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Preface to the Second Edition

The second edition follows the same basic format as the first, but it is updated to
improve clarity in some cases or to present material in a manner more useful for
engineering use, but mostly to reflect the advances in technology that have taken
place since the first edition’s publication in 1994. The goal of the text is the same:
to present the subject of arrays with the broad coverage of a ‘‘handbook’’ for
engineering use, but to include enough details so that the interested reader can
reproduce many of the more important results and benefit from the insights that
the mathematics provide. Equation (1.49) of Chapter 1 expresses the array far field
as the product of an element pattern and the time delayed array factor. This
equation does not represent any practical array and in fact the interesting aspects
of array technology are precisely those that are not included in this equation. The
equation does not even hint at the constraints that have been the real drivers of
array technology since the beginning.

Array technology has progressed primarily because of limitations imposed by
practical engineering; by the cost, size, weight, manufacturability, and the electro-
magnetic issues of polarization, sidelobe and gain requirements, the limitations of
phase, and amplitude control and reliability. These have driven the whole technol-
ogy to invention and progress. In the 11 years since the first publication of this
book, these stimuli have led to much more extensive use of printed antennas,
conformal arrays, solid-state T/R modules, time-delay devices, optical and digital
beamforming, and a variety of new and more powerful methods of computation
and synthesis.

This edition includes a number of new features and a large number of added
modern references. Sections on components and devices for array control and on
overall control choices have been added to Chapter 1 in order to highlight the
technologies involved in array architecture and to explain the design limitations
imposed by these components. This chapter also includes a revised section on array
noise calculation. Pattern synthesis has also progressed significantly throughout
the past 11 years since the first edition was published, but mostly through the
use of numerical optimization techniques like neural network synthesis, genetic
algorithms, and synthetic annealing. Although not able to devote the space for
complete discussions of these techniques, I did include enough detail to allow the
practical use of the alternating projection method because of its ready adaptability
to array synthesis and the ease of handling various constraints. Additional synthesis
topics included are the formation of troughs in array patterns by modifying the
array covariance matrix and a discussion and added references on array failure

xi



xii Preface to the Second Edition

correction. Material and references have also been added to describe new elements
for arrays including microstrip, stripline, and wideband flared notch elements.

Chapter 8 has had significant changes and inclusion of new material, most
importantly to emphasize the new work of Skobelev and colleagues, who have
made a significant contribution to antennas that have a limited field of view. I
have included some new work on subarrays for including time delay for wider-
band arrays, including partially overlapped sections of overlapped subarrays and
some data on subarrays of irregular shapes.



Preface to the First Edition

Any pile of tin with a transmission line exciting it may be called an antenna. It is
evident on physical grounds that such a pile of tin does not make a good antenna,
and it is worthwhile to search for some distinguishing characteristics that can be
used to differentiate between an ordinary pile of tin and one that makes a good
antenna.

This fascinating quote, discovered by my friend Phil Blacksmith, is taken out
of context from Volume 8 of the MIT Radiation Laboratory series The Principles
of Microwave Circuits (C. G. Montgomery et al., editors, McGraw-Hill, 1948). It
is a fitting introduction to a text that attempts to address today’s advanced state
of antenna array engineering. The present and future of antenna technology are
concerned with a degree of pattern control that goes well beyond the simple choice
of one or another pile of tin. Present antenna arrays are a union of antenna
technology and control technology; and they combine the radiation from thousands
of antennas to form precise patterns with beam peak directions that can be con-
trolled electronically, with very low sidelobe levels, and pattern nulls that are moved
to suppress radiation from unwanted directions.

Antenna technology remains interesting because it is dynamic. The past years
have seen the technology progress from frequency-scanned and electronically
steered arrays for scanning in one plane to the precise two-dimensional control
using digital systems that can include mutual interactions between elements. Adap-
tive control has been used to move antenna pattern nulls to suppress interfering
signals. Even the basic elements and transmission lines have changed, with a variety
of microstrip, stripline, and other radiators replacing the traditional dipoles or
slots fed by coaxial line or waveguides. Finally, the state of development in two
fields—devices and automation—has brought us to an era in which phased arrays
will be produced automatically, not assembled piece by piece, as has been the
standard to date. This revolution in fabrication and device integration will dictate
entirely new array architectures that emphasize monolithic fabrication with basic
new elements and the use of a variety of planar monolithic transmission media.

Using digital processing or analog devices, future arrays will finally have the
time-delay capability to make wideband performance possible. They will, in many
cases, have reconfigurable apertures to resonate at a number of frequencies or
allow the whole array surface to be restructured to form several arrays performing
separate functions. Finally, they will need to be reliable and to fail gracefully, so
they may incorporate sensing devices to measure the state of performance across
the aperture and redundant circuitry to reprogram around failed devices, elements,
or subarrays.

xiii



xiv Preface to the First Edition

Although it contains some introductory material, this book is intended to
provide a collection of design data for radar and communication system designers
and array designers. Often the details of a derivation are omitted, except where
they are necessary to fundamental understanding. This is particularly true in the
sections on synthesis, where the subject matter is well developed in other texts. In
addition, the book only briefly addresses the details of electromagnetic analysis,
although that topic is the heart of antenna research. That subject is left as worthy
of more detail than can be given in such a broad text as this.

Chapter 1, ‘‘Phased Arrays for Radar and Communication Systems,’’ is written
from the perspective of one who wishes to use an array in a system. The chapter
emphasizes array selection and highlights those parameters that determine the
fundamental measurable properties of arrays: gain, beamwidth, bandwidth, size,
polarization, and grating lobe radiation. The chapter includes some information
to aid in the trade-off between so-called ‘‘active’’ arrays, with amplifiers at each
element, and ‘‘passive’’ arrays, with a single power source. There are discussions
of the limitations in array performance due to phase versus time-delay control,
transmission feed-line losses, and tolerance effects. Finally, there are discussions
of special techniques for reducing the number of controls in arrays that scan
over a limited spatial sector and methods for introducing time delay to produce
broadband performance in an array antenna. The abbreviated structure of this
introductory, ‘‘system-level’’ chapter necessitated frequent references to subsequent
chapters that contain more detailed treatment of array design.

Chapter 2 and all the other chapters in the book are written to address the
needs of antenna designers. Chapter 2, ‘‘Pattern Characteristics and Synthesis of
Linear and Planar Arrays,’’ includes the fundamental definitions of the radiation
integrals and describes many of the important issues of array design. Element
pattern effects and mutal coupling are treated in a qualitative way in this chapter
but in more detail in Chapter 6. The primary topics of this chapter are the character-
istics of antenna patterns and their directivity. The chapter also addresses several
special types of arrays, including those scanned to endfire and thinned arrays.

Chapter 3 is a brief treatment of array synthesis, and it lists basic formulas
and references on a wide variety of techniques for producing low sidelobe or
shaped antenna patterns. The chapter includes a discussion of pattern optimization
techniques, such as those for adaptive array antennas. Chapter 4 treats arrays on
nonplanar surfaces, and Chapter 5 describes the variety of array elements, relevant
transmission lines, and array architectures.

Chapters 6 and 7 treat several factors that limit the performance of array
antennas. Chapter 6 shows some of the effects of mutual coupling between array
elements. This interaction modifies the active array element patterns and can cause
significant impedance change with scan. This complex subject is treated with the
aid of two appendices. Chapter 7 describes pattern distortion due to random phase
and amplitude errors at the array elements and to phase and amplitude quantization
across the array.

Chapter 8, the final chapter, summarizes techniques for three kinds of special-
purpose arrays: multiple-beam systems, arrays for limited sector scan, and arrays
with wideband time-delay feeds. A vast technology has developed to satisfy these
special needs while minimizing cost, and this technology has produced affordable
high-gain electronic scanning systems using scanning arrays in conjunction with
microwave quasioptical systems or advanced subarray techniques.
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C H A P T E R 1

Phased Arrays in Radar and
Communication Systems

1.1 Introduction

Phased array antennas consist of multiple stationary antenna elements, which are
fed coherently and use variable phase or time-delay control at each element to scan
a beam to given angles in space. Variable amplitude control is sometimes also
provided for pattern shaping. Arrays are sometimes used in place of fixed aperture
antennas (reflectors, lenses), because the multiplicity of elements allows more pre-
cise control of the radiation pattern, thus resulting in lower sidelobes or careful
pattern shaping. However, the primary reason for using arrays is to produce a
directive beam that can be repositioned (scanned) electronically. Although arrays
with fixed (stationary) beams and multiple stationary beams will be discussed in this
text, the primary emphasis will be on those arrays that are scanned electronically.

The radar or communication system designer sees the array antenna as a
component (with measurable input and output) and a set of specifications. The
array designer sees the details of the array and the physical and electrical limitations
imposed by the radar or communications system, and within those constraints
seeks to optimize the design. This chapter is written from the perspective of, and
for, the system designer. The remainder of the text discusses array design issues.

1.1.1 System Requirements for Radar and Communication Antennas

In accordance with the principle of power conservation, the radiated power density
in watts/square meter at a distance R from a transmitter with an omnidirectional
antenna is given by

S =
1

4p
Prad

R2 (1.1)

where Prad is the total radiated power (watts), and the power density S is shown
here as scalar.

Directive Properties of Arrays

Figure 1.1 shows an array of aperture antennas and indicates the coordinate system
used throughout the text. If the antenna has a directional pattern with power

1



2 Phased Arrays in Radar and Communication Systems

Figure 1.1 Array and coordinate systems.

density S(u, f ), then the antenna pattern directivity D (u, f ) is defined so that the
power density in a specified polarization at some distant spherical surface a distance
R0 from the origin is:

S(u, f ) =
PradD (u, f )

4pR2 (1.2)

so that

D (u, f ) =
4pR2S(u, f )

Prad
(1.3)

or

D (u, f ) =
4pS(u, f )

E
V

S(u, f ) dV

(1.4)

where the last integral is over the solid angle that includes all of the radiation. In
the most general case it is

E
V

S(u, f ) dV = E
2p

0

df E
p

0

du S(u, f ) sin u (1.5)

The expression above (1.4) is the definition of directivity and implies that the
power density used is the total in both polarizations (i.e., the desired or copolariza-
tion, and the orthogonal or crossed polarization ).
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If there is no direction (u, f ) specified, then the directivity implied is the
maximum directivity, denoted D0:

D0 = max[D (u, f )] (1.6)

which is a meaningful parameter primarily for antennas with narrow beamwidths
(pencil beam antennas).

Directivity is the most fundamental quality of the antenna pattern, because it
is derived from only the pattern shape. The radiated power is less than the input
power Pin by an efficiency factor eL , which accounts for circuit losses, and by the
reflected signal power

Prad = eLPin(1 − |G |2) (1.7)

where G is the antenna reflection coefficient measured at the feed transmission
line; thus, it is appropriate to define array parameters that relate to measurable
parameters at the input transmission line.

The IEEE standard definition of antenna gain does not include reflection loss;
rather, it defines the antenna gain G(u, f ) as the directivity for each polarization
reduced by the efficiency factor eL . This definition is primarily useful for single,
nonscanned antennas that have a well-defined reflection coefficient at any fre-
quency. In that situation, the gain describes an antenna that is matched (G = 0).

The input impedance of an array changes with scan; thus, it is more appropriate
to define a parameter that Lee calls realized gain [1], which includes both the
reflection and dissipative losses, and for which I’ll use the symbol GR(u, f ). It will
be shown later that this realized gain relates to a measurable property of an array
that is of sufficient fundamental nature to justify not using the IEEE standard.

The power density in the far field can thus be written in terms of a gain function
G(u, f ), with

S(u, f ) =
1

4p
Pin

R2 GR(u, f ) (1.8)

where

GR(u, f ) = eL (1 − |G |2)D(u, f ) (1.9)

Again, the peak value of the gain distribution is called the gain G0 .

GR
0 = max[GR(u, f )] (1.10)

In practice, the maximum directivity of a planar aperture is achieved for uniform
amplitude and phase illumination of the aperture (except for the special case of
superdirectivity) [2] and is
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Dmax = 4p
A

l2 (1.11)

for an aperture with area A at the wavelength l .
In the case of a planar aperture with a large number of elements, it is also

convenient to define a term called aperture efficiency eA ,1 which is not a real
efficiency in the sense of measuring power lost or reflected, but relates the directivity
to the maximum directivity Dmax. Thus, the realized gain G0 of a planar aperture
is often written

GR
0 = eLeA (1 − |G |2)Dmax (1.12)

The concept of an antenna aperture becomes meaningless for an array with
only a few elements or a linear (one-dimensional) array of dipoles or slots, and
one must either use the general equation (1.4) or rely on the concept of element
pattern gain to evaluate the array directivity and gain. This topic is discussed in
more detail in Chapter 2.

Array Noise Characterization

In addition to receiving the desired signal, every antenna system also receives a
part of the noise radiated from objects within the angular extent of its radiation
pattern. Any physical object at a temperature above zero kelvin has an equivalent
brightness temperature, or noise temperature, TB , which is less than or approaching
the physical temperature. The body radiates a noise signal received by the antenna
and contributes to an effective antenna noise temperature. The antenna tempera-
ture for a lossless antenna is the integral of the observed brightness temperature
TB (u, f ) weighted by the antenna directive gain, or [3]

TA =

E
2p

0

E
p

0

TB (u, f )D (u, f ) sin u du df

E
2p

0

E
p

0

D (u, f ) sin u du df

(1.13)

The denominator of this expression normalizes the temperature so that a uni-
form brightness temperature distribution TB produces an antenna temperature
equal to the brightness temperature.

If there were no dissipative or mismatch loss in the antenna, the noise power
available at the antenna terminals would be

1. The term aperture efficiency as defined in (1.12) is sometimes called taper efficiency and, in early references,
as gain factor. Expressed in decibels, it is sometimes termed taper loss or illumination loss. An attempt
has been made throughout this text to use aperture efficiency in strict accordance with the definition
above, and to reserve the term taper efficiency to define a less rigorous parameter introduced later in this
chapter.
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NA = kTA D f (1.14)

where k is Boltzmann’s constant (1.38 × 10−23 J/K) and NA is in watts. In this
expression, D f is the bandwidth of the receiver detecting the noise signal or the
bandwidth of the narrowest band component in the system. Since D f is constant
throughout the system calculations, it is convenient to work with the noise tempera-
ture alone.

