and analog
time delay is provided by a switched line configuration; thus, it retains the wideband
features of the basic apertures. Digital beamformers do not presently support octave
or multioctave bandwidth at microwave frequencies, but they can provide accurate
time delay over narrower bandwidths at a multitude of frequencies through sub-
banding and filtering. In these cases, the digital beamformer can provide multiband
beams that point in the same direction using the network of cascaded TDUs.

Control for Fractional Bandwidth Wideband Arrays

The previous figures addressed true wideband signal control, but very large arrays
require time delay when the instantaneous bandwidth may only be a few percent
yet still exceed that of (1.80). Certainly the configuration of Figure 1.24(b) will
readily satisfy this condition, too, but several other options are available when the
bandwidth is modest. Architectural solutions exist for such fractional bandwidth,
but wideband arrays are shown in Figure 1.25. The obvious solution is shown in
Figure 1.25(a). It consists of using phase shifters at the element level, and after
amplification, inserting time delays behind contiguous subarrays that divide the
array. This solution is simple, easy to build, and provides room for including
analog, optical, or digital time delay at the subarray level. However, it can produce
significant quantization sidelobes. Detailed evaluations of this bandwidth and the
resulting quantization lobes power levels are given in Chapter 6 for contiguous
subarrays. The configuration at the right in Figure 1.25(b) is highly schematic, but
it is intended to indicate that one can construct microwave subarray networks
that overlap one another. These special overlapped subarray networks have been
developed as space-fed or constrained microwave networks and provide good
pattern control at the expense of increased complexity. Some of these techniques
are similar to those used for limited field-of-view antennas and are described in
detail in Chapter 8. Analog, digital, or optical control can be used to provide the
long TDUs. Digital control is particularly appropriate for these overlapped feed
networks because of the added degree of flexibility it provides.
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Scanning About Time-Delayed Beam Positions

The second method of incorporating time-delay devices into an array combines a
complete set of time-delay devices, or a time-delay multiple-beam network, and a
complete set of phase shifters. Shown schematically in Figure 1.26, these networks
provide exact time delay at only a small number (M) of beam positions, as few as
two to four. The scan sector is thus divided into M sections, each centered on the
M true time-delayed beam positions. In effect, the phase shifters only need to scan
the beam from the time-delayed position halfway to the next time-delayed position.
The maximum phase scan for any beam position is thus to the angle

_ SIn Omay

Oscan T M (1.109)

and with (1.80) one can compute the system squint bandwidth as

Af _0.886B,AM

f 7L sin Oy (1.110)

This equation represents a direct bandwidth multiplication by the number of
fixed, time-delayed positions. Moreover, unlike the case of subarray level time
delay, if analog (not discrete) phase shifters are used, this approach does not
introduce any periodic phase error across the array, and so there is no sidelobe
degradation.

Figure 1.26 shows implementation of this broadband approach using time-delay
units (switched lines) with M states and varied across the array. This configuration
requires different sets of switched lines for every element of the array and so is
inherently more costly than the contiguous subarraying technique. Multiple-beam
matrices with time delay can also be used for this application. Their use is described
in Chapter 8.

Time delay networks for fractional
bandwidth (“wideband”) arrays
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Figure 1.26 Network for scanning about fixed time delays.
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1.3.3 Beamforming Modalities and Relevant Architectures

Analog, optical, and digital technologies can be applied to the control of array
antennas, depending upon system requirements and physical constraints. This
choice is also a function of time-microwave analog technology and is well estab-
lished but still advancing rapidly through the use of circuit and solid-state device
integration, while optical and digital array control technologies are far less mature
but even now offer advantageous features for certain applications.

The most basic control circuits for each of these modalities are shown in Figure
1.27. Analog control, shown in its simplest form in Figure 1.27(a), might consist
of a circulator or T/R switch to separate transmit and receive channels at the array
level, followed by a corporate power divider network that weights the element-
level signals to provide for low sidelobe array illumination. This network could
include simultaneous or switched sum and difference beam formation. Phase shifters
or time-delay devices scan the beam in one or two dimensions. This basic network
suffers from losses in the circulator, the power divider, and the phase or time
control devices, and at microwave frequencies these could add to half of the power.
For this reason, it is becoming more common to use solid-state T/R modules at
some subarray level or at each element, as shown in Figure 1.27(b). Here, as shown,
separate feeds might be used for transmit and receive because they often have very
different sidelobe requirements. Each port is routed to a T/R module, where it
passes through a power amplifier on transmit or low-noise amplifier on receive.
The solid-state module usually includes a circulator for separating the two channels.
A detailed discussion of the beamformer architectures for active phased array radar
antennas is given in the paper by Agrawal and Holzman [31].

Figure 1.27(c) shows a basic optical network for array control. In this simplified
circuit, an optical signal is amplitude modulated by an RF signal, the optical power
is divided into a channel for each antenna element, and then it is time delayed by
a switched fiber TDU. After detection, the RF signal is amplified and radiated.
The received signal is handled in a similar manner. This RF/optical path is inefficient
and will require amplification elsewhere in the network, but the technology can
provide accurate time delay with little dispersion, as required for large arrays with
wide bandwidth.

Actual networks that are configured for photonic array control are often far
more complex than the simple one shown in Figure 1.27 and may use independent
optical sources for each control port [40]. Still further in the future, photonic
systems may use multiple interconnect networks for forming independent multiple
beams with microelectromechanical systems (MEMS) mirror switches [41].

The primary obstacles to widespread use of photonic array control are network
losses and device size constraints. Without amplification in the transmit and receive
channels, modulation, detection, and power divider losses can exceed 10 dB, and
receive dynamic range can be limited.

Digital beamforming systems use RF amplification at each element or subarray
and then A/D converters (on receive) or D/A (RF synthesizers) on transmit. Once
in the digital domain, time delay and amplitude weights are accorded to each signal,
and highly accurate pattern control, including multiple simultaneous beams (on
receive) and adaptive array processing, becomes available. Figure 1.27(d) shows a
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rudimentary digital beamforming receiving network and emphasizes the multiple
beam capability offered in the digital domain. This technology will eventually
provide the ultimate degree of antenna control and will present the signal-processing
computer with digital signals that are preprocessed to give optimal antenna perfor-
mance. The digital beamforming network can obtain sidelobes as low as achievable
subject to the precision of the calibration network, provide multiple simultaneous
beams or receive with arbitrary weightings on each beam, provide time-delay
and wideband operation using subbanding techniques, provide for array failure
detection and correction, and idealize the antenna system itself by providing entirely
separate control for each channel path through the array or subarray. Digital
channels can have fully adaptive control using any chosen algorithm without net-
work changes.

Digital beamforming can provide the additional and currently unexploited
capability of allowing the restructuring of the antenna signal path to correct for
element failures and even to change the basic design of the antenna while in
operation. An example of the latter statement is given in Chapter 8, wherein,
depending on bandwidth, the feed array for a lens system can be changed digitally
from a simple focal plane array to a wideband feed using the same array elements.
These and other unexploited capabilities may be the ultimate strength of the digital
beamforming concept.

This digital control is well within the state of the art now, but it is currently
not practical for large arrays. Limiting factors are A/D and D/A (or synthesizer)
bandwidth, computer speed and storage requirements, power requirements, and
size. The loss in the digitizing process also mandates use of solid-state modules at
the array elements, and the A/D sampling is usually done after down-conversion
to a suitable intermediate frequency. While it seems clear that full digital control
is optimum for many applications, the cost, bulk, weight, and power requirements
of the analog-digital interfaces will make element-level digital beamforming a peren-
nial future goal for many large systems. This technology is currently seeing applica-
tion at the subarray level or for rows or columns with phase control providing
one plane of scan.

1.3.4 RF Components for Array Control

Most arrays are controlled by RF phase shifters, switches, and attenuators. Optical
and digital control are beginning to play an increasingly important role in wideband
array systems, where they are usually used in conjunction with microwave analog
components to bring time delay to the subarray level instead of to each element.
This section will describe some of the RF components.

The most important components used to date have been phase shifters, but
more recently variable amplitude control has become important as well. The first
components for phase control were waveguide ferrite phase shifters, but diode
devices, transistor circuits, and very recently MEMS switches and ferroelectric
phase shifters are all finding applications. Many phase shifters are analog devices,
wherein the differential phase between states is a function of voltage or pulse length
or some other analog parameter. Some phase shifters have a small number of binary
states with available phase shifts, designated by the number of bits N, wherein the
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phase between states is designed at center frequency to give the proper phase
differential increments of 360°/2" for 1 < n < N. The three-bit phase shifter thus
has a 180° bit, a 90° bit, and a 45° bit. These are added in appropriate combinations
to approximate a required phase progression (modulo 277).

Ferrite phase shifters [42, 43] have long been the most popular means of control
for high-power radar arrays. Some are capable of handling hundreds of watts of
average power at S and C band to watts at 60 GHz and beyond. Ferrites can offer
a variety of switching speeds, starting at about one microsecond for toroid designs,
and insertion loss as low as 0.5 dB. Figure 1.28(a) shows a digital ferrite phase
shifter using ferrite toroids, wherein each ferrite toroid is driven into a near saturated
state by sending a pulse of current through its drive wire or reversing the current
to drive the magnetization to the base state. This device produces a nonreciprocal
phase differential between the saturated and base states. Phase bits are determined
by the length of the toroid, so the sketch shows several toroids making up a multibit
phase shifter. Typically, 3 or 4 bits are required for most arrays, but up to 8 or
9 bits is not uncommon. Sidelobe levels resulting from such quantized phase shift
states are discussed in Chapter 7. For highly precise phase shifting, temperature
and frequency compensation and specific correction for the transmission line and
element characteristics are often incorporated into the driver circuit logic. Typical
switching time is on the order of 10 us or less and average power can be tens to
hundreds of watts; as these are latching devices, the drive power is only significant
when changing state.