The antenna temperature measured at the antenna terminals is modified by
losses. At the terminals of any real antenna, the noise temperature has two compo-
nents, as indicated in the insert to Figure 1.2(a). One noise component NA is due
to the pattern itself, which is a function of the brightness temperature distribution
that the antenna ‘‘sees’’ within its receiving pattern. A second component is due
to dissipative losses within the antenna, couplers, or transmission medium preceding
the antenna terminals. Defining a transmission efficiency e as the ratio of power
at the output terminals of the transmission line to the total received power (note
that e ≤ 1, and 10 log10 e is the loss in decibels of the transmission line), then if

Figure 1.2 Antenna noise temperature flow graphs: (a) two-port network with loss; (b) two-port
network with amplification; and (c) lossy two port with following amplifier.
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the lossy material is at the temperature TL , the effective antenna temperature at
the antenna terminal is [4]

Ta = eTA + TL (1 − e) (1.15)

It is convenient to define the loss L as the inverse of e , and rewrite (1.15) in a
form that can be illustrated by the power flow graph of Figure 1.2(a).

Ta = e [TA + TL (L − 1)] (1.16)

Often the array antenna element terminals are not accessible; they are directly
integrated into a solid-state module with a chain of preamplifiers and amplifiers,
as well as other devices that can be represented as two-port networks. In this case,
the concept of noise figure is commonly used to describe the noise characteristics
of amplifier networks. With reference to the insert in Figure 1.2(b), the noise figure
F of a two-port amplifier with gain g and internally generated noise NN is defined
as the input signal-to-noise ratio divided by the output signal-to-noise ratio:

F =
(S /Nin )
(S /Nout )

=
gNin + NN

gNin
= 1 +

NN
gNin

(1.17)

The input noise Nin is defined to be from an ideal matched generator at room
temperature T0 (290K), and so in the absence of an input external signal is the
thermal noise

Nin = kT0D f (1.18)

The noise contribution NN at the output of the two-port network is due to
noise sources in the two-port network itself. Its equivalent temperature T is defined
as if it were the temperature of a resistor generating noise that is amplified by the
gain g of the two-port network.

NN = gkTD f (1.19)

Thus, the noise figure of the two-port network is given as:

F = 1 + T /T0 (1.20a)

and the equivalent two-port noise temperature T is

T = (F − 1)T0 (1.20b)

Now incorporating the noise figure expression into the expression for output noise
and assuming an input noise temperature Tin , we have the two-port relations

Nout = gNin + NN = kD f [gTin + g(F − 1)T0] (1.21a)
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or

Tout = g[Tin + (F − 1)T0] (1.21b)

This relationship is shown in the flow graph of Figure 1.2(b) and has the same
form as that of the two-port relation of the lossy network.

In the case of an attenuator or transmission line at temperature TLP , with
transmission line efficiency e and producing a noise power

NN = (1 − e)kTLPD f (1.22)

one can use (1.17) and (1.18) with g = e to show that the noise figure F is

F =
gNin + NN

gNin
=

eT0 + (1 − e)TLP
eT0

(1.23)

and the associated noise temperature from (1.20b) is:

T = (F − 1)T0 = (1/e − 1)TLP (1.24)

If the physical temperature of the attenuator is T0 , then the noise figure F is equal
to the inverse of the transmission factor and (1.25) replaces (1.23)

F = 1/e (1.25)

The temperature flow graph notation of Figure 1.2 allows evaluation of both signal
and noise calculation everywhere in the system by simply cascading diagrams for
the relevant circuit two ports, adding all of the noise contributions and multiplying
all of the gains and losses. Because every noise contribution is multiplied by the
amplifier gains g > 1 and the attenuation coefficient e , and the signal contribution
likewise, then the S /N (and antenna G /T ) is constant throughout the cascaded
graphs.

For example, if the antenna with thermal temperature TA is connected to a
cascade of amplifiers with gains g1 , g2 . . . and noise temperatures T1 , T2 . . . ,
then at the terminal output Tout the effective noise temperature is:

Tout = ((((TA + T1)g1 + T2)g2 + T3)g3 + . . . Tn )gn (1.26)

or referring that temperature back to the antenna terminal becomes:

Tin = T + T1 +
T2
g1

+
T3

g1g2
+ . . . +

Tn
g1g2 . . . gn

(1.27)

Again the received signal is transferred the same way, so the S /T is constant at
any point in the network.

As a second brief example, an antenna connected to a single-stage amplifier is
shown in Figure 1.2(c), along with its equivalent flow graph representation.
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At point B, the noise temperature is

TB = {[TA + (L − 1)TL ]eL + (F − 1)T0}g (1.28)

and the signal at point B is just SineLg, so again the ratio of S /T is constant
throughout the network.

Sometimes it is convenient to use the term system noise factor (or system noise
figure), defined as NF = Ts /T0 , where Ts is the noise temperature referred to the
antenna terminals.

The Receiving Antenna in a Polarized Plane Wave Field

A receiving antenna immersed in an incident wave field receives power roughly
proportional to the amount of energy it intercepts. This leads to the concept of an
effective area AE for the antenna, so that if the polarization of the receiving antenna
is the same as that of the incident wave, then the received power is given by

Pr = AE S(u, f ) (1.29)

The maximum value of the effective area is related to the antenna directivity
D0 by [5]

AEmax
=

l2

4p
D0 (1.30)

and the practical value of the effective aperture accounts for reflection and dissipa-
tive loss and is (for the polarization matched case)

AR
E =

l2

4p
D0eER (1 − |Gr |2) = (l2/4p )GR

R (1.31)

where eER is the loss efficiency for the receiving antenna.
The polarization match between the receiving antenna and the incident wave-

front is described in terms of a unit polarization vector of the incident wave r̂w
and the receiving antenna r̂n . Figure 1.3 illustrates an example of matched and
mismatched polarizations.

The dipole, or a thin wire with its axis in the z-direction as indicated in Figure
1.3, produces an electric field far from the antenna with only a u component [6].
If an orthogonal set of dipoles were to receive that energy, the dipole oriented in
the f direction receives no signal, while the u -oriented dipole receives maximum
energy. Most antennas have less ideal polarization characteristics, and so experi-
menters routinely take measurements of both polarizations. A formalism or notation
for the description of a polarized wave is summarized here. For a wave traveling
in the negative z -direction with electric field components,
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Figure 1.3 Polarization characteristics of ideal dipole antenna.

E = x̂Ex e j(kz + f x ) + ŷEy e j(kz + f y ) (1.32)

The polarization unit vector of the wave is always defined in the coordinate
system looking in the direction of wave propagation and is written [7] as

r̂w =
x̂Exe jfx + ŷEye jfy

[|Ex |2 + |Ey |2]1/2 (1.33)

A wave traveling in the +z direction would have a − sign before the x̂Ex .
One can show that if Ex and Ey are equal and fy − fx = 90°, then the wave

is right-hand circularly polarized.
The polarization unit vector of the antenna is defined according to the wave

it excites or optimally receives. If a transmitting antenna excites a wave with the
wave unit vector given above, then its polarization vector is the same as that of
the wave.

An antenna that receives a wave has its effective aperture modified by the
polarization loss factor eP , with

eP = | r̂a ? r̂w |2 (1.34)

The total power received is given by
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Pr = SAE eP

= S
l2

4p
D0eER eP (1 − |Gr |2) (1.35)

= S (l2/4p )eP GR
R

To evaluate the received signal from a wave, one maintains the operating
coordinate system to be that of the incident wave, then determines the polarization
vector of the wave when viewed in the system of the receive antenna. The polariza-
tion vector of the receive antenna is defined as if it were in the transmit mode.

In addition to linearly polarized antennas, circularly polarized antennas are
often used for space communication or other applications in which the relative
orientations of transmit and receive antennas are unknown. In (1.32), the polariza-
tion unit vector is circularly polarized if Ex = Ey and uy = ux + (1/2 + 2n)p for
any integer n.

System Considerations

The concept of an effective aperture for a receiving antenna, coupled with the
formulas for power density (1.2) and polarization efficiency, leads to the following
expression for the power received.

Pr = PT GR
T [l /(4pR )]2GR

R eP (1.36)

which is known as the Friis transmission equation. The term [l /(4pR )]2 is the
free-space loss factor and accounts for losses due to the spherical spreading of the
energy radiated by the antenna.

A similar form defining the received power for a monostatic radar system is
given by the following reduced form of the radar range equation:

P =
(PT GR

T )
4p

s [l /(4pR2)]2GR
R eP (1.37)

where, in this particular case, it is not assumed that GR
T = GR

R . The constant s is
the scattering cross section of the target, which is defined as if the target collects
power equal to its cross section multiplied by the incident power and then reradiates
it isotropically.

At the receiver input, the sensitivity is determined by the signal-to-noise ratio,
that is,

P
N

= (PT GT )
GR

R
TS

eP
KD f

l2

[4pR ]2 Communications (1.38)

P
N

=
(PT GR

T )
4p

GR
TS

eP
KD f

l2s

[4pR2]2 Radar (1.39)
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Subject to some minimum P /N ratio at the receiver, the range of a radar system
varies as the fourth root of GR

T PT—called the effective isotropic radiated power
(EIRP)—and as the fourth root of the receiver parameters GR

R /TS .
Other special criteria pertain to specific radar functions (e.g., the sensitivity of

a monostatic tracking radar is proportional to the transmitter power times the
frequency squared times the square of the aperture area). Search radar performance,
however, does not improve with increased frequency. This is because as frequency
is increased, the beamwidth is reduced, and the required time to search a given
volume increases. Search radar performance is therefore primarily determined by
the system power times aperture product.

Antenna beamwidth determines radar performance in several related ways.
First, it is the obvious factor limiting angular resolution. Second, for certain situa-
tions (space-based and airborne radar), it is the primary factor determining the
minimum detectable velocity.

Monopulse Beam Splitting

For radar applications, one of the most important properties of an array is the
ability to form a precisely located deep monopulse pattern null for angle tracking.
Figure 1.4 shows a 40-dB Bayliss pattern [8] (see Chapter 3), which is a frequently
used distribution for monopulse radars. The pattern characteristics of importance
to angle tracking are the antenna sum pattern gain and the difference pattern slope.
Kirkpatrick [9] is attributed with introducing the measure of difference pattern
slope km by which various antenna systems are compared. He also showed that
the maximum angular sensitivity (difference mode gain slope at boresight) is
obtained for an aperture illumination with a linear amplitude distribution and odd
symmetry about the antenna center.

Figure 1.4 Low-sidelobe Bayliss radiation pattern.
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The rms angle error of a monopulse measurement in a thermal noise environ-
ment is evaluated in terms of the monopulse difference slope km . This is determined
from the measured S and D patterns as the derivative of the ratio of the difference
pattern divided by the sum pattern to the beamwidth divided by the sum beam-
width, or:

km =
d (D/S)
d (u /u3)

(1.40)

The resulting angle error is given by Barton [10] as:

su =
u3

km√2(S /N )mn
≈

u3

2√(S /N )mn
(1.41)

where S /N is the signal to noise ratio measured in the S channel with a target on the
beam axis, and n is the number of pulses received from the target. The normalized
monopulse difference slope km is approximated by √2.

1.2 Array Characterization for Radar and Communication Systems

The behavior of an array in a radar or communication system is far more complex
than that of a passive, mechanically positioned antenna, because the performance
characteristics vary with scan angle. This section describes the important array
phenomena that determine scanning performance, bandwidth, and sidelobe levels
of phased array systems.

1.2.1 Fundamental Results from Array Theory

A thorough mathematical treatment of phased array radiation, including mutual
interaction between elements, is formidable. Even the mathematics for a single
element can involve a detailed evaluation of vector field parameters, and the array
analysis must also include the interactions between each of the elements of the
array.

Fortunately, array theory provides the tool to do most array synthesis and
design without the need to derive exact electromagnetic models for each element.
This section consists primarily of the practical results of array theory; it is intended
to introduce the reader to the properties of arrays and, in conjunction with Section
1.2.2, can be used by system designers to determine the approximate array configu-
ration for a given application.

The sketch in Figure 1.5 portrays a generalized distribution of array elements,
here shown as small radiating surfaces. Each element radiates a vector directional
pattern that has both angle and radial dependence near the element. However, for
distances very far from the element, the radiation has the [exp(−jkR)]/R dependence
of a spherical wave multiplied by a vector function of angle fi (u, f ), called the
element pattern. Although this vector function fi (u, f ) depends on the kind of
element used, the far field of any i th element can be written
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Figure 1.5 Generalized array configuration.

Ei (r, u, f ) = fi (u, f ) exp(−jkRi )/Ri (1.42)

for

Ri = [(x − xi )
2 + (y − yi )

2 + (z − zi )
2]1/2 (1.43)

and where k = 2p /l is the free-space wave number at frequency f.
If the pattern is measured at a distance very far from the array, then the

exponential above can be approximated by reference to a distance R measured
from an arbitrary center of the coordinate system.

Since

Ri ≈ R − r̂ ? ri (1.44)

then

exp(−jkRi )
Ri

=
exp(−jkR)

R
exp(+jkri ? r̂)

for ri , the position vector of the i th element relative to the center of the chosen
coordiate system, and r̂, a unit vector in the direction of any point in space (R, u, f ).
These vectors are written



14 Phased Arrays in Radar and Communication Systems

ri = x̂xi + ŷyi + ẑzi (1.45)

r̂ = x̂u + ŷv + ẑ cos u (1.46)

where u = sin u cos f and v = sin u sin f are the direction cosines. The required
distance R for which one can safely use the far-field approximation depends on
the degree of fine structure desired in the pattern. Using the distance

R = 2L2/l (1.47)

for L the largest array dimension, is adequate for many pattern measurements, but
for measuring extremely low sidelobe patterns or patterns with deep nulled regions,
it may be necessary to use 10L2/l or a greater distance [11, 12]. Far-field expressions
will be used throughout this book unless otherwise stated.

For an arbitrary array, one can generally write the pattern by superposition:

E(r) =
exp(−jkR)

R ∑
i

ai fi(u, f ) exp( jkri ? r̂) (1.48)

The expression above is very general in form because it is written in terms of
the unknown element patterns for each element in the presence of the whole array.
The coefficients ai are the applied element weights (voltages or currents) of the
incident signals. One could obtain equally valid representations derived directly
from actual (unknown) element currents or electric fields instead of the applied
weights, but in this case these are subsumed into the element pattern description
above. In general, the vector element patterns are different for each element in the
array, even in an array of like elements; the difference is usually due to the interaction
between elements near the array edge. However, throughout the rest of Chapter
1, it will be assumed that all patterns in a given array are the same. In this case,
(1.48) becomes

E = f(u, f )
exp(−jkR)

R ∑ ai exp(+jkri ? r̂) (1.49)

It is customary to remove the factor {exp(−jkR)]/R } because the pattern is
usually described or measured on a sphere of constant radius and this factor is
just a normalizing constant. Thus, one can think of the pattern as being the product
of a vector element pattern f(u, f ) and a scalar array factor F(u, f ), where

F(u, f ) = ∑ ai exp( jkri ? r̂) (1.50)

Scanning and Collimation of Linear and Planar Arrays

Array scanning can be accomplished by applying the complex weights ai in the
form
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ai = |ai | exp(−jkri ? r̂0) (1.51)

r̂0 = x̂u0 + ŷv0 + ẑ cos u0 (1.52)

with

k = 2p /l

These weights steer the beam peak to an angular position (u0 , f0), because
at that location the exponential terms in (1.51) cancel those in (1.50), and the
array factor is the sum of the weight amplitudes |ai | . With this choice of weights,
the pattern peak is stationary for all frequencies. This required exponential depen-
dence has a linear phase relationship with frequency that corresponds to inserting
time delays or lengths of transmission line. These are chosen so that the path length
differences for the generalized array locations of Figure 1.5 are compensated in
order to make the signals from all elements arrive together at some desired distant
point.

More commonly, the steering signal is controlled by phase shifters instead of
by switching in actual time delays. In this case, the weights have the form below
instead of that in (1.51):

ai = |ai | exp(−jk0ri ? r̂0) (1.53)

with

k0 = 2p /l0

for some frequency f0 = c /l0 . In this form, the array pattern has its peak at a
location that depends on frequency. Throughout the rest of this section, the phase-
steered expression above will be used. The time-delayed expression can be recovered
by omitting the subscript.

Among the important parameters of array antennas, those of primary impor-
tance to system designers are the gain, beamwidth, sidelobe level, and bandwidth
of the array system. These subjects will be dealt with in greater detail in following
sections and in Chapter 2, but the definitions and relevant bounding values are
given here.

Phase Scanning in One Dimension (f0 = 0)

Figure 1.6 shows the several geometries used in the analysis of scanning in one
dimension. Consider an array of N elements arranged in a line as shown, with
element center locations xn = ndx . The elements can be individual radiators, as
shown in Figure 1.6(a), or can themselves be columns of elements, as indicated in
Figure 1.6(b). Under the assumption that all element patterns are the same, the
normalized array radiation pattern in the far field is given at frequency f0 by the
summation over all N -elements as
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Figure 1.6 Array geometries for scanning in one plane: (a) individual radiators; and (b) columns
of elements.

E (u ) = f(u, f ) ∑ an exp[ jk0(ndx u)] (1.54)

for u = sin(u ) cos(f ).
The an are complex weights assigned to each element, and f(u, f ) is the radiation

pattern (or element pattern) that is assumed the same for all elements. In this case,
at a fixed frequency one can create a maximum of E(u, f ) in the direction (u0 , 0)
by choosing the weights an to be

an = |an | exp(−jk0ndx u0) (1.55)

and so

F(u ) = ∑ |an | exp[ jndx k0(u − u0)] (1.56)

where

u0 = sin(u0)
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This expression implies the use of phase shifters to set the complex weights
an . Equation (1.56) shows that the array factor is a function of u − u0 , so that if
the array were scanned to any angle, then the pattern would remain unchanged
except for a translation. This is the main reason for the use of the variables u and
v (often called sine space or direction cosine space) for plotting generalized array
patterns.

For an array with all elements located in the plane z = 0, the pattern is symmetric
about u = p /2, and the array factor forms a second, mirror-image beam below the
plane z = 0. Most scanning arrays are required to have only a single main beam,
and this is achieved using elements with a ground screen to make the element
patterns nearly zero for the region behind the array.

The array factor of an array at frequency f0 with all equal excitations is shown
in Figure 1.7 (solid) and can be derived from (1.56). Normalized to its peak value,
this expression is

F (u) = sin[Npdx (u − u0)/l0]/[N sin(pdx (u − u0)/l0)] (1.57)

In this figure, L = Ndx is the effective array length, N is 8, and the elements are
spaced one-half wavelength apart.

The 3-dB beamwidth (in radians) for this uniformly illuminated array at broad-
side is 0.886l0 /L , which is the narrowest beamwidth (and highest directivity) of
any illumination, except for certain special superdirective illuminations associated
with rapid phase fluctuations and closely spaced elements. Except for very small
arrays, the superdirective illuminations [2] have proven impractical because they
have very large currents and high loss, and require very precise excitation. In most
cases, they are also very narrow-band. The level of the first sidelobes for the
uniformly illuminated linear array is relatively high (about −13 dB). Figure 1.7

Figure 1.7 Radiation characteristics of uniformly illuminated and low-sidelobe 16-element arrays.
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(dashed) shows the same array radiating a low-sidelobe (Taylor, n = 5) pattern, with
−40-dB sidelobe levels. This figure illustrates the beam broadening that generally
accompanies low sidelobe illuminations.

The beamwidth increases as the array is scanned. For a large array and not
near endfire, the beam broadens according to sec u0 , but the more general case is
given later in this section.

Two-Dimensional Scanning of Planar Arrays

The array factor for the two-dimensional array of Figure 1.8(a) with elements at
locations

rm,n = x̂mdx + ŷndy (1.58)

and using phase steering to place the beam peak at u0 , f0 at frequency f0 is given
by the following:

F(u, f ) = ∑
m,n

|am,n | exp{jk0[mdx (u − u0) + ndy (v − v0)]} (1.59)

Figure 1.8 Array geometry for two-dimensional scanning: (a) generalized planar array geometry;
(b) equal line-length planar feed; and (c) equal line-length column feeds.
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Often, for a rectangular array aperture, a separable amplitude distribution is
chosen so that

am,n = bm cn

and then the factor can be written as the product of two independent factors of u
and v.

F(u, f ) = H∑ bm exp[jk0mdx (u − u0)]JH∑ cn exp[jk0ndy (v − v0)]J
(1.60)

Seen in this form, it is clear that the pattern of the linear array (1.56) is of vast
importance because of its relevance to planar arrays with separable distributions.

Beamwidth and Directivity of Scanning Arrays

The beamwidth and sidelobe level of an array antenna are governed by the chosen
aperture taper. An example of sidelobe reduction is shown by comparing the curves
in Figure 1.7. This figure shows antenna patterns for uniform illumination and a
low-sidelobe (−40 dB Taylor) illumination of a 16-element array. Antenna sidelobes
are reduced by tapering the array excitation so that elements at the array center
are excited more strongly than those near the edge. Some of the more useful
examples of tapering are described in Chapter 2. In addition to sidelobe reduction,
however, tapering broadens the array beamwidth. For this more general case, the
half-power beamwidth of the radiation pattern for a linear array or in the principal
planes of a rectangular array at broadside is

u3 = 0.886Bb l /L (1.61)

where Bb is called the beam broadening factor and is obviously chosen as unity
for the uniformly illuminated array.

Table 1.1 [13] shows the variation of beamwidth of a continuous line source
for several selected illuminations with varying sidelobe levels. The continuous line
source pattern is a good approximation of the pattern of a large array with elements
spaced a half wavelength or less apart. In this table, the parameter w is equal to
Lu /l . These data indicate a generalized pattern broadening and lowering of the
principal sidelobes as the aperture distributions are made smoother. Beyond that,
as pointed out by Jasik, the far-sidelobe decay is controlled by the derivatives of
the aperture illumination at the edge of the aperture. A uniform illumination, which
has a discontinuity in the function and its derivatives, has far sidelobes that vary
as (Lu /l )−1. For the cosine or gabled distributions, which are continuous but have
discontinuous derivatives at the aperture edge, the far sidelobes have a (Lu /l )−2

variation. The cosine squared illumination, which is continuous, has a continuous
first derivative and a discontinuous second derivative; the far sidelobes vary as
(Lu /l )−3.
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Table 1.1 Line-Source Distributions

AngularHalf Power
Intensity ofDistanceBeamwidth
First Sidelobeto First Zero(Degrees)
(Decibels

Type of Distribution Directivity Pattern Below Gain
−1 ≤ x ≤ 1 E (u) Maximum) Factor

13.2 1.0l
sin u

u
50.8

l
l

57.3
l
l

f(x) = 1

13.2 1.050.8
l
l

57.3
l
l

l(1 + L)
sin u

u

D = 1.0

D = .8 15.8 0.99452.7
l
l

60.7
l
l

17.1 0.97055.6
l
l

65.3
l
lf(x) = 1 − (1 − D)x2

L = (1 − D)
d2

du2

D = .5

D = 0 20.6 0.83365.9
l
l

81.9
l
l

23 0.810p l
2

cos u

Sp
2D

2

− u2

68.8
l
l

85.9
l
l

cos
px
2

32 0.66783.2
l
l

114.6
l
l

l
2

sin u
u

p2

p2 − u2
cos2 px

2

f(x) = 1 − |x |
l
2 1sin

u
2

u
2
2

2

73.4
l
l

114.6
l
l

26.4 0.75

Source: [13].

In his original paper on line source synthesis, Taylor [14] documented the
relationships between aperture edge behavior, far sidelobes, and array pattern zero
locations. His analysis and insights led to a most practical technique for the synthesis
of low-sidelobe beams and is described in Chapter 2, Section 2.2.

Table 1.1 also gives the gain factor for each illumination, which is the pattern
directivity normalized to the maximum directivity of the line source. This parameter
is analogous to the aperture efficiency of an aperture antenna. If a continuous
aperture antenna has the same illumination as the line source in both separable
dimensions, then the sidelobe values quoted in Table 1.1 pertain in the principal
planes (u, v ) = (0, v ) or (u, 0) and the sidelobes are far less in the diagonal planes
(and in fact are the product of the principal plane patterns).

Table 1.2 [13] shows the relative gain, beamwidth, and sidelobe level for a
circular aperture antenna with various continuous aperture illuminations. In this
case, the parameter w = (2pa /l )u, where a is the aperture radius and D = 2a is
the diameter.
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Table 1.2 Circular-Aperture Distributions

Angular
Half Power Distance Intensity ofBeamwidth to First Zero First Sidelobe(Degrees)

(Decibels
Type of Distribution Directivity Pattern Below
0 ≤ r ≤ 1 E (u ) Maximum) Gain Factor

17.6 1.00ps2 J1(u)
u

58.9
l
D

69.8
l
D

f(r) = (1 − r2)0 = 1

24.6 0.752ps2 J2(u)

u2
72.7

l
D

93.6
l
D

f(r) = (1 − r2)

30.6 0.568ps2 J3(u)

u3
84.3

l
D

116.2
l
D

f(r) = (1 − r2)2

Source: [13].

The aperture illuminations used in Tables 1.1 and 1.2 are relatively simple and
not specifically optimized for low sidelobes.

Figure 1.9 shows the normalized beamwidth for Chebyshev antenna patterns
as a function of design sidelobe level. This result uses an approximation due to
Drane [15] that is given in Chapter 2. Figure 1.9 shows the aperture (or taper)
efficiency for a 16-element Chebyshev array pattern as a function of sidelobe level.
This result was also computed using an approximation by Drane [15].

Figure 1.9 Beam broadening (solid line) and taper efficiency (dashed line) versus sidelobe level.
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Equation (1.51) indicates that the pattern does not change with scan if plotted
in terms of the parameter u = sin u. When the beam is scanned to the angle u0 at
frequency f0 , the entire pattern is displaced from the broadside pattern. Though
constant in u-space, the beamwidth is not constant in angle space, since it broadens
with scan angle according to (1.62), and the directivity changes accordingly.

u3 = [sin−1(u0 + 0.443Bb l /L) − sin−1(u0 − 0.443Bb l /L)] (1.62)

for

L = Ndx

This result is for a linear array of N elements or in the principal scan plane of
a rectangular array of length L in the plane of scan. Figure 1.10 shows this variation
with scan for arrays of various sizes. For a large array, the beamwidth computed
from the above expression increases approximately as 1/(cos u ), and so in the large
array limit,

u3 ≈ u3(broadside)/cos u0 (1.63)

This expression is valid for linear and in any scan plane (independent of f )
of large planar arrays.

Neither the cosine relationship nor (1.62) is valid for an array scanned within
a beamwidth of endfire (u = p /2). Scanning to endfire is discussed in Chapter 2.

Figure 1.10 Beamwidth variation with scan.
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Directivity of Linear Arrays

Although the above expressions give the proper beam broadening for linear arrays
scanned along their axis and for planar arrays, the gain degradation or scan loss
is quite different for aperture and linear arrays. For linear arrays, the scan loss
also depends on the directive gain in the plane orthogonal to the scan plane. There
is, however, one very simple and important case for linear arrays of isotropic
elements with spacings that are any integer number of half-wavelength. In this
case, Elliott [16] shows that the directivity is independent of scan angle and is
given by (see Chapter 2)

D0 =
|San |2

S |an |2
(1.64)

A note of caution: one should not assume that the constant directivity of (1.64)
means that one can design a linear array with no scan loss. Increasing array
mismatch due to element mutual coupling negates this possibility, even for omni-
directional elements. In addition, the discussion in Chapter 2 indicates that arrays
with element patterns narrowed in the plane orthogonal to scan suffer substantially
increased losses when scanned to wide angles.

Since the maximum value of this expression (1.64) is equal to N and occurs
when all an values are the same, it is convenient to define a taper efficiency eT
such that the above result for half-wavelength-spaced isotropic elements is thus
[17]

D0 = NeT (1.65)

where here

eT =
1
N

|San |2

S |an |2

This taper efficiency is the discrete analog of the gain factor used for continuous
apertures, as tabulated in Table 1.1.

Equation (1.64) is exact and pertains to omnidirectional elements with integer
half-wavelength spacings. A more general but approximate expression that illus-
trates the linear dependence of directivity and element spacing is due to King [18]
and given below [17]. This result applies for isotropic elements spaced less than a
wavelength apart and with the beam at broadside so that no grating lobes exist,
and for beam shapes that concentrate most of their power in the main beam. In
this case, the directivity is given approximately by

D0 = [2d /l ][eT N ] (1.66)

Directivity of Planar Arrays

If the elements of the linear array have significantly narrowed patterns in the
orthogonal plane, then, in general, one must perform the integral of (1.4) to evaluate
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directivity for the scanning array. Section 2.1 gives equations for directivity of
more generalized arrays, but for the purposes of this section there is one very
convenient form for system applications. The beamwidth and directivity of a rela-
tively large planar array are related by the following approximate equation due to
Elliott [19]:

D = 32,400 cos u0 /(ux3uy3) (1.67)

where ux3 and uy3 are the 3-dB beamwidths of the pencil or elliptical beam at
broadside. In this formula, the beamwidths are in degrees.

The formula is exact for a uniform matched aperture at broadside. It is a good
approximation for most other pencil beam array patterns and shows that the
directivity is decreased approximately by the product of the beam broadening
factors in each plane for a lower sidelobe array. Stegen [20] points out that the
numerator of this expression should be larger for low-sidelobe antennas. This
simple formula reveals the well-known cosine dependence of the directivity of large
planar arrays, but does not apply at endfire (u = p /2), where it yields zero direc-
tivity. The endfire case is described in Section 2.1.