Figure 1.28(b) shows a dual-mode latching ferrite phase shifter [44], which is
reciprocal but composed of nonreciprocal components. The device has a nonrecipro-
cal ferrite circular polarizer section at each end and a longitudinally polarized
variable phase shift section in the center, which is also nonreciprocal. The device
is reciprocal because the end polarizers reverse the sense of circular polarization
for the two directions of propagation. The device switches hundreds of watts of
RF power and is highly accurate. Switching time can be 50-100 us, but because
it is reciprocal it doesn’t need to be switched between transmit and receive. The
latching feature reduces the overall control power requirement. Not shown is the
rotary field phase shifter [43], which is also a reciprocal device and has under

Bit sizes
18 Variable-Field Section
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) e | | — |
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Four bit toroid ferrite phase shifter
(@)

Figure 1.28 Ferrite phase shifter configurations. (a) Four-bit toroid ferrite phase shifter. (b) Dual-
mode latching ferrite phase shifter. (From: [44]. O 1970 IEEE. Reprinted with
permission.)
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1 dB of loss and extremely good phase accuracy, but switching speed is on the
order of 50-100 us.

In general, ferrite phase shifters are relatively bulky and heavy compared to
diode phase shifters and require significant switching power. This leaves ferrite
phase shifters as a strong choice for ground and some airborne systems, as well
as for lens-based communications systems, but less appropriate for space-based
radar systems or for very large airborne radar arrays.

There are a variety of diode phase shifter circuits, and Figure 1.29 shows some
of the basic configurations. The switched-line phase shifter of Figure 1.29(a) is the
most simple geometry, using “N” short sections of line cut to length to produce
the various phase bits. This switched-line circuit is also used to provide time delay,
but many more bits are needed, and the longest bits need to be on the order of
the total aperture length.

Two other diode phase shifter circuits are the hybrid design and the loaded
line circuit. The hybrid circuit shown in Figure 1.29(b) uses balanced reflecting
circuits at the output arms of a 3-dB 90° power divider. By properly designing the
terminating diode circuits, one can achieve a specified phase difference between
the reflection coefficients of the diode forward and back-biased states.

The loaded line circuit of Figure 1.29(c) introduces shunt susceptances spaced
a quarter wavelength apart to maintain a matched input VSWR while producing
a net incremental change when switched between states.

Diode phase shifters have played a major role at frequencies below 2 GHz,
where their loss has been tolerable and their fast switching speed (nanoseconds)
and light weight makes them very competitive with ferrite phase shifters. They can
switch tens of watts of RF power, and even more in special cases [45], but their
dc bias power can be an issue for certain applications. Typically a 3-bit PIN diode

J_ ouT —>| AL/2 -
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Figure 1.29 Microwave phase shifter circuits: (a) switched line phase shifter; (b) reflection phase
shifter; and (c) loaded line shifter.
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phase shifter requires over 100 mW of bias power, and this is significant for some
applications. PIN diode phase shifters at frequencies up to Ka band have been built
with less than 1.5-dB loss. Varactor diode phase shifters are back biased; thus,
they require minimal control power but have higher insertion loss.

Typically, one builds the phase shifter using a cascade of circuits, one circuit
for each bit. Some phase shifters include several different types of bits, depending
upon the amount of space available on the substrate and the degree of precision
required for the phase shifter.

MMIC phase shifters have also been built on GaAs using PHEMT processing
[46], but these have very high loss (8 dB in the reference case) and so are appropriate
primarily for use with amplifier circuits in solid-state modules.

MEMS phase shifters [47, 48] use the same circuits as the diode phase shifters
mentioned earlier. These mechanical switch-based phase shifters can have insertion
loss comparable to diode devices and are very light, but in addition they require
only a few microjoules of control power while they are being switched and require
no holding power. Switching time can be less than 10 us. They are seen as playing
an important role in systems with large arrays, like space-based radar, but reliability
problems have hampered their development to date. Figure 1.30 shows two types
of noncontacting MEMS switches. The switch at the left is a cantilever arm that
is pulled down by an electrostatic field to rest on a dielectric spacer, while the
switch at right is a membrane that deflects like an oilcan. The change in capacitance
is used to produce the desired isolation. There are also contacting switches that
have superior isolation but reduced lifetime.

Ferroelectric phase shifters [49-51] have been a research topic for a number of
years and currently are under development for several smaller systems. Ferroelectric
switches are made from materials with high dielectric constants that can be changed
by adding a dc electric field. Like MEMS phase shifters, these devices are lightweight
and require very low drive power, but they have switching speeds similar to diodes.
Until recently, these have had severe temperature stability problems. Recent thick
and thin film designs have less temperature sensitivity, but RF losses in excess of
3 dB still preclude their use in many array applications. The phase shifters take
two forms. One approach is to use the material to load a transmission line
[49, 50], while the other approach is to use the material as a varactor [51]. With
continued research, these devices will find a role in various specialized array applica-
tions.

— 0 — ANr—mes=
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Cantilever Membrane

Figure 1.30 Microelectromechanical switches.
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Solid-state modules with international phase shift and sometimes with ampli-

tude control have been under development since the 1960s [52]. They are the
fundamental building block of most modern radars and many communication
systems. The MMIC program moved this technology forward during the 1990s,
and now this ubiquitous technology is available at nearly every desired power level
and every frequency throughout the microwave range. There are still development
needs at the high power limits and a need for improved efficiency at all frequencies,
but by far the major drawback of this technology is its cost. In 1996, the cost of
the Ground Based Radar System T/R modules at the end of the production cycle
was quoted as “significantly less than $1000 each” [53]. Recent claims have cited
cost per module in the hundreds, but this is still too high for many applications.
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Pattern Characteristics of Linear and
Planar Arrays

2.1 Array Analysis

2.1.1 The Radiation Integrals

As shown in many texts [1], the free-space electromagnetic field can be expressed
in terms of integrals over elementary electric and magnetic current sources. The
field due to an electric current density J in a volume dv' = dx' dy' dz' is obtained
from the vector potential integral A, where A is given by

u o koR
A=Ejj(v’) z— v (2.1)
for
R=[(x-x")+(y—-y)+(-2)""?

and the associated electric and magnetic fields are given by

oA ) .
Ej = —jwA wMeV(V A) (2.2)
By = VxA (2.3)

and w = 27f.

The segment of wire shown in Figure 2.1 indicates that the vector potential is
routinely used to compute the radiation from wire antenna structures.

The field due to a volume density of magnetic current is obtained from a
potential function termed the electric potential and given by

€ e—jkOR
F—EJM(U ) R dv (2.4)

and the associated fields are
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Figure 2.1

Radiation from electric and magnetic current sources.
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1
Ef =~ VxF (2.5)

Br = -jouF - V(V - F) (2.6)

J
wWE

In classical radiation problems, the magnetic current is understood to be a
mathematical artifice, not a realizable current. Its value in antenna analysis is that
it is regularly used to represent radiation from apertures described in terms of their

known electric fields. In the case of an aperture antenna, the magnetic current is
identified with the tangential electric field at the radiating aperture using

Mg = A x Eg (2.7)

for fi, the outward-directed normal at the aperture. The subscripts S refer to surface
magnetic currents, and in this expression the volume integral has shrunk to a
surface integral. The aperture in Figure 2.1 depicts this use of the magnetic current
to represent surface electric fields.

The potential functions are integral solutions to Maxwell’s equations. At dis-
tances far from any source, their radial dependence has the (1/R) form required
for energy conservation in (1.1) and the exponential dependence of an outward-
traveling spherical wave.

Although both solutions are independent when there are no boundaries, the
general electromagnetic field requires the sum of fields from both potentials. In
general,

E=Ej,+Er B =B, +Bf (2.8)

is the complete form that may be necessary to satisfy physical boundary conditions.

One boundary condition of vast importance in antenna and array theory is
that of an antenna mounted over or in a perfectly conducting ground plane (the
term ground screen is used interchangeably).

The well-known image principle, depicted in Figure 2.2 for a ground screen
in the plane z = 0, provides a recipe for superimposing fictitious image sources
beneath the ground screen in order to satisfy the required boundary condition
that the total tangential electric field be zero at the screen. Potential functions
corresponding to these imaged sources are

_ M , e_/kOR ' e‘/koRl ,
A= {J(M gl g (2.9)

v

where

=%/, - }A’]y +12],
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Electric Sources Magnetic Sources
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Source: J(x'y', Z') = Jx + Jy + Jz
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Figure 2.2 Image principle for electric and magnetic currents.

and
F=g f {M(v') e_;ioR + My (vf) #} dv' (2.10)
v
where
Mj(v') = XM, + §M, - &M,
and

Rp=[(x—x'P+ (y =y +(z+2))"?
These equations are used later to describe the radiation from elementary wire and
slot elements over a ground screen.

One special case for which the above is used is to express the radiation into
the hemisphere from an aperture in a conducting sheet (Figure 2.3). In this case,
one uses the electric potential, and the source and image coalesce to double the
effective source term. The electric potential for the half-space problem is therefore

€ e‘]koR
F—EJMS(S )~ ds (2.11)
N

=5 f—sz(s ) R ds
N

The radiation from more complex structures can also be evaluated using the
potential functions, as can the mutual coupling between antenna array elements
(Chapter 6). The image principle is one way of constructing solutions to the inhomo-
geneous vector Helmholtz equations that define the magnetic and electric potentials
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Figure 2.3 Radiation from an aperture in a conducting screen.

for half-space radiation over a perfectly conducting ground screen. In the more
general case, one can use the inhomogeneous equations

(V2 + k3)F = —eM (2.12)
(V2 + k5)A = -] (2.13)

for magnetic and electric sources, along with the requisite boundary conditions. A
description of the use of vector and dyadic Green’s functions in the solution of
inhomogeneous Helmholtz equations is given in [2, 3]. These methods are used to
analyze structures in Chapter 6.