It is possible to test the expression in one limiting case for an aperture with a
uniform illumination. Using the uniform array beamwidths [from (1.61)] in the
above (at broadside) shows this equation to be consistent with the known relation
for the maximum directivity 4pA /l2 (1.11). The relationship to the number of
array elements is obtained in terms of the cell area A = LxLy = NACELL, where
ACELL is the area of the grid occupied by a single element:

Dmax = 4pNACELL/l2 (1.68)

which is the maximum directivity except in the superdirective limit referred to
earlier. Again, introducing the concept of an aperture efficiency eA and introducing
the scan loss for a large array, the actual directivity for a large scanned aperture
array is

D0 = DmaxeA cos u (1.69)

=
4pA

l2 eA cos u

This expression can also be derived directly from the integral expression for directiv-
ity in the limit of a very large array.

Elliott [21] shows that for a relatively large rectangular array, with a separable
distribution and not scanned too close to endfire, the directivity is approximately
given by the following expression:

D0 = pDx Dy (1.70)

where Dx and Dy are the directivities of the linear arrays of isotropic elements
with the separable distributions. The elements in the planar array are assumed to
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have hemispherical element patterns. This expression is not exact, but it remains
useful for system sizing applications.

Array Realized Gain and Scan Loss

Since the directivity can be related to the beamwidth, and the variation of beam-
width with scan is well known, approaching the ideal 1/(cos u ) dependence (1.62)
for large arrays, one might assume that the gain of a scanned array is also simply
established. However, the array gain and directivity are related by

GR = eL (1 − |G |2)D0 (1.71)

for G, the reflection coefficient of the array input terminals. The reflection coefficient
G varies as a complex function of the scan angle because of the impedance mismatch
that results from interelement coupling, sometimes called mutual impedance.

Although (1.71) is regularly used to compute scan loss, it is often convenient
for planning purposes to combine both factors into one and assume scan loss in
the form of some power of the cosine (cos u )n. This has been done in Figure 1.11(a)
for n = 1, 3/2, and 2. These represent reasonable design goals depending on the
array elements and plane of scan. In addition, use of Figure 1.11 implies that the
element spacing is such that no grating lobes radiate. System designers can now
assume that with careful design, the cos u can be approached in one plane of scan
(out to 60° or so), but not often in both planes. This benign scan has been available
for many years for dipole and slot arrays as a result of extensive research on these
two configurations, but some work [22] has shown that the same sort of results

Figure 1.11 (a) Typical scan loss curves. (b) Scan loss with array blindness. (From: [23].  1968
IEEE. Reprinted with permission.)
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Figure 1.11 (Continued.)

can be obtained with patch arrays. For system design purposes, it is common
practice to assume that the cos3/2 u curve is a reasonable dependence for both
planes. In addition, without careful design, some arrays can exhibit the catastrophic
pattern degradation called scan blindness, which results in almost complete cancel-
lation of all radiation for certain scan directions. This phenomenon is depicted in
Figure 1.11(b), due to Farrell and Kuhn [23]. In this figure, which shows the
characteristics of a triangular grid array, the distance A is the distance between
elements in the same row (H) plane, and the distance B is twice the distance between
the adjacent rows. The scan properties of specific array elements are discussed in
Chapter 6.
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Grating Lobes of a Linear Array

A linear array with its peak at u0 can also have other peak values subject to the
choice of spacing dx . This ambiguity is apparent, since the summation also has a
peak whenever the exponent is some multiple of 2p . At frequency f and wavelength
l , this condition is

2p
dx
l

(sin u − sin u0) = 2pp (1.72)

for all integers p. Such peaks are called grating lobes and are shown from the
above to occur at angles up such that

sin up = sin(u0) +
pl
dx

(1.73)

p = ± (1, 2, . . . )

for values of p that define an angle with a real sine ( |sin up | ≤ 1).
If the element spacing exceeds a critical dimension, grating lobes occur in the

array factor, as indicated in Figure 1.12. This figure shows several patterns of an
array of eight elements spaced one wavelength apart, excited by a Chebyshev
tapered illumination that would produce −25-dB sidelobes in an array with half-
wave spacing. The two sets of patterns are for scan angles of broadside and 30°
(u0 = 0.5). The far-field pattern is the product of the element pattern (shown
dashed) and the array factor, shown solid in Figure 1.12(a, b). The grating lobe
may be suppressed somewhat by the element pattern zero for a broadside array
as shown in the figure. However, when the array is scanned (and the element
pattern is not), the grating lobe location moves away from the null and can be a
substantial source of radiation. In the case shown [Figure 1.12(d)], it is fully as
large as the desired main beam. A criterion for determining the maximum element
spacing for an array scanned to a given scan angle u0 at frequency f is to set the
spacing so that the nearest grating lobe is at the horizon. Using (1.73), this leads
to the condition

dx
l0

≤
1

1 + sin u0
(1.74)

at the highest operating frequency f0 , which requires spacing not much greater
than one-half wavelength for wide angles of scan. In practice, the spacing must
be further reduced in order to avoid the effects of array blindness, described in
Chapter 5.

Grating Lobes of a Planar Array

Similar relations hold for a planar array, since the grating lobe phenomenon occurs
in these cases also, and one can show for a rectangular grid array [Figure 1.8(c)]
with spacings dx and dy that lobes occur at
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Figure 1.12 Array factors, element patterns, and grating lobes for a linear array: (a) −25-dB Cheby-
shev array factor for one wavelength spacing (solid line), assumed element pattern
(dashed line); (b) radiation pattern for part (a); (c) scanned array factor (solid line),
element pattern (dashed line); and (d) radiation pattern for part (c).

up = u0 + pl /dx p = 0, ±1, ±2, . . . (1.75)

vq = v0 + ql /dy q = 0, ±1, ±2, . . .

This spectrum of grating lobes is shown graphically in the grating lobe lattice
of Figure 1.13, which shows the (up , vq ) grating lobe locations in u, v space for
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Figure 1.12 (Continued.)

a rectangular grid array. Not all values of p and q correspond to allowed angles
of radiation, however, since the angle (upq ) associated with grating lobe designated
by indices p and q is defined by

cos upq = X1 − u2
p − v2

q C1/2
(1.76)

There can only be real values of upq if the up and vq are constrained to be
within the unit circle, or
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Figure 1.13 Grating lobe spectrum for planar arrays with rectangular grids.

u2
p + v2

q ≤ 1 (1.77)

Grating lobes inside the unit circle correspond to real angles u and radiate, but
those outside the unit circle do not. As is the case for the linear array, this limits
element spacings to approximately a half-wavelength or slightly more for most
applications. The area occupied per element for a 60° scan is about 0.29l2. In
practice, it is necessary to reduce the element spacings further (by 5% to 10%) in
order to avoid the pattern deterioration associated with mutual coupling effects
[24].

Bandwidth

Array bandwidth [25, 26] can be limited by the bandwidth of the elements in
the array, but often the more severe limitation is caused by the use of phase
shifters to scan the beam instead of time-delay devices. The complex weights chosen
in (1.53) provide time delay, and so the beam peak occurs at (u0 , f0) for all
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frequencies. If phase shifters are used to scan the beam, the peak is scanned to the
desired angle only at center frequency f0 . Otherwise, it is scanned to that angle
which makes the exponent of (1.51) equal and of opposite sign to the exponent
of (1.50). For phase steering in one dimension, the complex weighting has the form

an = a0 expS−2p
l0

ndx u0D (1.78)

and the value of u corresponding to beam peak is given by

u = u0 f0 /f (1.79)

The result is pattern ‘‘squint’’ like that shown in Figure 1.14(a), in which the beam
peak angle is reduced for frequencies above the design frequency and increased for
frequencies below the design frequency. If the bandwidth is defined by the frequency
limits at which the gain is reduced to half power, the resulting fractional bandwidth
is given by

D f
f

=
Du
u0

=
u3

sin u0
= 0.886BbS l

L sin u0
D (1.80)

for an array with beamwidth u3 . The bandwidth becomes smaller as the array is
made larger or as the scan angle is increased. Figure 1.14(b) shows bandwidth
versus scan angle for various-length arrays.

For small scan angles, the following expression is convenient.

D f /f0 = 1/hB (1.81)

where hB is the number of beamwidths scanned (in one dimension).
Another commonly used relationship can be derived from (1.80) for the limit

of wide-angle scan (±60°). Using the beamwidth of (1.61), expressed in degrees,
and choosing as the band edge the one-quarter beamwidth condition, which corre-
sponds to about 3/4-dB loss and not the 3-dB (half-power) limit used in previous
expressions, one obtains [27]

Bandwidth (percent) = beamwidth (degrees) (1.82)

If the 3-dB beamwidth criterion is used, or if a rectangular pulse is radiated, the
relation is:

Bandwidth (percent) = 2 ? beamwidth (degrees) (1.83)

The above relations relate to fractional and percentage bandwidth of an array.
However, there is a direct relationship between actual bandwidth and array size
implied by (1.80), irrespective of whatever the fractional bandwidth may be. From
(1.80) one obtains
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Figure 1.14 Wideband effects in phased array performance: (a) beam squint for a phased array
(wavefronts and beam peak motion); (b) array 3-dB bandwith versus (L/l )sin u0 (Bb
is beam broadening factor); (c) array or subarray length (L/l )sin u0 versus bandwith
(MHz) (Bb is beam broadening factor); and (d) narrow pulse incident on array (array
fill time).

L sin u0 = 0.886Bb (300)/D fM (1.84)

In this expression, D fM is the bandwidth in megahertz and L the array length in
meters. Thus, a 300-MHz signal bandwidth operating with a uniformly illuminated
array (Bb ≈ 1) can have a maximum length of about one meter at 60° scan. Figure
1.14(c) gives the 3-dB bandwidth of arrays of various lengths and illustrates that
there is a maximum array size corresponding to a given array bandwidth.
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Figure 1.14 (Continued.)

An alternate perspective on array bandwidth comes from the concept of an
array ‘‘fill time’’ T. Figure 1.14(d) illustrates a pulsed waveform modulating a
plane wave incident upon the array at an angle u from the array normal. The
sketch shows that a very short pulse will arrive at different edges of the array at
entirely different times, and without delaying those signals received by the right
side of the array, there is no way to sum the signals at each element and thus
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benefit from the array gain. The pulse length has to be significantly larger than
the fill time, or for a pulse incident from angle u,

t > T =
L sin u

c
(1.85)

where c is the velocity of light, t is the pulse length (duration), and T is the antenna
fill time.

Since any measure of pulse bandwidth is inversely proportional to the pulse
duration t, the bandwidth is

D f =
KP
t

<
KPc

L sin u
(1.86)

for proportionality constant KP , which is on the order of one.
The fractional bandwidth thus assumes a form similar to (1.80):

D f
f

<
KPl

L sin u
(1.87)

Equation (1.80) was written for a continuous-wave (CW) signal and implied
an amplitude modulation of 3 dB at the band edges. Equation (1.87) merely states
a similar dependence for the pulse case, and is included here for purposes of
exposition. It is necessary to perform the more detailed spectral (transform plane)
analysis in order to compute a more realistic bandwidth based on tolerable pulse
distortion. Detailed treatments of the frequency response of arrays are given by
Kinsey and Horvath [25] for a center-fed array, and by Knittel [26] for a phase-
scanned array. Frank [27] gives both CW and pulse bandwidth criteria for various
series and parallel feeds and shows that for similar criteria of CW signal loss and
pulse spectrum loss, the bandwidth of an array passing a pulse with a uniform
spectrum is about twice that of the CW signal. Thus, in many cases one can
operate a wider bandwidth signal than is given by (1.80) without significant loss
of information.

The array bandwidth restriction is, in most cases, a severe limitation. It can
be removed only at great cost by replacing phase shifters by time-delay devices.
Moreover, present day time-delay units are switched transmission lines, and their
bulk and weight make them unsuitable for many array applications. Wideband
array techniques are addressed in Section 1.2.3.

1.2.2 Array Size Determination

Given the specifications required of an array antenna, the first task facing the
system designer is to determine the size of the aperture. Gain is one system parameter
that defines the size of an array, but when resolution is important, the array
beamwidth may be the determining factor. In addition, there are special instances
in which the number of elements in the array is governed by the scan volume or
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the ultimate depth of pattern nulls or null bandwidth. This section enumerates
some of the factors that influence the required array size.

EIRP and G/T for Large, Two-Dimensional Passive or Active Arrays

A fundamental consideration is whether the array should be active, with solid-
state amplifiers at each element, or passive, with a single RF power source and a
single receiver. In addition, there is an intermediate solution with active devices at
various levels within the array (at columns, rows, or groups of elements called
subarrays). The two basic organizations are indicated in Figure 1.15 (shown for
a transmitting array), but the only cases described here are the planar array, with
a single power supply Pin (passive), the case with N amplifiers for a two-dimensional
array with N elements, and amplifier output Pmod at each.

Equations (1.38) and (1.39) indicate that one important feature of the radar
or communications transmitter is the product of its gain and input power. This
term is called the effective isotropic radiated power (EIRP). For a large array with
N elements and array aperture area Ndx dy , the EIRP for active and passive arrays
with uniform illumination are given in the following expressions.

Passive Array

EIRP = NeL Pin (DCELL)(1 − |G |2) (1.88)

Active Array

EIRP = N2PMOD(DCELL)(1 − |G |2) (1.89)

where DCELL is the directivity of one cell of the periodic array (or one element)
and is defined

Figure 1.15 Active and passive array configurations: (a) passive array; and (b) active array.
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DCELL =
4p

l2 (dx dy ) cos u (1.90)

For a 0.5l matched square lattice at broadside, DCELL = p.
The eL (loss efficiency) term used in the above equation for the passive array

is a dissipative loss and accounts for power lost in the array feed network and
phase shifters. This loss can be several decibels, and can therefore significantly
impact required array size, as shown in the next section.

In these expressions, the large-array assumption is used to require that each
element of the array sees the same reflection coefficient G. This is a good approxima-
tion for a large array because most of the elements are far from the edges, and the
elements that are near the edges are not excited strongly.

A significant difference in the active and passive arrays is that for the active
arrays, EIRP varies like N2 (increasing the number of elements increases both the
input power and the directivity), while the passive array EIRP varies directly with
N. If the distribution network were lossless, the ratio of EIRP to net RF power
would simply be the directivity and there would be no power balance difference
between the active and passive arrays. The remaining difference would lie in the
relative efficiency, output power, and cost of the RF amplifiers in the two cases.
However, for a lossy distribution network, the advantages of the active array are
readily apparent, as can be seen in the next section.

The receiving array in a communication or radar system is characterized by
the ratio G/TS , as given below, with reference to Figures 1.2 and 1.15, assuming
uniform illumination.

Passive Array

GR = D0eL (1 − |G |2)

Ta = eL [TA + TL (L − 1)] (1.91)

TS = Ta + (FR − 1)T0

where

D0 = NDCELL

Active Array

GR = D0(1 − |G |2)

Ta = TA (1.92)

TS = (F − 1)T0 + Ta

where eL is the network loss factor for the passive array (the fraction of the power
received at the antenna terminals that reaches the receiver), F is the noise figure
of the active array receivers, FR is the noise figure of the passive array receiver,
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and TA is the antenna temperature. Here the number of array elements N enters
only once in the array gain expression. All else being equal, the active array has
the advantage of lower Ta with lossy distribution networks.

Gain Limitations Due to Circuit Losses

Equation (1.11) shows the array directivity increasing linearly with aperture area.
If the array is small enough and circuit losses not too large, then gain continues
to increase with size, but gain is ultimately limited if line losses are not negligible.
Figure 1.16(a) shows the gain of a square array of N elements like those of Figure
1.8, with interelement spacing d in either direction and with each element fed by
equal-length transmission lines of length (N1/2 − 1)d (as for the array shown in
the figure). In this case, the maximum array gain at broadside is just the gain of
(1.11) reduced by the loss of the line.

Figure 1.16 Gain and G/T limitations due to circuit losses: (a) passive array gain; and (b) passive
and active array G/T (assuming matched array).
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Gain =
4pA

l2 10−(d/l) (N1/2 − 1)(adB/l )/10) (1.93)

where adB/l is the attenuation loss of the transmission line in decibels per wave-
length. In this formula, the array elements are assumed matched. This equation
does not include loss due to power dividers in the corporate feed network, a factor
which can be significant in some cases. Either of the equal-line-length feeds shown
in Figure 1.8(b) or Figure 1.8(c) contains NPD power dividers in series with the
element where, for an N-element square array,

NPD = log2(N) = 3.32 log10(N) (1.94)

and the loss of each power divider may need to be included in the calculation.
Figure 1.16(a) shows gain curves for a square passive array of matched elements

separated by 0.5l on a square grid, and compares the available gain for various
values of attenuation. Except for the lossless case, gain does not increase monotoni-
cally with the number of elements, and in fact reaches a maximum value and then
decreases with further increase in size. The gain of an active array is shown in the
figure as the zero loss case because the amplifiers are at the element level. In the
active array case, the gain increases linearly without any saturation limit.

Figure 1.16(b) shows the G/T for passive and active receive arrays with the
line attenuation parameters used in Figure 1.16(a). In this figure, the passive array
curves are shown solid, while the active array curves are shown dashed. The
assumed phase shift loss is not shown, but should be included in the system
evaluation. The G/T is altered even more than the gain because the temperature
is increased by thermal loss in the line.

Transmission line loss is a major factor leading to the integration of solid-
state amplifiers into large arrays, and to the fabrication of arrays using several
transmission media. It is often convenient to do several layers of power division
in low-loss media like waveguides or coaxial lines instead of using a higher loss
media like microstrip transmission line throughout the array.

Directivity and Illumination Errors: Random Error and Quantization Error

The net antenna gain is the directive gain reduced by the various system losses.
Apart from the loss associated with aperture efficiency (1.12), which is deterministic
in nature and built into the choice of aperture illumination as a compromise between
gain and sidelobe level, there are usually two other factors that contribute to
reduced directivity. These factors are array tolerance errors and errors due to
phase, amplitude, or time-delay quantization. They reduce directivity (and gain)
by distorting the chosen aperture illumination.

Data describing peak sidelobes and pattern structure due to these effects are
given in Chapter 6. Equations for gain reduction and average sidelobe level are
given below for arrays with random phase and amplitude errors. The directivity
in the presence of amplitude and phase errors is

D
D0

=
1

1 + F2 + d 2
(1.95)
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where d 2 is the amplitude ratio variance normalized to unity, F2 is the phase error
variance in radians squared, and D0 is the directivity without error.

The average sidelobe level, far from the beam peak and normalized to the peak,
is a constant given by

SLdB = 10 log10 s2 (1.96)

s 2 =
F2 + d 2

NeA

and eA is the aperture efficiency.
The above expressions pertain to linear and planar arrays. Since they are

normalized to the beam peak, the element pattern gain has been removed from the
expressions. Figure 1.17(a) shows the root-mean-square (rms) sidelobe level for a
square arrray as a function of array directivity for various phase errors (and no
amplitude errors). The dashed curve of Figure 1.17(a) gives sidelobe levels for an
array of the same size, but organized into columns for a one-dimensional scan. In
this case, the rms sidelobes cited are in the plane orthogonal to the axes of the
columns.

A particularly revealing way to restate the sidelobe results is the expression
given next, valid for a planar array with l /2 spacing [and element pattern broadside
gain p , as in (1.90)]. In this expression, the sidelobe level is given relative to the
isotropic (zero gain) level as

s 2
x = s 2 ? D0

= s 2(pNeA ) (1.97)

= XF2 + d 2Cp

This level is shown conveniently as a family of circles in Figure 1.17(b) [28].
A digitally controlled phase shifter with P bits has 2P phase states separated

by phase steps of 2p /(2P ). If the array is made up of such phase shifters, then there
is an additional loss due to the staircase approximation of the required phase shift.
This loss and the resulting sidelobe level increase are described in much more detail
in Chapter 7. The resulting loss in directivity and the average sidelobe level produced
by the error are approximated [29] by the equations above using the phase error
variance:

F2 =
1
3

p2

22P (1.98)

which is evidently the mean square value of the triangular error distribution with
height one-half of the phase step. Figure 1.17(c) shows the average sidelobe level
for an array with N bits of phase quantization. Chapter 7 gives peak sidelobe levels
for such distributions, but standard practice is to break up the periodic error by
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Figure 1.17 Tolerance effects in array antennas: (a) rms sidelobe level for square array with errors
at elements (solid lines) or columns (dashed lines) in plane orthogonal to columns
(reference to main beam); (b) average (rms) sidelobe level (relative to isotropic) for
array with amplitude and phase errors; and (c) rms sidelobes due to N-bit phase-shift
quantization (N = number of phase shifter bits).

several means, and so to make the error occur with a more random spatial dis-
tribution. In this case, as an approximation, one can assume that discrete peak
sidelobes resulting from this error are on the order of 10 dB above this level (see
Chapter 7).
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Figure 1.17 (Continued.)

Minimum Number of Elements Versus Scan Coverage: Limited Field-of-View
Arrays

According to (1.74), there is a maximum spacing between array elements that
cannot be exceeded without exciting grating lobes. If not suppressed by the element
pattern, these lobes are as large as the main beam. The topic of limited field-of-
view arrays is treated in more detail in Chapter 8, but is included here for the
purposes of evaluating the array size and number of elements. Equation (1.74)
gives a condition for maximum spacing based on keeping all grating lobes out of
real space throughout the scan coverage. With this spacing, the minimum number
of elements in a conventional linear array of length L is

Nmin = L /Dmax (1.99)

=
L
l

(1 + sin u )

where Dmax is the interelement spacing.
Although this expression leads to the use of fewer elements if the scan is limited,

this is still a restrictive condition, leading to an absolute minimum number of
elements of one per square wavelength even if the array is unscanned, or four per
square wavelength if the array is scanned to endfire.

If the array is periodic, however, there is a way to reduce the number of controls
by grouping the elements into subarrays that allow one to use extra large spacing
between these subarrays while suppressing the resulting grating lobes. This can be
done using networks that produce approximate flat-topped element patterns that
are nearly constant for |D /l sin u | ≤ 0.5, and zero for |D /l sin u | ≥ 0.5. With this
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element spacing (in one dimension), one can scan the array to the maximum scan
angle umax, which is related to the maximum intersubarray spacing Dmax by

(Dmax/l ) sin umax = 0.5 (1.100)

and to the condition for the minimum number of controls for a one-dimensional
array of length L and beamwidth sin(u3) ≈ l /L:

Nmin =
L

Dmax
=

sin umax
(0.5) sin u3

(1.101)

This minimum number of controls is equal to the number of beams that an
orthogonal beam matrix can form over the given scan sector. Networks and circuits
for producing such element (or subarray) patterns are described in Chapter 8 and
have a variety of characteristics, some approaching this ideal element pattern. The
basic flat-topped pattern is produced by a technique called overlapped subarraying.
Most practical systems need several times the minimum number of elements given
in (1.101), but if the scan is restricted, this can be only a small fraction of the
elements for an array designed for wide-angle coverage. Array techniques that use
these features are called limited field-of-view or limited scan systems, but are
relatively complex compared to conventional arrays.

Section 1.3.2 describes a wideband array configuration that uses the same
overlapped networks that are used for limited field-of-view systems.

For a rectangular two-dimensional array, the minimum number of controls is
the product of two numbers of the form of (1.101).

Nmin =
sin u 1

max sin u 2
max

0.25 sin u (1)
3 sin u (2)

3

(1.102)

Since the number Nmin is the smallest achievable, it is convenient to define a term
called the element use factor N /Nmin , which measures the array against this stan-
dard [30]. An array with elements spaced dx and dy apart has the element use
factor N /Nmin .

N
Nmin

=
D(x)

maxD(y)
max

dx dy
(1.103)

=
0.25l2

dx sin u (x)
max dy sin u (y)

max

Figure 1.18 shows the relative number of elements (controls) for a conventional
two-dimensional array with a conical scan sector as compared with the theoretical
minimum. This result is due to Stangel and is comparable to the result of using
(1.103). The techniques for achieving this reduction in controls and the relative
complexity of systems that approach this ideal are detailed in Chapter 8.
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Figure 1.18 Required controls for arrays with limited field of view.

1.2.3 Time-Delay Compensation

The bandwidth limitations imposed by (1.80) severely restrict the use of arrays in
many practical radar and communication systems. The use of time delays instead
of phase shifts can give enhanced bandwidth, but often at prohibitively large cost
and at the cost of other performance goals.

In order to maintain the beam peak at a constant angle u0 for all frequencies,
one needs time-delayed signals at each element. The excitation coefficients for a
linear array are given:

an = exp[−j(2p /l )ndx sin u0] (1.104)

= exp[ jFn ]

In terms of equivalent phases Fn at each element, these phase shifts are

Fn = −2p
nf
c

dx sin u0 (1.105)

and thus need to vary linearly with frequency.
The customary way to provide time delay is to insert incremental lengths of

transmission line of length Ln = ndx sin u0 to produce the time delays,
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tn =
−ndx sin u0

c
= Ln /c (1.106)

using actual delay lines by switching sections of transmission lines behind each
element or group of elements. Since the phase shift inserted by length of line
Ln is

Fn =
2pLn

l
(1.107)

each line length (near the ends of the array) has to be variable over the range

−L
2

sin u0 ≤ Ln ≤
L
2

sin u0 (1.108)

In this case, the negative value does not indicate a negative line length, since an
equal length of line is first added to each path. The required lengths of switched
line are extremely bulky and expensive for large arrays, and the large number of
discrete time-delay positions requires a highly complex switching network. Further-
more, the relative dispersion in the various transmission line sections may prohibit
accurate beam forming. For these reasons there are few fielded systems that are
designed around time delay controls, and to date these have been large ground-
based arrays.

The need for wideband array systems is increasing, and analog, optical, and
digital technologies can provide that function, although at a significant cost. These
will be discussed in Section 1.3.

1.3 Array Architecture and Control Technology

The architecture [30, 31] of an array encompasses all of the choices that the array
designer makes to bring together the electromagnetics of elements, aperture, power
division, and control. Architectural choices begin at the aperture and dictate how
the elements are to be grouped and fed. Behind the aperture is some means of
phase or time delay control, and this is followed by a network that combines the
power from the various elements, includes amplification as needed, and provides
amplitude weighting, time delay, and perhaps adaptive control for interference
suppression. The control aspect begins with the microwave phase shifters that have
been the mainstay of electronic scanning systems since the first arrays were built.
However, recent demands for wideband performance and highly flexible array
control, including adaptive and reconfigurable arrays, have highlighted the special
features offered by optical and digital control. The following sections treat these
topics briefly.

1.3.1 Array Aperture

Array cost continues to limit the use of arrays in systems. If cost were no consider-
ation, there would seldom be any need to use other than waveguide- or dipole-
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type elements. It is primarily this issue that continues to require more innovations
and creativity of the array designer, for the solution lies not in mass-produced
dipoles or waveguides, but in developed techniques that assemble the array in
relatively larger sections and that may incorporate elements or groups of elements,
controls, and devices, all in the same fabrication step and all assembled by automatic
processes. There is a need for special array architectures, specific ways of collecting,
assembling, and mounting array elements, and special types of array feeds to be
compatible with various ways of grouping elements.

Particular architectures seem to be appropriate to specific frequency ranges
and array geometry requirements (size and depth). Figure 1.19 shows the two basic

Figure 1.19 Basic array construction: (a) dipole array showing ‘‘brick’’ construction; and (b) micro-
strip patch array showing ‘‘tile’’ construction.
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array constructs and introduces the terms brick and tile constructs as coined by
Kinzel et al. [32]. Figure 1.19(a) shows an array of printed circuit dipoles in a
brick arrangement. The brick construct uses the depth dimension to provide the
functions that are accomplished in the multiple layers of the array with tile construc-
tion. Thus, each brick may contain a row or column power divider, phase shifters,
amplifiers, and other devices in addition to maintenance features and cooling. The
brick may be produced by monolithic integrated circuit technology, and so be fully
compatible with low-cost fabrication. Elements for the brick construction are also
quite reasonable, since horizontal dipoles, flared-notch elements, and a variety of
others can be integrated into this geometry. These elements generally have broader
bandwidth than microstrip patches and this may be a major advantage in some
system applications.

In the limiting case, a brick may be a single module and construction is reduced
to assembling the array face one element at a time. This has been the established
practice for most radar arrays at frequencies through 10 GHz. In this case, the
array element modules, which consist of an element and a phase shifter (and perhaps
the phase shifter driver circuitry) are inserted into a manifold that provides RF
power and phase shifter control. The modules can also include active devices,
amplifiers, and switches, and so may be complete transmit-receive front ends. In
this way, the transmitter and receiver chain is a part of the array face, and this
needs to be accounted for in thermal and mechancial design. The RF power division
is accomplished in the manifold, as is logic signal distribution and cooling. This
assembly technique is efficient and relatively easy to maintain, though not inexpen-
sive to produce. It seems clear that for frequencies up to K-band (roughly 15 GHz),
this type of assembly may always be the most practical because of element size
and separation. It now seems that at some time in the future, this architecture may
not be practical nor have the lowest cost at EHF and millimeter-wave frequencies,
and so may be replaced by brick construction with a multiplicity of elements in
each brick or by tile construction described below. The reason that frequency enters
into this selection is that semiconductor substrate size is limited. As frequency is
increased, it becomes possible to place more devices and elements on the same
chip. At these frequencies, the use of multiple-element brick and tile construction
becomes practical.