Far-Zone Fields in Terms of Radiation Integrals

Figures 2.1 and 2.2 show elements at generalized locations. The integrals of (1.1)
and (1.11) are taken over the primed coordinates. In Chapter 1, it is shown that
the form of these equations can be simplified if the receiving point is very far from
the array. Using vector notation and denoting the source position at the location
r' and the receiving point at r, one can then write the distance R as

R=|r-t'|=Ro-r'-# (2.14)

where the unit vector £ is in the direction of the receiving point r, and the distance
R is measured from the center of the coordinate system (usually chosen as the
center of the array).

Using the above, one can write the approximate expression (below), which
simplifies the potential function integrals considerably, since R is a constant and
can be removed from the integrals.
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e TkoR _ o TkoR iko(r'£)

= e (2.15)

The radial components of F and A are zero (decay faster than 1/R) in the far
zone, and the far-zone fields can be given by [4]

Ea = —jwAT (2.16)

ij
Hy = —-——1%xA
A 7 T

Hf = —joFT (2.17)
EF = jwnf‘xFT
172 .

where n= (/€)' is the characteristic impedance of the medium, and the subscript
T means only transverse components of A and F need be considered.

2.1.2 Element Pattern Effects, Mutual Coupling, Gain Computed from
Element Patterns

The array gain is related to the gain of the individual elements in the array, as will
be shown later. However, the gain of an isolated element may be very different
from the gain of the same element in the presence of the rest of the array. In
addition, the element patterns and gain vary across the array with the elements
near the edge behaving quite unlike those near the center. This behavior is due to
the electromagnetic coupling between elements and can result in more or less
element gain in the array environment than when isolated.

Figure 2.4 illustrates the coupling of a single excited element with all others
terminated in matched loads. The actual radiated pattern is formed by the directed
radiation from the excited element combined with reradiated fields from all of the
elements illuminated by the radiation from the excited element. Depending on
element gain and spacing, the radiation pattern of a low-gain element can be
substantially narrowed by the interaction, but if a large array is composed of high-
gain elements, then the element gain is decreased from the isolated element gain
in order to limit the maximum area gain to no more than 4mAIN.

ACCACC

Figure 2.4 Coupling between array elements.
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Following this introduction, it should be clear that the actual element gain is
usually not known. It is found as the result of a detailed calculation involving the
most fundamental electromagnetic analysis. This mutual coupling is discussed in
Chapter 6. In the following sections, it is assumed that such coupling exists and
can be measured or computed to completely describe the array. The sections present
an alternative description of the array in terms of element patterns, the patterns
of elements embedded in the array environment. This description is fully equivalent
to and embodies all of the physics in the array model with mutual coupling.

Element Patterns and Mutual Coupling

The complex subject of mutual coupling and array element patterns should be
introduced in the simplest of terms. Consider an array of small waveguide-fed
apertures, as shown in Figure 2.5, with apertures located in the plane z = 0, but
otherwise arbitrarily located. The aperture field of every element will be assumed
to have the same distribution, namely that of the exciting waveguide, a linearly
polarized TEy mode. For the mth element, located with center at x,,, y,,, the
tangential aperture field is:

ET(%ms Yims 2m) = YAmer0(x', y') (2.18)

where the function eqq is the spatial distribution of electric field in the aperture
with coordinates (x', y', 0). In the far field, the radiation of the mth element is
written in the following compact form using (2.5) and (2.11):

ik e‘/koRo n , ’ S
En=27 Ry 2 f dsjylcos O ET(xp, yin) = 28 - Ex(xp, vl T

(2.19)

where 1, = Xx,, +§y,, and X, =X, + X5 Y =SV t Y.
The constant A,, is the complex amplitude of the tangential aperture field.
This term contains not only the applied field at the antenna aperture, but also the

b =Sa

Figure 2.5 Scattering matrix representation for interelement coupling of waveguide apertures.
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field due to the reflected signal at the aperture and the field induced in the aperture
by other array elements. In this case, the entire radiation and interelement coupling
behavior for an N-element array is specified in terms of an N-by-N element scatter-
ing matrix that relates the various transmitted incident and reflected fields at each
element.

When all of the elements of the array are excited by incident signals a,,, that
one might associate as the voltage of the incident waveguide fields, the reflected
signals b,,, at each terminal are given in terms of a conventional scattering matrix
formalism [5], as indicated schematically in Figure 2.5. For each element of the
array,

[b] = {S}[a] (2.20)
where the column matrix [a] is the incident signal vector and the column matrix
[b] is the vector of reflected signals. The tangential field is given by the sum of

incident and reflected fields evaluated at the aperture. The constant A,, is therefore
the sum of incident and reflected signal amplitudes given by

A, = <am + ZS,,,,,a,,) (2.21)

and the radiated field of the array is

iko e TkoRo A .
E(r) = 27 Ry [§ cos 8- 2v]co Zg(m)(am + ZSmnan> (2.22)

where

and

cp = fem(x', y')e kol + vy} ggr,

The factor
£(6, ¢) = [§ cos 8 —2v]cy =[0sin ¢ + ¢ cos 6 cos ¢]cy (2.23)

is the pattern of an isolated element and is polarized transverse to the radial
direction. This equation supports two alternative views of array radiation. The
following paragraphs illustrate these two perspectives.

The first of these alternatives sees each element from a circuit point of view,
with incident signals coupling to all array elements as indicated in (2.22). From
this mutual impedance perspective, each element is considered to radiate separately,
based on its aperture field Et. In order to maintain a desired radiation pattern,
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one must control all the aperture fields as a function of scan. As the array is
scanned, the array mismatch increases (assuming it is matched at broadside), and
the aperture fields at any given element do not change in proportion to the incident
signal, because the reflection coefficient is scan-dependent. The array control task
is here seen as that of specifying the correct incident fields to produce the desired
aperture fields in the mutually coupled environment.

Rearranging this expression emphasizes the nature of the element pattern in a
scanned array and illustrates the alternative point of view which describes array
scan phenomena. From the perspective of the element pattern, each element is
excited with all other elements terminated in matched loads. The resulting pattern
fn(0, @) is the element pattern of that element. The element pattern does not
change with scan, but includes all interelement coupling for all scan angles. For
elements in a finite array, the radiated field is given by

-jkoRy
E(r) = ’zkﬁe f; Zamgm[l + Zsmn ] (2.24)

/Qe‘lo
= e Ro 2 Am&nin(0, 6)

where
. g
ml0, 6) = £i(0, ¢>[1 + 5 Sn gm}

This expression shows the far field written as the sum of element excitation
coefficients a,, multiplied by the time-delay factor g,, and an element pattern f, (6,
@), which is now different for each element. The f, (6, ¢) has a term representing
radiation from the excited element and a sum of terms to account for radiation
from all of the other elements with phase centers at positions across the array,
hence the term g,,/g,,, multiplying the scattering coefficients S,,,. The basic array
element field pattern is thus the product of the isolated element pattern and a space
factor, which accounts for all of the other coupled elements. Some of the mutually
coupled terms can produce very angle-sensitive changes to the element patterns,
resulting in rippled and distorted patterns with strong frequency dependence. The
element patterns for centrally located elements of a large array tend to be very
similar, while the ones near the array edges are distorted and asymmetrical. This
distortion limits the sidelobe level that can be maintained if the various elements
are excited with some predetermined illumination. Figure 2.6 shows element pat-
terns and reflection coefficients of the center element in several small arrays of
parallel plate waveguides. These data, due to Wu [6], illustrate substantial changes
due to mutual coupling as a function of the number of array elements N.

Historically, the most significant use of element patterns has been to experimen-
tally verify the scan behavior of particular elements in test arrays. This is done [7]
by building an array of sufficient length (101 to 20A or more on a side) and to
terminate all but one element in matched loads. The resulting measured radiated
pattern of a central element is the approximate element pattern of the scanned
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Figure 2.6 (a) Element pattern P(4) and reflection coefficient R of center element in unloaded
waveguide array [bA = a/A = 0.4]: radiation patterns. (b) Element pattern P(¢) and
reflection coefficient R of center element in unloaded waveguide array [bA = a/A =0.4]:
reflection coefficients. (From: [6]. O 1970 IEEE. Reprinted with permission.)
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array, and the patterns of edge elements likewise approximate the patterns near
the edge of a larger array.

Throughout the rest of Chapter 2, it is assumed that all element patterns in
the array are identical. However, in Chapter 3 it is shown that by using the
calculated or measured element patterns it is possible to synthesize low-sidelobe
patterns, even in the presence of mutual coupling. Alternatively, if the elements can
be assumed to each support the same current distribution (single-mode assumption),
then one can always perform the synthesis and solve for the required source voltages
using the mutual impedance matrix.

Gain Computed from Element Patterns (for Large Array)

Although the element gain may vary across the array, many of the central elements
of a large array have the same gain and element patterns. For such a large array,
one can obtain a good approximation of the array gain by assuming that all element
patterns are the same. In this case, the gain for each element is

47R?
Pg

gE(0, ¢) = SE(6, ¢) (2.25)

where Sg (6, ¢) is the radiated power density of the nth element at the distance R
from the array, and Py is the power input to the 7th element (note that this power
also includes that which is lost in the feed network). If the element is matched,
this normalized power input is proportional to the square of the input signals, or
(in a normalized form)

P} = |a,|* (2.26)

and the input power for the whole array is given by the sum of the excitation
coefficients at each element.