Figure 1.19(b) shows an architecture that Kinzel et al. [32] called tile construc-
tion, and that many have called monolithic array construction. It appears that the
term tile is more appropriate because these tiles often have a multiplicity of layers
(are not monolithic), and because other architectures seem to be as compatible
with monolithic integrated circuit technology and so as equally deserving of that
identification. The primary antenna elements used in this type of assembly are the
microstrip patch radiator or microstrip dipole, fed by microstrip transmission
line, although various other planar transmission lines have also been used to feed
microstrip and other planar antennas.

Whether tile or brick construction is used, there is still a significant architectural
issue that addresses how the proper array weights are applied to elements at the
array face. The array face itself is often organized into subarrays of rows, columns,
or areas with each subarray fed separately.
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The terms brick and tile relate to the way the array is assembled, not the
organization of the aperture. One could assemble an array of column subarrays
using the tile construct if the planar RF power dividers addressed columns of the
array, or one could assemble an area subarray by inserting the subarray as a brick
from behind the aperture. In terms of the quality of the array radiation pattern,
the column subarray organization is usually preferred to area subarrays, because
the power distribution network for each row can be made with the proper taper
for sidelobe reduction in the plane of the row or column axis. Sidelobe control in
the orthogonal plane is provided by a separate power divider. The fabrication of
a network to excite the column subarray can be accomplished using power dividers
below or in the plane of the aperture, but for most applications, where space
permits, the brick fabrication is preferred because it provides more room for phase
shifters, power dividers, and other components.

Area subarrays are useful primarily when the array is to be uniformly illumi-
nated, or at least when the area subarrays themselves can have uniform illumina-
tions. To achieve low sidelobes with area subarrays, the subarray amplitude taper
would need to be different with each subarray, and that is a costly constraint.
When the sidelobe requirements are not too severe, the subarray size can be chosen
to use equal amplitude subarrays and to use as amplitude distribution a series of
quantized steps. If the subarrays are the same size, then the periodic amplitude
error causes well-defined grating lobes to appear as shown in Chapter 7. These
lobes provide the ultimate limit to the sidelobe level.

1.3.2 Feed Architectures

Constrained Feeds for Arrays

Constrained feeds use a network of power dividers and transmission lines to bring
the signal to each element. The equal line-length feed networks of Figures 1.8 and
1.15 are called corporate feeds, and they provide equiphase signal distribution for
wideband arrays. Series-fed arrays, like that shown schematically in Figure 1.6,
produce beams with frequency-dependent scan angles and are often used for fre-
quency scanning. Some discussion of frequency scanning is included in Chapter 5.

Space-Fed Active Lens and Reflectarray Antennas

Figure 1.20(a) shows a space-fed lens array, which, in its simplest form, is just an
alternate to the constrained corporate feed of Figure 1.8(b, c). This configuration
shows an array face, fed by a single antenna that illuminates the back face of the
aperture. The lens is active in that there is phase control at every element in the
lens. The so-called reflectarray [33, 34] of Figure 1.20(b) has the feed in front of
an array aperture of shorted transmission lines loaded with phase shifters. In [34],
the array is not scanned, but the reflectarray concept is utilized only to cohere the
beam.

The main advantage of these configurations is that they reduce the cost and
weight of the system by eliminating the corporate feed. They are therefore applicable
to lower cost ground-based arrays as well as to very large space-based radar
and communication systems. At present, these space-fed scanning systems have
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Figure 1.20 Array space feed networks: (a) space-fed lens array; and (b) reflectarray.

instantaneous bandwidths limited by the use of phase control at the objective
aperture.

Multiple Beam Array Feeds

A special category of array feed is the multiple beam array shown schematically
in Figure 1.21, where each input port excites an independent beam in space. These
can be produced with a digital beamformer, but in addition there are a variety of
antenna hardware concepts that produce multiple beams. Butler matrices [35, 36]
(see Figure 1.22) are a circuit implementation of the fast Fourier transform and
radiate orthogonal sets of beams with uniform aperture illumination. Because the
beams of a matrix-fed array area phase are scanned, they are inherently modest
bandwidth systems. Multiple beam lens and reflector systems have the advantage
of being wideband scanners, as their beam locations do not vary with frequency.
A particularly convenient implementation is the Rotman lens [37] of Figure 1.23,
a variant of the earlier Gent bootlace lens [38] that has the special feature of
forming three points of perfect focus for one plane of scan. The Rotman lens can
provide good wide-angle scanning out to angles exceeding 45°. Figure 1.23 shows

Figure 1.21 Multiple beam array.
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Figure 1.22 Eight-element, eight-beam Butler matrix and radiated beams.

Figure 1.23 Rotman lens, ray traces, and radiated wavefront.
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a sketch of a Rotman lens, illustrating the several ray paths through the lens, and
the associated radiating wavefront. A microstrip version of this lens was developed
by Archer [39] and for some applications is a useful and inexpensive component
relative to the parallel plate version. Multiple beam lenses and reflectors have been
chosen for satellite communication systems, and in that application they serve to
produce either switched individual beams or clusters of beams to cover particular
areas on the earth.

Control for Wideband Arrays

The phenomenon called squint, as illustrated in Figure 1.14 and (1.79), dictates
the need for including time-delay steering for very wideband arrays and for very
large arrays with even modest fractional bandwidth. These two categories of wide-
band arrays are distinctly different and require completely different architectures.
Figures 1.24 and 1.25 outline several approaches to providing time delay for the
various relevant conditions. Figure 1.24 shows two possible architectures for very
wideband (octave or multioctave) or multiple-band control. The sketch at the left
shows one T/R module and one time delay unit (TDU) per element and provides

Figure 1.24 Wideband array control: (a) array with TDUs; and (b) array with cascaded TDUs.

Figure 1.25 Architectures for fractional bandwidth wideband arrays: (a) phased array with con-
tiguous time-delayed subarrays; and (b) phased array with time-delayed overlapped
subarrays.
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exact time delay and the ultimate bandwidth subject to antenna element design
(which can now be up to 10:1 in some cases). The T/R amplification at the elements
is necessary because TDUs are lossy (depending on their length and technology).
Recalling that an array that is 100 wavelengths long needs nearly 100 wavelengths
of excess line switched in series with the outermost elements for scan to 60°, it
becomes clear that significant loss can be expected. In addition to loss, there is
little room behind each element to include the TDUs and amplification, so this
most basic of architectures is impractical for most applications except for relatively
small, very wideband arrays.

The right side of Figure 1.24(b) shows a more practical configuration for
providing element-level time delay and, like the first, provides the exact time delay
at every element. This configuration provides small increments of time delay at
each element, perhaps up to two or three wavelengths. Then, after grouping these
elements into subarrays and amplifying, it provides longer delays at successive
levels of subarraying. Very long delays can then be provided by a beamformer
using optical, analog, or digital time delay. In this case, the optical and analog
time delay is provided by a switched line configuration; thus, it retains the wideband
features of the basic apertures. Digital beamformers do not presently support octave
or multioctave bandwidth at microwave frequencies, but they can provide accurate
time delay over narrower bandwidths at a multitude of frequencies through sub-
banding and filtering. In these cases, the digital beamformer can provide multiband
beams that point in the same direction using the network of cascaded TDUs.

Control for Fractional Bandwidth Wideband Arrays

The previous figures addressed true wideband signal control, but very large arrays
require time delay when the instantaneous bandwidth may only be a few percent
yet still exceed that of (1.80). Certainly the configuration of Figure 1.24(b) will
readily satisfy this condition, too, but several other options are available when the
bandwidth is modest. Architectural solutions exist for such fractional bandwidth,
but wideband arrays are shown in Figure 1.25. The obvious solution is shown in
Figure 1.25(a). It consists of using phase shifters at the element level, and after
amplification, inserting time delays behind contiguous subarrays that divide the
array. This solution is simple, easy to build, and provides room for including
analog, optical, or digital time delay at the subarray level. However, it can produce
significant quantization sidelobes. Detailed evaluations of this bandwidth and the
resulting quantization lobes power levels are given in Chapter 6 for contiguous
subarrays. The configuration at the right in Figure 1.25(b) is highly schematic, but
it is intended to indicate that one can construct microwave subarray networks
that overlap one another. These special overlapped subarray networks have been
developed as space-fed or constrained microwave networks and provide good
pattern control at the expense of increased complexity. Some of these techniques
are similar to those used for limited field-of-view antennas and are described in
detail in Chapter 8. Analog, digital, or optical control can be used to provide the
long TDUs. Digital control is particularly appropriate for these overlapped feed
networks because of the added degree of flexibility it provides.
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Scanning About Time-Delayed Beam Positions

The second method of incorporating time-delay devices into an array combines a
complete set of time-delay devices, or a time-delay multiple-beam network, and a
complete set of phase shifters. Shown schematically in Figure 1.26, these networks
provide exact time delay at only a small number (M) of beam positions, as few as
two to four. The scan sector is thus divided into M sections, each centered on the
M true time-delayed beam positions. In effect, the phase shifters only need to scan
the beam from the time-delayed position halfway to the next time-delayed position.
The maximum phase scan for any beam position is thus to the angle

uscan =
sin umax

M
(1.109)

and with (1.80) one can compute the system squint bandwidth as

D f
f

=
0.886Bb lM
L sin umax

(1.110)

This equation represents a direct bandwidth multiplication by the number of
fixed, time-delayed positions. Moreover, unlike the case of subarray level time
delay, if analog (not discrete) phase shifters are used, this approach does not
introduce any periodic phase error across the array, and so there is no sidelobe
degradation.

Figure 1.26 shows implementation of this broadband approach using time-delay
units (switched lines) with M states and varied across the array. This configuration
requires different sets of switched lines for every element of the array and so is
inherently more costly than the contiguous subarraying technique. Multiple-beam
matrices with time delay can also be used for this application. Their use is described
in Chapter 8.

Figure 1.26 Network for scanning about fixed time delays.
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1.3.3 Beamforming Modalities and Relevant Architectures

Analog, optical, and digital technologies can be applied to the control of array
antennas, depending upon system requirements and physical constraints. This
choice is also a function of time-microwave analog technology and is well estab-
lished but still advancing rapidly through the use of circuit and solid-state device
integration, while optical and digital array control technologies are far less mature
but even now offer advantageous features for certain applications.

The most basic control circuits for each of these modalities are shown in Figure
1.27. Analog control, shown in its simplest form in Figure 1.27(a), might consist
of a circulator or T/R switch to separate transmit and receive channels at the array
level, followed by a corporate power divider network that weights the element-
level signals to provide for low sidelobe array illumination. This network could
include simultaneous or switched sum and difference beam formation. Phase shifters
or time-delay devices scan the beam in one or two dimensions. This basic network
suffers from losses in the circulator, the power divider, and the phase or time
control devices, and at microwave frequencies these could add to half of the power.
For this reason, it is becoming more common to use solid-state T/R modules at
some subarray level or at each element, as shown in Figure 1.27(b). Here, as shown,
separate feeds might be used for transmit and receive because they often have very
different sidelobe requirements. Each port is routed to a T/R module, where it
passes through a power amplifier on transmit or low-noise amplifier on receive.
The solid-state module usually includes a circulator for separating the two channels.
A detailed discussion of the beamformer architectures for active phased array radar
antennas is given in the paper by Agrawal and Holzman [31].

Figure 1.27(c) shows a basic optical network for array control. In this simplified
circuit, an optical signal is amplitude modulated by an RF signal, the optical power
is divided into a channel for each antenna element, and then it is time delayed by
a switched fiber TDU. After detection, the RF signal is amplified and radiated.
The received signal is handled in a similar manner. This RF/optical path is inefficient
and will require amplification elsewhere in the network, but the technology can
provide accurate time delay with little dispersion, as required for large arrays with
wide bandwidth.

Actual networks that are configured for photonic array control are often far
more complex than the simple one shown in Figure 1.27 and may use independent
optical sources for each control port [40]. Still further in the future, photonic
systems may use multiple interconnect networks for forming independent multiple
beams with microelectromechanical systems (MEMS) mirror switches [41].

The primary obstacles to widespread use of photonic array control are network
losses and device size constraints. Without amplification in the transmit and receive
channels, modulation, detection, and power divider losses can exceed 10 dB, and
receive dynamic range can be limited.

Digital beamforming systems use RF amplification at each element or subarray
and then A/D converters (on receive) or D/A (RF synthesizers) on transmit. Once
in the digital domain, time delay and amplitude weights are accorded to each signal,
and highly accurate pattern control, including multiple simultaneous beams (on
receive) and adaptive array processing, becomes available. Figure 1.27(d) shows a
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Figure 1.27 Array control modalities: (a) analog control using passive components; (b) analog control using active components; (c) optical control; and (d) digital
control.
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rudimentary digital beamforming receiving network and emphasizes the multiple
beam capability offered in the digital domain. This technology will eventually
provide the ultimate degree of antenna control and will present the signal-processing
computer with digital signals that are preprocessed to give optimal antenna perfor-
mance. The digital beamforming network can obtain sidelobes as low as achievable
subject to the precision of the calibration network, provide multiple simultaneous
beams or receive with arbitrary weightings on each beam, provide time-delay
and wideband operation using subbanding techniques, provide for array failure
detection and correction, and idealize the antenna system itself by providing entirely
separate control for each channel path through the array or subarray. Digital
channels can have fully adaptive control using any chosen algorithm without net-
work changes.

Digital beamforming can provide the additional and currently unexploited
capability of allowing the restructuring of the antenna signal path to correct for
element failures and even to change the basic design of the antenna while in
operation. An example of the latter statement is given in Chapter 8, wherein,
depending on bandwidth, the feed array for a lens system can be changed digitally
from a simple focal plane array to a wideband feed using the same array elements.
These and other unexploited capabilities may be the ultimate strength of the digital
beamforming concept.

This digital control is well within the state of the art now, but it is currently
not practical for large arrays. Limiting factors are A/D and D/A (or synthesizer)
bandwidth, computer speed and storage requirements, power requirements, and
size. The loss in the digitizing process also mandates use of solid-state modules at
the array elements, and the A/D sampling is usually done after down-conversion
to a suitable intermediate frequency. While it seems clear that full digital control
is optimum for many applications, the cost, bulk, weight, and power requirements
of the analog-digital interfaces will make element-level digital beamforming a peren-
nial future goal for many large systems. This technology is currently seeing applica-
tion at the subarray level or for rows or columns with phase control providing
one plane of scan.