Pin= Y Pf (2.27)
n

where the coefficients a,, represent voltages, currents, or incident wave amplitude.
The far field for any input signal a,, is proportional to

g0, ¢)

[SE(6, ¢)'* = 4RI

(2.28)

Assuming that the excitation is chosen with a progressive phase to scan the
beam, the fields add directly at the peak. The array far-field power pattern at the
beam peak (6y, ¢q) is
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2
$(09, o) = [z[sg(eo, ¢o)]l/2] (2.29)

2

= {z[g;;w, ¢>1“2|an|}

and so the realized array gain is

_ 47R*S(69, )

Piy
{zm}z
S la,l?

This expression, due to Allen [8], can be extremely useful for any large array,
whether linear or planar, because it allows gain to be computed directly from the
array excitation coefficients. It is strictly correct only if the embedded element
power pattern is known and the array is large enough for most element patterns
to be the same. Care must always be taken to use the embedded element pattern
gain, not that of the isolated element pattern. Since the use of this expression
implies that all element patterns are the same, it is more correct for elements whose
pattern shape does not change much when embedded in an array (like dipoles or
slots spaced A/2 apart), and less correct for high-gain elements, whose gain is
significantly altered in the array environment and so changes across the array, or
for small arrays in which edge effects dominate.

Equation (2.30) can be written for the unmatched case by incorporating the
reflection loss into the element gain and substituting GR and glj for G and g,.

An approximate expression for taper efficiency is also derivable from (2.30),
since it shows the maximum array gain as N times the element gain, and so the
realized array gain can be written as

G

(2.30)

=gE(6o, bo)

G = Ngg (60, bo)er (2.31)
where the taper efficiency e is thus

2

|2

€r= ———— (2.32)
NY laul*

for N, the total number of elements in the array.

This definition of taper efficiency extends the definition of column array gain
for omnidirectional elements spaced A/2 apart, as given in (1.65) in Chapter 1, to
full two-dimensional arrays with arbitrary elements (subject to the large-array
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approximation). The expression is written in terms of gain rather than directivity
because it is usually used with measured element gain patterns that include losses.
The terms taper efficiency and aperture efficiency are often used interchangeably,
but (1.12) is the fundamental definition of aperture efficiency, while taper efficiency
(as used earlier) is an approximation for the large array case and implies that all
elements have the same element gain. In the case of (1.67), the taper efficiency is
for linear arrays of isotropic elements with half-wave spacing.

The relationship of (2.30) also leads to an expression for the scan dependence
of the element pattern. Using (1.69) and the relationship between directivity and
realized gain, one obtains (with I' the network reflection coefficient)

GR=Dye (1 - |TP) (2.33)

_47AN

GR S (- ITF)eaer cos(8) = NgK(6g, po)ea

So the element realized gain (element pattern) is given by
R 4 2
ge (6o, ¢O)=7A66L(1 = |T'[") cos 6y (2.34)

It is important to bear in mind that this definition assumes a very large array
with a periodic lattice, so that essentially all of the array element patterns are the
same, the taper efficiency is the aperture efficiency, and the array spacing is such
that no grating lobes radiate.

Unlike most of the definitions of gain and directivity used in this chapter, the
realized element gain above is an aperture gain and assumes that the aperture
radiates into a half space. The directivity formulas of Section 2.2.1 assume that
the radiation occurs into both half spaces, and so for any beam at angle @ there
is another symmetrical beam below the horizontal plane. Other definitions of array
directivity are introduced in the following sections.

2.2 Characteristics of Linear and Planar Arrays

2.2.1 Linear Array Characteristics
Comparison with Continuous lllumination

It is often convenient to model the discrete array as the limiting case of a continuous
aperture illumination. This is a convenient model because some of the most useful
synthesis procedures are those developed for continuous apertures, where the analy-
sis is more readily tractable. The normalized broadside radiation patterns of both
a uniformly illuminated N-element array and a line source of length L are given
below.
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Linear Array

_ sin(Nwdul/d)
f0) = N sin(7d, u/A) (2.33)
Line Source
in(Lau/A
£16) = —SIHL(WZ’A ) (2.36)

For arrays of more than a few elements, these two patterns are very similar for
small values of the argument. The array length is taken as (Nd, ). Figure 2.7(a)
[9] shows radiation patterns for a continuous line source of length 4\ and an eight-
element array of A/2-spaced elements with uniform illumination. The line source
pattern differs very little from the array up to the second sidelobe, and the null
positions are unchanged.

Figure 2.7(b) [9] shows the patterns of a continuous line source of length 324,
an array of 64 elements spaced A/2 apart, and an array of 8 elements spaced 41
apart. The patterns have nearly identical beamwidths and are very similar through
the first few sidelobes. Comparison with the 4A-spaced array shows that the similar-
ity pertains about halfway to the grating lobe, and the deviations begin to occur
because the pattern repeats with period A/d, = 0.5 in the sin 6 parameter.

Pattern Characteristics and Directivity Formulas for Linear Arrays

A broadside linear array of isotropic elements has a very wide pattern in the plane
orthogonal to the array axis and a narrow pattern in the plane that includes the
array axis. This type of pattern is termed a fan beam, with reference to its appearance
in Figure 2.8(a), which shows the broadside and scanned patterns.

As the array is scanned, the linear array fan beam pattern takes on the conical
shape shown, which can lead to significant ambiguity if the pattern were used for
radar tracking.

The ¢ dependence of the elevation angle 8 for a beam at frequency f(), scanned
to (6, 0), is readily obtained from (1.56), in which the beam peak is evidently at

u =sin 6 cos ¢ =sin 6

SO
sin § = ——- (2.37)

Figure 2.8(b) is a plot of this relationship for an array scanned to the various
# angles to 60°, showing the beam peak contour curving as a function of scan
angle 6. An array with a narrow beam in ¢ does not have a significant curvature,
but a broad beam will have its peak extending over a significant conical region as
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Figure 2.7 Line source patterns and array patterns: (a) patterns of 41 line source and 8-element
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Figure 2.8 Beam shape for scanned fan beam and pencil beam arrays: (a) beam shape versus scan
angle for fan beam (linear array) antenna; (b) beam peak contours near endfire; and
(c) beam shape versus scan position for a pencil beam. (From: [10]. O 1985 Peninsula
Publishing Company. Reprinted with permission.)

shown in the lowest curve of Figure 2.8(b). Figure 2.8(c) illustrates the way a
slightly elliptical beam projects in several directions of scan.

In general, the directivity of a linear array of realistic element patterns can only
be obtained by integration. However, for the case of omnidirectional and certain
other simple element patterns, the directivity can be integrated in closed form.

To perform the integration to compute directivity, the array of Figure 2.9 is
oriented with element centers at z = nd (so the ¢ integrals are uncoupled). In this
coordiate system, the array pattern of equally spaced isotropic elements is
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E(6, ¢) = Z|an| exp {jk[nd(cos 6 — cos )]} (2.38)

The array is scanned to some angle 6y, measured from endfire, as indicated
in the equation, but because of the array orientation, 6 is the complement of the
usual scan angle measured from broadside.

For omnidirectional elements, directivity is readily integrated and reduced to

(34}

D =
ZZ|an||am| exp[—jkd(n — m) cos 8] sinc[kd(n — m)]

(2.39)

where sinc(x) = sin x/x.
Several special cases of the above are particularly revealing. At broadside, the
directivity of this tapered array of isotropic elements reduces to the expression:

i pXZ
ZZlamHanl sinc[(n — m)kd ]

Figure 2.9(b) shows the dependence of directivity on the spacing d for a uni-
formly illuminated array (dashed curve) and an array with excitation coefficients
chosen to optimize directivity. For spacings larger than about A/2, the optimum
and uniform array directivities are nearly identical. The reduced directivity near

2

(2.40)
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Figure 2.9 Directivity of an array of omnidirectional elements: (a) array geometry; and (b) array
directivity for a 10-element array. (From: [11]. O 1964 IEEE. Reprinted with permission.)

d/A =1 is a result of grating lobes entering real space. These curves also reveal
that the pattern has the same value for d any multiple of A/2. For such spacings,

the directivity becomes
2
{Z s |}

D=-—=— (2.41)
S laa|*

This relationship is fully general as long as the elements radiate isotropically
and does not imply any particular distribution. A given, well-tapered illumination
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with controlled sidelobes may have directivity D, but rearranging the element
excitations in any order would leave the directivity unchanged, even though the
sidelobe structure is severely distorted. The linear relation evident for spacing less
than A/2 leads to the simple relationship given in (1.66) and due to King [12]:

D =[2d/A]erN (2.42)

In the case of a scanned array, the double summation of (2.39) is reduced when
all the elements are excited equally. To understand this, let # and m run from
1 to N and substitute P for 7 — m in (2.39). Tabulating these terms p in the matrix
below shows a diagonal symmetry.

m

1 2 3 N
1 0 -1 =2 ~(N-1)
2 1 -1 ~-(N-2)
3 2 0 -(N -3)
n 4 3 2 -(N - 4)
~(N=5)
: . . . . . . =(N-#

N (N-1) (N-2) . . . . 0

The previous double summation adds terms with the above values of p by
summing N rows of N columns. However, the matrix has odd symmetry about
the diagonal and all terms equal in any minor diagonal. Thus, one can combine
terms using this symmetry. The resulting summation (as long as all amplitudes are
equal) is given [13]:

NZ
D= — (2.43)
N+2 z (N - n) sinc(nkd) cos(nkd cos 6g)
n=1

This result shows that if the array spacing d/A=0.5, 1.0, 1.5, . . ., the directivity
is equal to the number of elements N, independent of the angle of scan. This
result, which promises a directivity invariance with scan, is the result of assuming
omnidirectional element patterns. The constant directivity is due to the real-space
imaginary space boundary (x> + v* < 1). This causes a narrowing of the pattern
in the plane orthogonal to scan as the array scan angle approaches endfire. The
use of elements with narrower beams in the plane orthogonal to scan would thus
lead to directivity that falls off more severely, as will be described in a later section.
Furthermore, although the directivity may be constant, the gain varies with the
array reflection coefficient and so generally tends to decrease with scan if the array
is matched at broadside.