1.3.4 RF Components for Array Control

Most arrays are controlled by RF phase shifters, switches, and attenuators. Optical
and digital control are beginning to play an increasingly important role in wideband
array systems, where they are usually used in conjunction with microwave analog
components to bring time delay to the subarray level instead of to each element.
This section will describe some of the RF components.

The most important components used to date have been phase shifters, but
more recently variable amplitude control has become important as well. The first
components for phase control were waveguide ferrite phase shifters, but diode
devices, transistor circuits, and very recently MEMS switches and ferroelectric
phase shifters are all finding applications. Many phase shifters are analog devices,
wherein the differential phase between states is a function of voltage or pulse length
or some other analog parameter. Some phase shifters have a small number of binary
states with available phase shifts, designated by the number of bits N, wherein the
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phase between states is designed at center frequency to give the proper phase
differential increments of 360°/2n for 1 ≤ n ≤ N. The three-bit phase shifter thus
has a 180° bit, a 90° bit, and a 45° bit. These are added in appropriate combinations
to approximate a required phase progression (modulo 2p ).

Ferrite phase shifters [42, 43] have long been the most popular means of control
for high-power radar arrays. Some are capable of handling hundreds of watts of
average power at S and C band to watts at 60 GHz and beyond. Ferrites can offer
a variety of switching speeds, starting at about one microsecond for toroid designs,
and insertion loss as low as 0.5 dB. Figure 1.28(a) shows a digital ferrite phase
shifter using ferrite toroids, wherein each ferrite toroid is driven into a near saturated
state by sending a pulse of current through its drive wire or reversing the current
to drive the magnetization to the base state. This device produces a nonreciprocal
phase differential between the saturated and base states. Phase bits are determined
by the length of the toroid, so the sketch shows several toroids making up a multibit
phase shifter. Typically, 3 or 4 bits are required for most arrays, but up to 8 or
9 bits is not uncommon. Sidelobe levels resulting from such quantized phase shift
states are discussed in Chapter 7. For highly precise phase shifting, temperature
and frequency compensation and specific correction for the transmission line and
element characteristics are often incorporated into the driver circuit logic. Typical
switching time is on the order of 10 ms or less and average power can be tens to
hundreds of watts; as these are latching devices, the drive power is only significant
when changing state.

Figure 1.28(b) shows a dual-mode latching ferrite phase shifter [44], which is
reciprocal but composed of nonreciprocal components. The device has a nonrecipro-
cal ferrite circular polarizer section at each end and a longitudinally polarized
variable phase shift section in the center, which is also nonreciprocal. The device
is reciprocal because the end polarizers reverse the sense of circular polarization
for the two directions of propagation. The device switches hundreds of watts of
RF power and is highly accurate. Switching time can be 50–100 ms, but because
it is reciprocal it doesn’t need to be switched between transmit and receive. The
latching feature reduces the overall control power requirement. Not shown is the
rotary field phase shifter [43], which is also a reciprocal device and has under

Figure 1.28 Ferrite phase shifter configurations. (a) Four-bit toroid ferrite phase shifter. (b) Dual-
mode latching ferrite phase shifter. (From: [44].  1970 IEEE. Reprinted with
permission.)
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1 dB of loss and extremely good phase accuracy, but switching speed is on the
order of 50–100 ms.

In general, ferrite phase shifters are relatively bulky and heavy compared to
diode phase shifters and require significant switching power. This leaves ferrite
phase shifters as a strong choice for ground and some airborne systems, as well
as for lens-based communications systems, but less appropriate for space-based
radar systems or for very large airborne radar arrays.

There are a variety of diode phase shifter circuits, and Figure 1.29 shows some
of the basic configurations. The switched-line phase shifter of Figure 1.29(a) is the
most simple geometry, using ‘‘N’’ short sections of line cut to length to produce
the various phase bits. This switched-line circuit is also used to provide time delay,
but many more bits are needed, and the longest bits need to be on the order of
the total aperture length.

Two other diode phase shifter circuits are the hybrid design and the loaded
line circuit. The hybrid circuit shown in Figure 1.29(b) uses balanced reflecting
circuits at the output arms of a 3-dB 90° power divider. By properly designing the
terminating diode circuits, one can achieve a specified phase difference between
the reflection coefficients of the diode forward and back-biased states.

The loaded line circuit of Figure 1.29(c) introduces shunt susceptances spaced
a quarter wavelength apart to maintain a matched input VSWR while producing
a net incremental change when switched between states.

Diode phase shifters have played a major role at frequencies below 2 GHz,
where their loss has been tolerable and their fast switching speed (nanoseconds)
and light weight makes them very competitive with ferrite phase shifters. They can
switch tens of watts of RF power, and even more in special cases [45], but their
dc bias power can be an issue for certain applications. Typically a 3-bit PIN diode

Figure 1.29 Microwave phase shifter circuits: (a) switched line phase shifter; (b) reflection phase
shifter; and (c) loaded line shifter.
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phase shifter requires over 100 mW of bias power, and this is significant for some
applications. PIN diode phase shifters at frequencies up to Ka band have been built
with less than 1.5-dB loss. Varactor diode phase shifters are back biased; thus,
they require minimal control power but have higher insertion loss.

Typically, one builds the phase shifter using a cascade of circuits, one circuit
for each bit. Some phase shifters include several different types of bits, depending
upon the amount of space available on the substrate and the degree of precision
required for the phase shifter.

MMIC phase shifters have also been built on GaAs using PHEMT processing
[46], but these have very high loss (8 dB in the reference case) and so are appropriate
primarily for use with amplifier circuits in solid-state modules.

MEMS phase shifters [47, 48] use the same circuits as the diode phase shifters
mentioned earlier. These mechanical switch-based phase shifters can have insertion
loss comparable to diode devices and are very light, but in addition they require
only a few microjoules of control power while they are being switched and require
no holding power. Switching time can be less than 10 ms. They are seen as playing
an important role in systems with large arrays, like space-based radar, but reliability
problems have hampered their development to date. Figure 1.30 shows two types
of noncontacting MEMS switches. The switch at the left is a cantilever arm that
is pulled down by an electrostatic field to rest on a dielectric spacer, while the
switch at right is a membrane that deflects like an oilcan. The change in capacitance
is used to produce the desired isolation. There are also contacting switches that
have superior isolation but reduced lifetime.

Ferroelectric phase shifters [49–51] have been a research topic for a number of
years and currently are under development for several smaller systems. Ferroelectric
switches are made from materials with high dielectric constants that can be changed
by adding a dc electric field. Like MEMS phase shifters, these devices are lightweight
and require very low drive power, but they have switching speeds similar to diodes.
Until recently, these have had severe temperature stability problems. Recent thick
and thin film designs have less temperature sensitivity, but RF losses in excess of
3 dB still preclude their use in many array applications. The phase shifters take
two forms. One approach is to use the material to load a transmission line
[49, 50], while the other approach is to use the material as a varactor [51]. With
continued research, these devices will find a role in various specialized array applica-
tions.

Figure 1.30 Microelectromechanical switches.
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Solid-state modules with international phase shift and sometimes with ampli-
tude control have been under development since the 1960s [52]. They are the
fundamental building block of most modern radars and many communication
systems. The MMIC program moved this technology forward during the 1990s,
and now this ubiquitous technology is available at nearly every desired power level
and every frequency throughout the microwave range. There are still development
needs at the high power limits and a need for improved efficiency at all frequencies,
but by far the major drawback of this technology is its cost. In 1996, the cost of
the Ground Based Radar System T/R modules at the end of the production cycle
was quoted as ‘‘significantly less than $1000 each’’ [53]. Recent claims have cited
cost per module in the hundreds, but this is still too high for many applications.
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C H A P T E R 2

Pattern Characteristics of Linear and
Planar Arrays

2.1 Array Analysis

2.1.1 The Radiation Integrals

As shown in many texts [1], the free-space electromagnetic field can be expressed
in terms of integrals over elementary electric and magnetic current sources. The
field due to an electric current density J in a volume dv ′ = dx ′ dy ′ dz ′ is obtained
from the vector potential integral A, where A is given by

A =
m

4p EJ(v ′ )
e−jk0R

R
dv ′ (2.1)

for

R = [(x − x ′ )2 + (y − y ′ )2 + (z − z ′ )2]1/2

and the associated electric and magnetic fields are given by

EA = −jvA −
j

vme
= (= ? A) (2.2)

BA = =xA (2.3)

and v = 2p f.
The segment of wire shown in Figure 2.1 indicates that the vector potential is

routinely used to compute the radiation from wire antenna structures.
The field due to a volume density of magnetic current is obtained from a

potential function termed the electric potential and given by

F =
e

4p EM(v ′ )
e−jk0R

R
dv ′ (2.4)

and the associated fields are
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Figure 2.1 Radiation from electric and magnetic current sources.
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EF = −
1
e

=xF (2.5)

BF = −jvmF −
j

ve
= (= ? F) (2.6)

In classical radiation problems, the magnetic current is understood to be a
mathematical artifice, not a realizable current. Its value in antenna analysis is that
it is regularly used to represent radiation from apertures described in terms of their
known electric fields. In the case of an aperture antenna, the magnetic current is
identified with the tangential electric field at the radiating aperture using

MS = −n̂ × ES (2.7)

for n̂, the outward-directed normal at the aperture. The subscripts S refer to surface
magnetic currents, and in this expression the volume integral has shrunk to a
surface integral. The aperture in Figure 2.1 depicts this use of the magnetic current
to represent surface electric fields.

The potential functions are integral solutions to Maxwell’s equations. At dis-
tances far from any source, their radial dependence has the (1/R) form required
for energy conservation in (1.1) and the exponential dependence of an outward-
traveling spherical wave.

Although both solutions are independent when there are no boundaries, the
general electromagnetic field requires the sum of fields from both potentials. In
general,

E = EA + EF B = BA + BF (2.8)

is the complete form that may be necessary to satisfy physical boundary conditions.
One boundary condition of vast importance in antenna and array theory is

that of an antenna mounted over or in a perfectly conducting ground plane (the
term ground screen is used interchangeably).

The well-known image principle, depicted in Figure 2.2 for a ground screen
in the plane z = 0, provides a recipe for superimposing fictitious image sources
beneath the ground screen in order to satisfy the required boundary condition
that the total tangential electric field be zero at the screen. Potential functions
corresponding to these imaged sources are

A =
m

4p E
v

HJ(v ′ )
e−jk0R

R
+ JI (vI′ )

e−jk0RI

RI
J dv ′ (2.9)

where

JI = −x̂Jx − ŷJy + ẑJz
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Figure 2.2 Image principle for electric and magnetic currents.

and

F =
e

4p E
v

HM(v ′ )
e−jk0R

R
+ MI (vI′ )

e−jk0RI

RI
J dv ′ (2.10)

where

MI (v ′ ) = x̂Mx + ŷMy − ẑMz

and

RI = [(x − x ′ )2 + (y − y ′ )2 + (z + z ′ )2]1/2

These equations are used later to describe the radiation from elementary wire and
slot elements over a ground screen.

One special case for which the above is used is to express the radiation into
the hemisphere from an aperture in a conducting sheet (Figure 2.3). In this case,
one uses the electric potential, and the source and image coalesce to double the
effective source term. The electric potential for the half-space problem is therefore

F =
e

2p E
s

Ms (s ′ )
e−jk0R

R
ds ′ (2.11)

=
e

2p E
s

−ẑxE(s ′ )
e−jk0R

R
ds ′

The radiation from more complex structures can also be evaluated using the
potential functions, as can the mutual coupling between antenna array elements
(Chapter 6). The image principle is one way of constructing solutions to the inhomo-
geneous vector Helmholtz equations that define the magnetic and electric potentials
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Figure 2.3 Radiation from an aperture in a conducting screen.

for half-space radiation over a perfectly conducting ground screen. In the more
general case, one can use the inhomogeneous equations

X=2 + k2
0CF = −eM (2.12)

X=2 + k2
0CA = −mJ (2.13)

for magnetic and electric sources, along with the requisite boundary conditions. A
description of the use of vector and dyadic Green’s functions in the solution of
inhomogeneous Helmholtz equations is given in [2, 3]. These methods are used to
analyze structures in Chapter 6.

Far-Zone Fields in Terms of Radiation Integrals

Figures 2.1 and 2.2 show elements at generalized locations. The integrals of (1.1)
and (1.11) are taken over the primed coordinates. In Chapter 1, it is shown that
the form of these equations can be simplified if the receiving point is very far from
the array. Using vector notation and denoting the source position at the location
r ′ and the receiving point at r, one can then write the distance R as

R = |r − r ′ | ≈ R0 − r ′ ? r̂ (2.14)

where the unit vector r̂ is in the direction of the receiving point r, and the distance
R0 is measured from the center of the coordinate system (usually chosen as the
center of the array).

Using the above, one can write the approximate expression (below), which
simplifies the potential function integrals considerably, since R0 is a constant and
can be removed from the integrals.
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e−jk0R

R
≈

e−jk0Rejk0 (r′ ? r̂)

R0
(2.15)

The radial components of F and A are zero (decay faster than 1/R) in the far
zone, and the far-zone fields can be given by [4]

EA = −jvAT (2.16)

HA = −
jv
h

r̂xAT

HF = −jvFT (2.17)

EF = jvh r̂xFT

where h = (m /e)1/2 is the characteristic impedance of the medium, and the subscript
T means only transverse components of A and F need be considered.

2.1.2 Element Pattern Effects, Mutual Coupling, Gain Computed from
Element Patterns

The array gain is related to the gain of the individual elements in the array, as will
be shown later. However, the gain of an isolated element may be very different
from the gain of the same element in the presence of the rest of the array. In
addition, the element patterns and gain vary across the array with the elements
near the edge behaving quite unlike those near the center. This behavior is due to
the electromagnetic coupling between elements and can result in more or less
element gain in the array environment than when isolated.

Figure 2.4 illustrates the coupling of a single excited element with all others
terminated in matched loads. The actual radiated pattern is formed by the directed
radiation from the excited element combined with reradiated fields from all of the
elements illuminated by the radiation from the excited element. Depending on
element gain and spacing, the radiation pattern of a low-gain element can be
substantially narrowed by the interaction, but if a large array is composed of high-
gain elements, then the element gain is decreased from the isolated element gain
in order to limit the maximum area gain to no more than 4pA /l2.

Figure 2.4 Coupling between array elements.



2.1 Array Analysis 69

Following this introduction, it should be clear that the actual element gain is
usually not known. It is found as the result of a detailed calculation involving the
most fundamental electromagnetic analysis. This mutual coupling is discussed in
Chapter 6. In the following sections, it is assumed that such coupling exists and
can be measured or computed to completely describe the array. The sections present
an alternative description of the array in terms of element patterns, the patterns
of elements embedded in the array environment. This description is fully equivalent
to and embodies all of the physics in the array model with mutual coupling.