The directivity formulas given above are for omnidirectional elements. Hansen
[14] also gives convenient formulas for several fundamental elements, including
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the broadside directivity of short dipoles and half-wave dipoles (or slots). These
equations are not included here because of their availability and because they are
ultimately based on isolated element patterns.

One can obtain more general formulas for directivity in a manner similar to
that done for generalized element patterns, but based on the self- and mutual-
resistance of the array elements. In general, using the peak far fields Ey and Hy
and the average power radiated at some distance Ry the directivity is written

_2a7R*EgH; _ R*E}
- Prad - 60P,q

(2.44)

since |[Hg| = |Eq| (12077).

When the coupling can be described in terms of single mutual impedance terms
between elements (i.e., when higher order effects can be neglected), the denominator
term can be evaluated by circuit relations that include all mutual coupling terms
in the N-by-N matrix.

1 b
Pad =3 Y Rell, V] (2.45)
n

1 .
:z Zln zlr;;an
7 m

This expression is fully general, and what remains is to evaluate the peak far
field E in terms of the element current. Hansen [13] uses the relationship for an
array of half-wave dipoles at broadside:

N
60
Eog =+ I 2.46
0 Ry Z n ( )
and in this case the directivity becomes
2
120 [ZI,Z]
D=————"7—— (2.47)

n m

For an array of half-wave dipoles [14, 15] with uniform illumination:

2
_ 120N? 120N
D=—"% = e (2.48)
Y Y Run Rty Y (N-mR,
n=1 m=1 n=1

In this expression, Ry is the element self-resistance and R ,,,, is the mutual resistance
between the 7 th and nth elements. The reduction from double to single summation
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noted in the above is accomplished as explained for (2.43). This result, like the
others in this section, pertains to arrays in free space. In the case of slots in a half
space, the directivity is doubled.

Optimum Directivity and Superdirectivity for Linear Arrays

The uniformly illuminated, constant phase excitation of linear array antennas gives
near-optimum directivity for most arrays. However, higher values of directivity
can be obtained for certain nonuniform phase distributions. This phenomenon,
called supergain, or more properly superdirectivity, has been well understood for
many years and is clearly explained in Hansen [15, 16]. Superdirectivity is produced
using rapid phase variations across an array of closely spaced elements. Unfortu-
nately, the higher directivity results from an interference process, and only the
sidelobes are in real space, with the pattern main beam in or partly in “invisible
space” (sin @ > 1). The resulting ratio of stored-to-radiated energy (Q) is extremely
high, and so the circuit bandwidth is very small. Furthermore, since the radiation
resistance is very low, the efficiency is poor and the antenna noise temperature is
high in the presence of losses due to finite antenna and matching network conductiv-
ity. Since the high directivity depends on cancellation of the contributions from all
the array currents, superdirective array behavior is dependent on highly accurate
current determination, and small errors in array excitation can destroy the proper-
ties of superdirective arrays.

The above comments were qualitative, not quantitative, but it is the degree of
superconductivity that determines the ultimate practicality of the synthesis. Tai
[11], in his paper on optimum directivity of linear arrays, shows the onset of
superdirectivity to occur when the element spacings are less than A/2. When the
element spacing is greater than A/2, broadside arrays have their maximum gain
approximately equal to the gain for the uniformly illuminated array. As the element
spacings are further decreased and the optimum directivity sought, the degree of
superdirectivity is increased. Small degrees of superdirectivity are achievable and
practical in single small elements or endfire arrays (the Hansen-Woodyard [17]
condition is an example), or for small, closely spaced arrays [11]. There have, in fact,
been very practical applications of superdirectivity combined with superconductive
antenna matching networks to improve circuit efficiency.

As the degree of superdirectivity is increased, so is the degree of difficulty in
practically implementing the synthesis. Hansen quotes the data of Yaru [18], who
studied a nine-element Chebyshev array with A/32 spacing between elements. The
required tolerance for maintaining the designed —26-dB sidelobes was one part in
1019, Hansen [14] lists other examples, including the extensive results of Bloch,
Medhurst, and Pool [19].

In all, it appears that superdirectivity is an interesting phenomenon, which can
be exploited to a small degree. There is new interest and excitement in using high-
temperature superconductivity to decrease the losses in superdirective arrays, and
that may open further possible uses, especially for small- to medium-gain arrays.
However, there remain the issues of high O (limited bandwidth), difficult impedance
matching, and very high required precision for superdirective arrays that will
continue to limit the general use of this phenomenon. The synthesis topics discussed
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in Chapter 3 will assume that spacings are approximately A/2 and will therefore
exclude superdirective geometries.

2.2.2 Planar Array Characteristics
Pattern Characteristics and Grating Lobes/Array Grid Selection

A moderate- or large-size planar array of dimensions L, and L,, with uniform
illumination, has beamwidths of 0.886A/L, and 0.886A/L,,. In the principal planes
(¢ =0 and ¢ = 7/2), the patterns are the same as for a linear array aligned with
the scan plane. If L, = L, for a beam at broadside, the beam shape at the -3-dB
contour is approximately circular, and this is often termed a pencil beam. For L,
not equal to L,, the —3-dB contour becomes an approximate ellipse, as shown in
Figure 2.8(c).

The scanned planar array pattern also exhibits some distortion with scan, as
indicated in Figure 2.8(c), but if both beamwidths are kept narrow, the angle
ambiguity is much smaller than for the linear array.

Equation (1.59) gives the pattern of a planar array of equally spaced elements
arrayed in a rectangular grid. The grating lobe structure for this array is given in
that section also.

It is often advantageous to choose an alternate grid location with elements
arranged in a triangular lattice, as shown in Figure 2.10. In this case, the elements
are located at positions (x,,, y,), where

Vn =ndy and X = mdy for n even

X = (m +0.5)d, for n odd

The grating lobe lattice for this triangular grid is shown in Figure 2.10, and
the lobe positions are given by

u, =ug + pAldg:ivg =vo +qild, forp=0,+2, 44, ... (2.49)
=vo+(q - 0.5)A/d, for p =1, £3, 15, . ..

Other grid selections can lead to reduction of specific grating lobes within the
scan sector. One extreme of this is indicated in Figure 2.11, where all the rows of
the array are displaced by different distances A,,. In this case, the array factor is
given by

E(6, ¢) = z Z|amn| eXp{i[("ndx + Ay k(= ug) + ndyk(v = vo)l}
(2.50)

If the amplitude distribution a,,, is chosen as being separable, then the array
factor is

E(6, ¢)= {Z by expljk[md (u ‘Mo)]}}{zcn eXP{ik[(U‘Uo)”dy"‘An(M‘Mo)]}}

= flu) g, v) (2.51)
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Figure 2.10 Geometry and grating lobe lattice of a triangular grid array.

In this form, it is clear that the sum over b,, is unchanged by the row displace-
ments, but the sum over the rows ¢, is significantly altered by the exponential
factor that includes the displacements A,,, and the array factor is not separable.
The triangular grid, which is discussed above, has the displacements

A, =(0,de/2,0,dy /2, .. .)

For a uniform array, the array factor is different for the various #, locations.
For p = £1, +3, £5, and so on, the pattern shape is

_ 1 sin[Ny7(v - vg)dy/A]
glup,v) = N_y cos[m(v —vo)dy/A]

(2.52)

This pattern has a zero at v = v and an asymmetrical distribution in v — v, with
principal maxima of unity (grating lobes) at (v —vg) = 0.5 + gA/d,, and so produces
the grating lobes at locations indicated above and in Figure 2.10.

At the grating lobes p = 2, #4, . . . | the summation becomes

_ 1 sin[Ny7(v - vg)dy/A]

glup, v) = N_y sin[7(v - vg)dy/A]

(2.53)
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which again is the same distribution [see (1.66)] as for uniform with A, =0 and
offers no grating lobe suppression.

The triangular grid distribution thus suppresses the grating lobes with p odd
in one sector of space by splitting them each into two lobes and moving each out
to a relatively wide angle, where they are reduced by the element pattern. The
distribution does not alter the even grating lobes at all.

It is possible to choose other displacements that suppress grating lobes in
various regions of space, and this may be important for certain applications. Several
examples of such a choice are given in [20]. The best example of such selective
suppression is the triangular grid considered earlier, which suppresses those grating
lobes along the ridge (u),, v) for p odd, but does not suppress those for p even.
This structure is advantageous because in most conventional arrays the elements
are spaced between 0.5A and A apart, so the grating lobes adjacent to the main
beam (p = £1) are most significant. However, if the array element spacings are
much larger, so that many grating lobes are allowed to radiate, then by using
a random displacement A,, one can still obtain good grating lobe suppression
everywhere, except along the ridge that includes the main beam (# = ). One can
show [20] that, in general, although the peak grating lobes can be reduced, the
average power in the grating lobes is a constant. Consider the integral of the power
within the region -0.5 < (v — vg)d,/A < 0.5. After normalizing the total power to
the power at the peak of the main beam, one obtains for the normalized power
per unit length in (d,/A)(v - vg) space:

N,

2
S lel
n=1

5 (2.54)

Pavg =
y
2 Cn
n=1

independent of the A,,. For uniform illumination in the y-direction, this suppression
is the factor 1/N,. Although it may be possible to choose the A, displacements so
as to reduce the peak value of the grating lobe throughout the region specified,
the average value will remain constant at that level for an array with N, rows.
For an array with uniform distribution in the y-direction (|c,| = 1), one can thus
obtain the maximum of about 9-dB suppression of the peak lobes for an array of
8 rows, 12 dB for an array of 16 rows, and so on. The choice of a low-sidelobe
illumination in the y-direction reduces this suppression by the amount of the taper
efficiency.

This technique can be a significant advantage for certain types of limited scan
antennas, as will be described in Chapter 8.

Directivity Formulas for Planar Arrays

If the array average element pattern directivity is known, the directivity of a planar
array is given by (2.33):

D =Nd,(6y, ¢o)er (2.55)
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where d, is the average element directivity (gain divided by loss efficiency) and et
is the taper efficiency.

A second expression pertains if elements are spaced to avoid grating lobes and
if the aperture efficiency is known. In this case, for a pencil beam antenna radiating
into a hemisphere (thus assuming a ground screen), one can use the area formula

[(1.69) repeated]

47A
D = 2 €4 cos 0 (2.56)

to obtain the directivity. Then, if realized gain is desired, one can approximate the
scan loss for the average element using calculated mutual coupling parameters or
measured element patterns, or replace the cos 6 by scan loss according to cos 6 to
some power (see Figure 1.11).

Similarly, as in Chapter 1, one can use the half-power beamwidths for a pencil
beam antenna at any scan angle to estimate directivity using

_ 41(0.886)

D
03 0)3

(2.57)

where the beamwidths are orthogonal and here given in radians. This expression
is equivalent to (1.67), where the angles are in degrees. This relation is approximate
and implies a degree of control over array average sidelobes. It has been found
accurate [21] for most pencil beam array distributions, including uniform, cosine
on a pedestal, and even Chebyshev distributions with sidelobes down to the level
where gain limitation sets in (see Chapter 3). In another convenient approximate
form, the directivity of a planar two-dimensional array with separable illuminations
can be written in terms of the directivities D, Dy of the illuminations that excite
its orthogonal planes [(1.70) repeated]:

D =KD, D, (2.58)

In this expression, the linear array directivities Dy and D, are the values for
omnidirectional elements.

Elliott [21] gives the constant K = 7 for the case of the maximum directivity
of an array over a ground plane (i.e., with hemispheric element patterns). For the
individual directivities D and D, Elliott uses the directivities of the column arrays
with isotropic element patterns and spacings A/2 < d,, d), < A to avoid supergain
or grating lobes. In this case, these directivities are given by D, = 2N, d,/A, and
(2.58) reduces to (1.70), where the cell area is d, d,.

An expression in terms of self- and mutual resistance is given by Hansen [22]:

120{2 ZIWZ}Z
D - m n
; Z ; ;Imnlqumnpq

(2.59)
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In this equation, each element has the double index m#n, and R, is the
mutual resistance between the mnth and pgth elements. The relationship is valid
at broadside for arrays of small elements (slots or dipoles) spaced to eliminate
grating lobes.

Beyond the above expressions, a number of synthesis procedures for large
arrays are based on the near equivalence of the patterns of discrete arrays and
continuous aperture illuminations. In these cases, it is sometimes possible to obtain
a closed-form expression for the directivity or aperture efficiency. Among others,
this method has been used to derive aperture efficiency expressions for the Taylor
line source illuminations given later.

2.3 Scanning to Endfire

Equation (2.43) gives the directivity of a uniformly illuminated linear array of
isotropic elements for all scan angles, even scanned to endfire (6, ¢) = (7/2, 0). In
order to scan to endfire, the element spacing should be less than A/2 so that no
grating lobe will enter real space at (7/2, 7). However, if the array is composed
of elements or subarrays (rows or columns) that are directive in the plane orthogonal
to scan, as in Figure 2.12, then the directivity of the two-dimensional array falls
off more severely with scan, and varies approximately like cos 6. Since the array
is finite, the directivity is not zero at the horizon, but approaches a constant times
the square root of the array length.

An extremely convenient general (though approximate) formula can be
obtained from (2.57) relating beamwidth and directivity of pencil beam antennas.
The beamwidth of an array of length L = Nd in free space, with a perfectly
conducting ground screen and scanned to endfire, is obtained directly from
(1.62) by expanding the direction cosine # = sin #in a power series near the angle
0= /2. Setting 0= 7/2 — A@and u =1 — Au gives an expression for the beamwidth
A6 in terms of Au as:

A6 = [2Au]"? (2.60)

For an array over a ground screen, Au = 0.443B, A/L, and so one obtains the
endfire beamwidth

05 = [0.886B,/(L/A)]? (2.61)

Without the ground screen, the beamwidth is doubled.

For a planar array over a ground screen, the directivity can now be written
directly using the relationship between directivity and beamwidth (2.57) using the
broadside beamwidth for the length L of the array in the plane orthogonal to
scan.

_ 47(0.886By,) "

D= By (LT/A)LIA)Y? (2.62)
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Figure 2.12 Scanning to endfire: (a) array of directive elements; (b) beam shape near horizon;
and (c) conditions for Hansen-Woodyard endfire gain.

In this expression, By is the beam broadening factor in the transverse plane.
Though approximate, this result gives a value only 0.5 dB less than that obtained
from a direct integration [23].

One can obtain further narrowing of the beam and increased directivity by
scanning the array “beyond” endfire to values of the sin # parameter greater than
unity. Figure 2.12(b) shows a progression of scanned array factors as the array is
scanned toward endfire, at endfire, and beyond endfire. Only the main beam is
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shown to avoid confusion. The array factor is bidirectional, with even symmetry
about 8= /2. The solid curve shows the pattern scanned several beamwidths from
endfire, where the beamwidth is well defined and given by (1.62). The dashed
curve shows the beam scanned to less than one-half beamwidth from endfire, where
the beam for 6y < 77/2 and that for 6y > 77/2 have begun to merge, and the definition
of beamwidth is ambiguous. At 6y = 7/2, both beams coincide and the beamwidth
is given by the equation above. If sin 6 is increased beyond unity, the peak of the
beam does not radiate and is said to be in “invisible” space, but what is left of
the main beam is narrowed and the directivity can increase beyond the normal
endfire value. The dotted curve represents this condition.

An early example of obtaining increased directivity by scanning beyond endfire
is known as the Hansen-Woodyard [17] condition. In this case, the array is scanned
beyond endfire to the angle

2.94)

27(N - 1)d (2.63)

ug=1+

or by adding the additional phase lag 6 = 2.94/(n — 1) to the interelement phase
27ugd/A.
The beam peak for a large array is at approximately

uy =1+ 0.468A/L (2.64)

The Hansen-Woodyard condition is depicted in Figure 2.12(c), where the
dashed part of the beam indicates that the beam is in imaginary space (sin 6 > 1).
One can estimate the 3-dB beamwidth for the uniformly illuminated case, since
the beam shape is then given by

_sin[ar(u —ug)L/A]
Flu) = = =o)L (2.65)

and at the actual peak # =1 and u — ug = —-0.468A/L, F(1) = 0.677. At the 3-dB
point, F(u) is 0.478, and one can show that u — uy = =0.619A/L, so the half
beamwidth in u#-space is Au = 0.151A/L instead of 0.443A/L. This narrowed
beadwidth produces increased directivity and is a practical example of the super-
directivity discussed earlier.

Using (2.60), the beamwidth for the uniformly illuminated case (with no ground
screen) is

A6 =2[0.30A/L]"? (2.66)

which corresponds, upon using (2.57), to an increase in directivity of about 2.3 dB
relative to the endfire case.

The Hansen-Woodyard relation, which was derived for large arrays, does not
actually produce the optimum directivity, but in most cases has improved directivity
relative to that for ordinary endfire arrays. A useful comparison for a number of
uniformly excited arrays scanned beyond endfire is given by Ma [24].
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The above expressions describe the available endfire directivity. However, the
actual array gain is much less than the directivity, because most of the array
elements become substantially mismatched when the array is scanned to wide
angles. This mismatch is due to the cumulative effects of mutual coupling, which
are very severe at or near endfire. The definitive paper by King and Sandler [25]
shows examples of this phenomenon and reveals why scanning to endfire is
extremely inefficient. Studies have shown that it is necessary to tailor the feedline
impedance to optimally match an endfire antenna. Alternative techniques for excit-
ing efficient endfire radiation have been developed, but these are not phased array
approaches; rather they are surface wave antenna approaches and involve exciting
a passive slow wave structure with a single source [26, 27].

2.4 Thinned Arrays

A number of applications require a narrow scanned beam, but not commensurably
high antenna gain. Since the array beamwidth is related to the largest dimension
of the aperture, it is possible to remove many of the elements (or to “thin”) an
array without significantly changing its beamwidth. The array gain will be reduced
in approximate proportion to the fraction of elements removed, because the gain
is related directly to the area of the illuminated aperture. This procedure can make
it possible to build a highly directive array with reduced gain for a fraction of the
cost of a filled array. The cost is further reduced by exciting the array with a
uniform illumination, thus saving the cost of a complex power divider network.

Typical applications for thinned arrays include satellite receiving antennas that
operate against a jamming environment, where the uplink power is adequate in
terms of signal-to-noise ratio in the absence of jamming. For this case, antenna
gain is of secondary value; only sidelobe suppression or adaptive nulling can counter
the jammer noise, and a narrow main beam can discriminate against jammers very
near to the main beam. A second application often satisfied by thinned arrays is
ground-based high-frequency radars, in which the received signal is dominated by
clutter and atmospheric noise. Here again, the emphasis is on processing and array
gain is of secondary value to the system. A third application, and one of the most
significant, is the design of interferometer arrays for radio astronomy. Here the
resolution is paramount, while gain is compensated by increased integration time.
For applications such as these, the goal of the antenna system is to produce high
resolution, so the array should be large, but not necessarily high gain.

Conventional closely spaced arrays have pattern characteristics that approach
those of continuous apertures as closely as desired and have directivity commensu-
rate with their area gain and aperture efficiency (477-A//\2)6A. Thinning the array
is always accompanied by pattern deterioration, although the characteristics of this
deterioration can be controlled by the method of thinning employed. Figure 1.12
shows an example of array thinning by using very wide spacings in a periodic array
and indicates very little beam broadening, but extremely high grating lobes. Periodic
thinning is thus seen to produce discrete high sidelobes. Sidelobe levels are also
increased for nonperiodic thinning algorithms, but in this case the peak sidelobe
level can be minimized.
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An excellent summary of developments in the theory of thinned arrays is given
by Lo [28]. In this reference, Lo reviews past works and points out that there is
no practical synthesis method for obtaining optimized solutions for large nonperiod-
ically or statistically thinned arrays. For small or moderate arrays, it can be conve-
nient to formulate the thinning procedure as a sidelobe minimization problem (see
[29-31]). These procedures do control both peak and average sidelobe levels, but
are numerically difficult to implement for large arrays.

The variety of statistical procedures for array thinning exert direct control
primarily on the average sidelobe level and can produce peak sidelobes for larger
than the average level. A paper by Steinberg [32] compares the peak sidelobes of
70 algorithmically designed aperiodic arrays with those of 170 random arrays. The
study showed that most techniques led to very similar average levels, although for
relatively small arrays the method of dynamic programming [33] was the most
successful procedure for control of peak sidelobe levels. Work using simulated
annealing [34] has shown some success at further reduction of sidelobes for small
thinned arrays.

Many thinning algorithms have been developed and applied to the design of
arrays. However, the bias of this text is to seek methods applicable to the design
of large arrays. For this purpose, the method of Skolnik et al. [35] is presented
because it is straightforward to implement for large arrays. In addition, studies by
Lo are summarized to state bounds on the operating parameters of arrays subject
to statistical thinning.

2.4.1 Average Patterns of Density-Tapered Arrays

Skolnik et al. [35] investigated a statistical thinning technique in which the density
of elements is made proportional to the amplitude of the aperture illumination of
a conventional filled array. The selection of element locations is done statistically
by choosing element weights as unity or zero with probabilities proportional to
the filled-array taper. The assumption made here is that the elements are regularly
(periodically) spaced, but whether they are excited or not depends on the results
of the statistical test. The filled-array pattern E (6, ¢) is given by

Eo(6, ¢) = 3 A, exp(j,) (2.67)

where A,, is the amplitude weight for the filled array.
The pattern of the thinned array is given as

E(6, ¢) = ) Fy exp(jPy) (2.68)

where F,, takes on the value zero or one, according to whether the 7nth element is
excited.

The probability of exciting a given element with unity excitation in any area
of the array is

P(F,=1)=K =2 (2.69)

where A is the largest amplitude in the array.
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The thinning constant K is defined by Skolnik in the following way. If K is set
to unity and the above rule is used to approximate the average pattern of an array
with a given sidelobe level, then the array is said to be thinned by the “natural”
degree of thinning. The average number of elements of the original N-element
array that remain excited are given by Ng. If the array is further thinned so that
the total number of elements excited N, is less than N,

N,=KNg for K<1 (2.70)

and the probability rule (2.69) is used, then the resulting pattern is still an approxi-
mation of the desired pattern, but with the maximum probability density K instead
of unity and with higher sidelobes, as will be shown.

The resulting average field intensity (an ensemble average over many array
selections) is a constant times the pattern E( (6, ¢) of the filled array:

E(6, ¢) = KEo(0, ¢) (2.71)

Skolnik showed that the average radiated power pattern is the sum of two
patterns; the first is the pattern of the filled array and the second is an average
pattern that is a constant value with no angle dependence.

|E(6, $)I° = K*|Eo(6, $)I* + K'Y Au(1 = KA,) (2.72)

Since the far sidelobes of the filled array tend to be very low for most chosen
distributions, the average pattern dominates the sidelobe pattern at wide angles.
This average sidelobe level is given below, shown normalized to the pattern peak:

o - KY Ayl —ZKA,,)
S Ed|

In the limit of a highly thinned array, the average sidelobe level is approximately
1/N,.

The average array directivity for a large array is approximately equal to the
number of remaining elements times an element pattern directivity D,, or

(2.73)

D=D,Y F,=D,N, (2.74)

Figure 2.13(a) shows an array with elements arranged on a rectangular grid
but thinned to produce a low-sidelobe (=50 dB) pattern. Figure 2.13(b) shows the
desired Taylor (7 = 8) [36] pattern for the filled array, and Figure 2.13(c) shows
a computed pattern for the statistically thinned pattern. The dashes in Figure 2.13(a)
indicate elements that have been removed. The array chosen has elements with A/2
grid locations occupying a circle with radius 25A and consisting of 7,845 elements
if filled. The average sidelobe level shown in Figure 2.13(c) exceeds the design
sidelobe, so clearly, in this example, the chosen sidelobe level was too low for the
array to synthesize. Section 2.4.3 gives data on directivity, EIRP, and sidelobe level
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Figure 2.13 Circular array with elements removed: (a) geometry (dashes show elements removed);

(b) desired Taylor pattern (filled array); and (c) thinned array pattern.
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for density-tapered arrays with one or a number of different quantized amplitude
levels.

The statistical procedure introduced above is readily applicable to the design
of large arrays, but it is only one of a number of approaches that have been
investigated. It is not optimum in that it does not ensure that peak sidelobes are
maintained below a given level.

2.4.2 Probabilistic Studies of Thinned Arrays

The studies of Lo [37] addressed the peak-sidelobe issue and showed that a statistical
description of these sidelobes is possible and yields useful bounds for array design.
Following Lo’s notation, a linear array of length a is excited by signals of equal
amplitude. The probability density function g(X) is the probability of placing an
element at X, with | X| < a/2.

al2
f gX)dX =1 (2.75)

-al2

If there are N equally excited elements within the aperture that are placed
according to the probability density g(X), then for each set of random samples

[X1, X2, ..., Xn] there is a pattern function
1 N
F(u) = N nZ1 exp (jux,) (2.76)

where we have normalized the dimension x, so that
x, = 2X,,/a (2.77)
and u as defined by Lo is different from that used throughout this text, and is
u = ar(sin 6 — sin ) (2.78)

for the main beam at the observation angle 6.
In terms of this length normalization, the aperture extends from -1 to 1, and

gx)=0 for |x|>1 (2.79)

-1

The major conclusions of Lo’s study will only be summarized here. The text
by Lo [28] contains many of the details in the original paper and is recommended
as a thorough and scholarly review of this material. Among other important points,
Lo showed the following:
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Mean Pattern

The mean of the pattern function F(u) is given as the Fourier transform of g(x):
¢d(u) = E{F(u)} = fg(x)ej”x dx (2.80)

where the g(x) is a continuous function and E{. . .} is a probability average operator.
Note that this mean value ¢ is equivalent to the average pattern of Skolnik et al.,
except that Skolnik sampled a discrete set of positions. Moreover, in this summary
of Lo’s work, the total number of elements is N, and this corresponds to N, in
the above description of the Skolnik et al. study.

Variances Between Mean and Sample Patterns

Defining variances 012 and 0'22 as the mean of the squared difference between the
mean pattern and the pattern computed from (2.76) for both real (F; ) and imaginary
(F,) parts, one obtains (since the mean pattern is real)

o7 = Var Fy (u) = E{[Fy () - $(u)])

o3 = Var Fy(u) = E{[Fy (u)]*)

Lo shows that outside of the main beam region, the variances of the real
and imaginary parts of the pattern are equal and approximately given by 1/2N,
independent of the probability density function. This significant conclusion implies
that although the pattern behavior in the main beam region is determined by g(x),
outside of the main beam area the variances are determined only by N, the number
of elements, not the probability density function g(x). Therefore, in many cases
(unless the near-in sidelobe level is of interest), it may be advantageous to use the
uniform density function for g(x) to maintain a narrow beam. As N increases,
however, the variances decrease, and F(#) approaches the mean pattern when the
variances are significantly less than the design sidelobe level. In these cases it may
be appropriate to use a nonuniform g(x). In general, one should only use a tapered
function g(x) if the value of the variances (1/2N) is less than the desired mean
pattern sidelobes, or if only the first several sidelobes are of primary importance.

Peak Sidelobe

Another significant conclusion due to Lo has to do with specifying the highest
sidelobe in the visible pattern range. In this case, for a uniform probability density
function,

g(x) =1/2 for x| <1 (2.81)

which thus satisfies the normalization criterion of (2.79). Lo obtained the probabil-
ity for a sidelobe level less than 7. Outside of the main beam region, this is
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P,{|F(u)| < r} = [1 - exp(-Nr?)] exp{[-47N "+ exp (-Nr?)](a*/127) %}
(2.82)

Computer simulation by Agrawal and Lo [38] has verified this formula for an
array as small as 11 elements over an aperture of 5A to 10A.
For large numbers of elements, this reduces to

P{|F(u)| < r} = [1 — 1070-4343Nr?|14a] (2.83)

where the bracket [44] is the integer part of 4a.
This expression can be approximated and solved for the number of elements
N.

N=——-—7+ (2.84)

This equation shows that unless the number of elements N is numerically on
the order of the sidelobe power 72, the probability of achieving a given sidelobe
level is very low. This similar dependence can be inferred from the variance data
previously mentioned. Figure 2.14 (from Lo [37]) is a plot of the above equation
and gives this critical number of elements versus the sidelobe level 20 log 7 for the
90% probability case. Figure 2.14 indicates that one needs very large arrays to
achieve low sidelobes, especially when considered in the light of decreasing directiv-

ity achieved with such highly thinned one-dimensional structures.

106

105}

10%}

Critical Number of Elements (N)

103 \ . \
20 25 30 35 40

Peak Sidelobe Level (—dB)

Figure 2.14 Number of elements required as a function of peak sidelobe level for various values
of a = 109 wavelengths with a 90% probability.
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Beamwidth

Lo [37] shows that for large arrays the beamwidth of the statistical array converges
to that of the mean pattern.

Directivity

The directivity D of a sample pattern function for a large array is related to the
directivity of the mean pattern D as

(Do - D) dB <20 log (1 + daiz /llg(x)1l) (2.85)
where
1
g2 = f g0 P da (2.86)
-1
and

davg = (average spacing) Oa/N

This expression says that the sample pattern for directivity D is less than D by a
quantity no greater than the term shown at the right above. As a corollary, two
arrays with identical distribution functions but different numbers of elements have
their directivities related by

(Dy - D3) dB = 10 log N{/N, (2.87)

or D is, with high probability, proportional to N.

Two-Dimensional Arrays

Lo’s results are extendable and more useful for two-dimensional arrays. If a rectan-
gular array dimension is ab with probability density function g(x, y), (2.82) and
(2.83) still give the relation between sidelobe level and total number of elements
N, except that [4a] in (2.83) is replaced by [16 ab]. Figure 2.14 is also directly
useful by writing @ = 107 and b = 10”, and then the ¢ in Figure 2.14 should be
replaced by (p + g) and the 90% probability replaced by (0.9)2, or approximately
80%. Or, indeed, one could redraw Figure 2.14 using (2.83) for the 90% proba-
bility.

2.4.3 Thinned Arrays with Quantized Amplitude Distributions

There may be advantages in the use of several discrete, quantized output power
levels for the array instead of a continuous taper. This discretization may be
appropriate, for example, in arrays of solid-state modules with output amplifiers
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operated in a saturated state. In such a situation, it is appropriate to arrange the
array into regions illuminated by each of the quantized weights and then to use
thinning to reduce the sidelobes that would be introduced if the quantization were
used alone. This array organization was addressed in [39, 40]. The values of average
parameters in the several included figures are due to Mailloux and Cohen [40].

Figure 2.15(a—c) shows the quantization of a circular array amplitude taper
and the array geometry in general. Added to the quantization is one of several
discretizing algorithms, indicated pictorially in Figure 2.16. The array is divided
into rings of radii p1, p2, p3, - - . , with quantized voltage levels V1, V,, V3, and
so on. The levels V,, were chosen to minimize the first few sidelobes of the pattern
of a quantized continuous aperture [Figure 2.16(b)].

With the algorithm called method 1, in any annulus p,, -1 < p < p;, the array
weights F, are either V), or reduced to zero according to the following rule.

The probability of assigning the weight F, = V,, to an element at location p,
in the radial annulus p, -1 < p < p,, is given by

P(F, =Vy) = KA,/IV, (2.88)

where A, is the amplitude of the ideal illumination at the nth element. Figure 2.17
shows an array with some of the elements left at the value V}, and others set to
zero. This “thinning” rule reduces to Skolnik’s when a single quantized level is
used.

With the algorithm called method 2, the array is not actually thinned (unless
K is less than unity). For K = 1, every element is excited, but the level of signal in
the annulus p,-1 < p < p, is chosen to be either V;, or V11 according to the
probability rule below:

K[V, = Ayl

K[A, - Vp+1]
Vp - Vp+1

PE =V =,

P(F,=Vy41) = (2.89)

The average power patterns for arrays built according to these algorithms are
readily shown to consist of a term given by K 2 times the ideal power pattern plus
an error term that is the average sidelobe level. Figure 2.17 shows the geometry
of an array filled according to the algorithm of method 1. The figure illustrates
that the probability rule forces a symmetrical quantization pattern denoted by
dashes that indicate use of the V) level in an annulus p,-1 < p < p,.

Figures 2.18 and 2.19 show the result of using these multiple-step discretization
rules. In these figures, the array input power is normalized to the total number of
elements N as

dE
Piy = A5 (2.90)

The average sidelobe level, normalized to the peak of the beam, is given by

SL=—DsL_ (2.91)

7
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Figure 2.15 Array with quantized amplitude taper: (a) array amplitude taper A(x, y); (b) quantized
amplitude taper; and (c) array aperture and coordinates. (From: [40]. O 1991 IEEE.
Reprinted with permission.)

where the values of sidelobe power Pg; are given by method 1:

Pg = ;VP an)KAn[l — kALIV,] (2.92)

and method 2:
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Figure 2.16 Thinning and quantizing geometries: (a) ideal taper (dashed) and method 1 source
weight options; and (b) ideal taper (dashed) and method 2 source weight options.
(From: [40]. O 1991 IEEE. Reprinted with permission.)

Py = ; nzp)[KAn(Vp + Vpa1) = VyVpurl = ;KZ(A,»Z (2.93)

The directivity for a thinned array can be computed in several ways, depending
on whether the element pattern directivity is known. If the array were not thinned,
if elements were placed A/2 apart, matched at broadside, tailored to have nearly
cosine scan dependencies, and if the array were large so that an average element
directivity could be assumed, then (2.30) would properly describe the directivity
using D, = 7:

50

This expression is also valid if the array were thinned by simply not exciting
but properly terminating some elements of a periodic A/2 lattice to accomplish the
thinning. Such thinning leaves the element patterns unchanged.

D=D, (2.94)
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Figure 2.17 Distribution of nonexcited (thinned) elements for an array with three quantized steps.

(From: [40]. O 1991 IEEE. Reprinted with permission.)

the aperture is truly thinned by omitting elements (not just match

If, however,
terminating them), then the element pattern directivity can be less than 77 and may

approach the result for nearly hemispherical element patterns with the directivity
of 2, depending on the isolated pattern directivity of the element in question.

One can also compute an average directivity for the thinned array radiating

into a half space using the basic definition of directivity and the power pattern.

The result is given below under the assumption of a constant sidelobe level SL

(implying a hemispherical element pattern)

(2.95)

DySL

1+

and Dy is the directivity of the ideal pattern. K is defined

= PSL/PmaX:

where SL

in Section 2.4.1. If a cosine element pattern were to be used, then the 2 in the

denominator of (2.95) above should be replaced by 4

, and the results of using
is most appropriate for highly

or for use with method 1 with elements removed.

)

)

converge. In the above form, (2.95

A

V

)

w
S 2
o =
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Figure 2.18 (a) Input power, (b) directivity, and (c) average sidelobe level for method 1 (thinning

quantization). (From: [40]. O 1991 IEEE. Reprinted with permission.)

Figures 2.18 and 2.19 give the directivity, normalized input power, and average
sidelobe level for a circular planar array of (if filled) 7,845 elements and occupying
an area with radius 50A. The curves are given for one, two, four, and six quantiza-
tion levels. The axis at the right of the sidelobe and directivity figures is computed
directly, but the axes at the left are normalized to the number of elements in the
array, and so the results are applicable to different-size arrays. The asterisk at
several places gives the results using (2.94), while the circle near the same point is
the directivity evaluated from a direct pattern integration. The solid lines are
computed using (2.95).

These figures show a general increase in average sidelobe level as the design
sidelobe is lowered. Since there is little use in synthesizing a very-low-sidelobe
pattern with a thinned array that would have a higher average sidelobe level, Figure
2.20 gives the number of elements for which the design and average sidelobe levels
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Figure 2.19 (a) Input power, (b) directivity, and (c) average sidelobe level for method 2 (quantiza-
tion). (From: [40]. O 1991 IEEE. Reprinted with permission.)

are equal. These curves are readily generalized to maintain average sidelobes some
margin (of say 10 or 20 dB) below the design sidelobes by increasing the 10 log N
by the chosen margin. For an array with a single quantized level (p = 1), the
number of elements is seen as equal to the sidelobe level (r* = 1/N,).

The element numbers for a single quantized level (p = 1) on these curves should
display some similarity to the peak sidelobe data plotted by Lo [37] and given in
Figure 2.14, although Figure 2.14 is given for a linear array, and the two-
dimensional equivalent is for a rectanglar aperture. For example, taking the rectan-
gular aperture limit, with a = b = 44A, the ¢ = log1g @ and p + g = 3.29, for N
approximately 10,000 elements. For this case, Figure 2.14 gives a peak sidelobe
level of about =30 dB. Figure 2.20 gives the average sidelobe level (SL) of approxi-
mately =40 dB, which is equal to 1/N,. A brief look at Figure 2.14 confirms that
for arrays of up to thousands of elements, whether linear or planar, almost all of
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Figure 2.20 Number of array elements for average sidelobe level equal to design sidelobe level:
(a) method 1; and (b) method 2. (From: [40]. O 1991 IEEE. Reprinted with permission.)

the sidelobes are less than about 10 dB higher than the average sidelobe level
(1/N,).

In general, comparing all data for methods 1 and 2 shows that the technique
of method 2 results in significantly lower average sidelobes and higher directivity
for given design sidelobe levels than can be achieved by the quantized thinning
algorithm, method 1.
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One of t