Element Patterns and Mutual Coupling

The complex subject of mutual coupling and array element patterns should be
introduced in the simplest of terms. Consider an array of small waveguide-fed
apertures, as shown in Figure 2.5, with apertures located in the plane z = 0, but
otherwise arbitrarily located. The aperture field of every element will be assumed
to have the same distribution, namely that of the exciting waveguide, a linearly
polarized TE10 mode. For the m th element, located with center at xm , ym , the
tangential aperture field is:

ET(xm′ , ym′ , zm′ ) = ŷAme10(x ′, y ′ ) (2.18)

where the function e10 is the spatial distribution of electric field in the aperture
with coordinates (x ′, y ′, 0). In the far field, the radiation of the m th element is
written in the following compact form using (2.5) and (2.11):

Em =
jk0
2p

e−jk0R0

R0
∑
m
Edsm′ [cos u ET (xm′ , ym′ ) − ẑr̂ ? ET (xm′ , ym′ )]e jk (r′m ? r̂)

(2.19)

where rm′ = x̂xm′ + ŷym′ and xm′ = xm + x ′; ym′ = ym + y ′.
The constant Am is the complex amplitude of the tangential aperture field.

This term contains not only the applied field at the antenna aperture, but also the

Figure 2.5 Scattering matrix representation for interelement coupling of waveguide apertures.
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field due to the reflected signal at the aperture and the field induced in the aperture
by other array elements. In this case, the entire radiation and interelement coupling
behavior for an N-element array is specified in terms of an N-by-N element scatter-
ing matrix that relates the various transmitted incident and reflected fields at each
element.

When all of the elements of the array are excited by incident signals am that
one might associate as the voltage of the incident waveguide fields, the reflected
signals bm at each terminal are given in terms of a conventional scattering matrix
formalism [5], as indicated schematically in Figure 2.5. For each element of the
array,

[b] = {S} [a] (2.20)

where the column matrix [a] is the incident signal vector and the column matrix
[b] is the vector of reflected signals. The tangential field is given by the sum of
incident and reflected fields evaluated at the aperture. The constant Am is therefore
the sum of incident and reflected signal amplitudes given by

Am = Sam + ∑SmnanD (2.21)

and the radiated field of the array is

E(r) =
jk0
2p

e−jk0R0

R0
[ŷ cos u − ẑv ]c0 ∑g(m )Sam + ∑SmnanD (2.22)

where

g(m) = e−jk0 (r′m ? r̂)

and

c0 = Ee10(x ′, y ′ )e+jk0 (ux ′ + vy ′ ) dSm′

The factor

fi (u, f ) = [ŷ cos u − ẑv ]c0 = [û sin f + f̂ cos u cos f ]c0 (2.23)

is the pattern of an isolated element and is polarized transverse to the radial
direction. This equation supports two alternative views of array radiation. The
following paragraphs illustrate these two perspectives.

The first of these alternatives sees each element from a circuit point of view,
with incident signals coupling to all array elements as indicated in (2.22). From
this mutual impedance perspective, each element is considered to radiate separately,
based on its aperture field ET . In order to maintain a desired radiation pattern,
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one must control all the aperture fields as a function of scan. As the array is
scanned, the array mismatch increases (assuming it is matched at broadside), and
the aperture fields at any given element do not change in proportion to the incident
signal, because the reflection coefficient is scan-dependent. The array control task
is here seen as that of specifying the correct incident fields to produce the desired
aperture fields in the mutually coupled environment.

Rearranging this expression emphasizes the nature of the element pattern in a
scanned array and illustrates the alternative point of view which describes array
scan phenomena. From the perspective of the element pattern, each element is
excited with all other elements terminated in matched loads. The resulting pattern
fm (u, f ) is the element pattern of that element. The element pattern does not
change with scan, but includes all interelement coupling for all scan angles. For
elements in a finite array, the radiated field is given by

E(r) =
jk0
2p

e−jk0R0

R0
fi ∑am gmF1 + ∑Smn

gn
gm
G (2.24)

=
jk0
2p

e−jk0

R0
∑am gm fm (u, f )

where

fm (u, f ) = fi (u, f )F1 + ∑Smn
gn
gm
G

This expression shows the far field written as the sum of element excitation
coefficients am multiplied by the time-delay factor gm and an element pattern fm (u,
f ), which is now different for each element. The fm (u, f ) has a term representing
radiation from the excited element and a sum of terms to account for radiation
from all of the other elements with phase centers at positions across the array,
hence the term gn /gm , multiplying the scattering coefficients Snm . The basic array
element field pattern is thus the product of the isolated element pattern and a space
factor, which accounts for all of the other coupled elements. Some of the mutually
coupled terms can produce very angle-sensitive changes to the element patterns,
resulting in rippled and distorted patterns with strong frequency dependence. The
element patterns for centrally located elements of a large array tend to be very
similar, while the ones near the array edges are distorted and asymmetrical. This
distortion limits the sidelobe level that can be maintained if the various elements
are excited with some predetermined illumination. Figure 2.6 shows element pat-
terns and reflection coefficients of the center element in several small arrays of
parallel plate waveguides. These data, due to Wu [6], illustrate substantial changes
due to mutual coupling as a function of the number of array elements N.

Historically, the most significant use of element patterns has been to experimen-
tally verify the scan behavior of particular elements in test arrays. This is done [7]
by building an array of sufficient length (10l to 20l or more on a side) and to
terminate all but one element in matched loads. The resulting measured radiated
pattern of a central element is the approximate element pattern of the scanned
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Figure 2.6 (a) Element pattern P(u ) and reflection coefficient R of center element in unloaded
waveguide array [bl = a/l = 0.4]: radiation patterns. (b) Element pattern P(u ) and
reflection coefficient R of center element in unloaded waveguide array [bl = a/l = 0.4]:
reflection coefficients. (From: [6].  1970 IEEE. Reprinted with permission.)
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array, and the patterns of edge elements likewise approximate the patterns near
the edge of a larger array.

Throughout the rest of Chapter 2, it is assumed that all element patterns in
the array are identical. However, in Chapter 3 it is shown that by using the
calculated or measured element patterns it is possible to synthesize low-sidelobe
patterns, even in the presence of mutual coupling. Alternatively, if the elements can
be assumed to each support the same current distribution (single-mode assumption),
then one can always perform the synthesis and solve for the required source voltages
using the mutual impedance matrix.

Gain Computed from Element Patterns (for Large Array)

Although the element gain may vary across the array, many of the central elements
of a large array have the same gain and element patterns. For such a large array,
one can obtain a good approximation of the array gain by assuming that all element
patterns are the same. In this case, the gain for each element is

g n
E (u, f ) =

4pR2

P n
E

S n
E (u, f ) (2.25)

where S n
E (u, f ) is the radiated power density of the n th element at the distance R

from the array, and P n
E is the power input to the n th element (note that this power

also includes that which is lost in the feed network). If the element is matched,
this normalized power input is proportional to the square of the input signals, or
(in a normalized form)

P n
E = |an |2 (2.26)

and the input power for the whole array is given by the sum of the excitation
coefficients at each element.

Pin = ∑
n

P n
E (2.27)

= ∑|an |2

where the coefficients an represent voltages, currents, or incident wave amplitude.
The far field for any input signal an is proportional to

[S n
E (u, f )]1/2 =

g 1/2
E (u, f )

[4pR2]1/2 an (2.28)

Assuming that the excitation is chosen with a progressive phase to scan the
beam, the fields add directly at the peak. The array far-field power pattern at the
beam peak (u0 , f0) is
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S(u0 , f0) = F∑ [S n
E (u0 , f0)]1/2G2

(2.29)

=
1

4pR2 H∑ [g n
E (u, f )]1/2 |an |J2

and so the realized array gain is

G =
4pR2S(u0 , f0)

Pin
(2.30)

= gE (u0 , f0)
H∑|an |J2

∑|an |2

This expression, due to Allen [8], can be extremely useful for any large array,
whether linear or planar, because it allows gain to be computed directly from the
array excitation coefficients. It is strictly correct only if the embedded element
power pattern is known and the array is large enough for most element patterns
to be the same. Care must always be taken to use the embedded element pattern
gain, not that of the isolated element pattern. Since the use of this expression
implies that all element patterns are the same, it is more correct for elements whose
pattern shape does not change much when embedded in an array (like dipoles or
slots spaced l /2 apart), and less correct for high-gain elements, whose gain is
significantly altered in the array environment and so changes across the array, or
for small arrays in which edge effects dominate.

Equation (2.30) can be written for the unmatched case by incorporating the
reflection loss into the element gain and substituting GR and ge

R for G and ge .
An approximate expression for taper efficiency is also derivable from (2.30),

since it shows the maximum array gain as N times the element gain, and so the
realized array gain can be written as

GR = NgE (u0 , f0)eT (2.31)

where the taper efficiency eT is thus

eT =
|∑an |2

N∑|an |2
(2.32)

for N, the total number of elements in the array.
This definition of taper efficiency extends the definition of column array gain

for omnidirectional elements spaced l /2 apart, as given in (1.65) in Chapter 1, to
full two-dimensional arrays with arbitrary elements (subject to the large-array
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approximation). The expression is written in terms of gain rather than directivity
because it is usually used with measured element gain patterns that include losses.
The terms taper efficiency and aperture efficiency are often used interchangeably,
but (1.12) is the fundamental definition of aperture efficiency, while taper efficiency
(as used earlier) is an approximation for the large array case and implies that all
elements have the same element gain. In the case of (1.67), the taper efficiency is
for linear arrays of isotropic elements with half-wave spacing.

The relationship of (2.30) also leads to an expression for the scan dependence
of the element pattern. Using (1.69) and the relationship between directivity and
realized gain, one obtains (with G the network reflection coefficient)

GR = D0eL (1 − |G |2) (2.33)

GR =
4pAeN

l2 (1 − |G |2)eAeL cos(u ) = NgR
e (u0 , f0)eA

So the element realized gain (element pattern) is given by

gR
e (u0 , f0) =

4p

l2 Ae eL (1 − |G |2) cos u0 (2.34)

It is important to bear in mind that this definition assumes a very large array
with a periodic lattice, so that essentially all of the array element patterns are the
same, the taper efficiency is the aperture efficiency, and the array spacing is such
that no grating lobes radiate.

Unlike most of the definitions of gain and directivity used in this chapter, the
realized element gain above is an aperture gain and assumes that the aperture
radiates into a half space. The directivity formulas of Section 2.2.1 assume that
the radiation occurs into both half spaces, and so for any beam at angle u there
is another symmetrical beam below the horizontal plane. Other definitions of array
directivity are introduced in the following sections.

2.2 Characteristics of Linear and Planar Arrays

2.2.1 Linear Array Characteristics

Comparison with Continuous Illumination

It is often convenient to model the discrete array as the limiting case of a continuous
aperture illumination. This is a convenient model because some of the most useful
synthesis procedures are those developed for continuous apertures, where the analy-
sis is more readily tractable. The normalized broadside radiation patterns of both
a uniformly illuminated N-element array and a line source of length L are given
below.
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Linear Array

f (u ) =
sin(Npdx u /l )
N sin(pdx u /l )

(2.35)

Line Source

f (u ) =
sin(Lpu /l )

Lpu /l
(2.36)

For arrays of more than a few elements, these two patterns are very similar for
small values of the argument. The array length is taken as (Ndx ). Figure 2.7(a)
[9] shows radiation patterns for a continuous line source of length 4l and an eight-
element array of l /2-spaced elements with uniform illumination. The line source
pattern differs very little from the array up to the second sidelobe, and the null
positions are unchanged.

Figure 2.7(b) [9] shows the patterns of a continuous line source of length 32l ,
an array of 64 elements spaced l /2 apart, and an array of 8 elements spaced 4l
apart. The patterns have nearly identical beamwidths and are very similar through
the first few sidelobes. Comparison with the 4l -spaced array shows that the similar-
ity pertains about halfway to the grating lobe, and the deviations begin to occur
because the pattern repeats with period l /dx = 0.5 in the sin u parameter.

Pattern Characteristics and Directivity Formulas for Linear Arrays

A broadside linear array of isotropic elements has a very wide pattern in the plane
orthogonal to the array axis and a narrow pattern in the plane that includes the
array axis. This type of pattern is termed a fan beam, with reference to its appearance
in Figure 2.8(a), which shows the broadside and scanned patterns.

As the array is scanned, the linear array fan beam pattern takes on the conical
shape shown, which can lead to significant ambiguity if the pattern were used for
radar tracking.

The f dependence of the elevation angle u for a beam at frequency f0 , scanned
to (u0 , 0), is readily obtained from (1.56), in which the beam peak is evidently at

u = sin u cos f = sin u0

so

sin u =
sin u0
cos f

(2.37)

Figure 2.8(b) is a plot of this relationship for an array scanned to the various
u angles to 60°, showing the beam peak contour curving as a function of scan
angle u0 . An array with a narrow beam in f does not have a significant curvature,
but a broad beam will have its peak extending over a significant conical region as
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Figure 2.7 Line source patterns and array patterns: (a) patterns of 4l line source and 8-element
array with l/2 spacing; and (b) patterns of uniformly illuminated 64-element array with
0.5l spacing, 32l line source, and 8-element array with 4l spacing.
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Figure 2.8 Beam shape for scanned fan beam and pencil beam arrays: (a) beam shape versus scan
angle for fan beam (linear array) antenna; (b) beam peak contours near endfire; and
(c) beam shape versus scan position for a pencil beam. (From: [10].  1985 Peninsula
Publishing Company. Reprinted with permission.)

shown in the lowest curve of Figure 2.8(b). Figure 2.8(c) illustrates the way a
slightly elliptical beam projects in several directions of scan.

In general, the directivity of a linear array of realistic element patterns can only
be obtained by integration. However, for the case of omnidirectional and certain
other simple element patterns, the directivity can be integrated in closed form.

To perform the integration to compute directivity, the array of Figure 2.9 is
oriented with element centers at z = nd (so the f integrals are uncoupled). In this
coordiate system, the array pattern of equally spaced isotropic elements is
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Figure 2.8 (Continued.)

E(u, f ) = ∑|an | exp{ jk[nd(cos u − cos u0)]} (2.38)

The array is scanned to some angle u0 , measured from endfire, as indicated
in the equation, but because of the array orientation, u0 is the complement of the
usual scan angle measured from broadside.

For omnidirectional elements, directivity is readily integrated and reduced to

D =
H∑

n
|an |J2

∑
n

∑
m

|an | |am | exp[−jkd(n − m) cos u0] sinc[kd(n − m)]
(2.39)

where sinc(x) = sin x /x.
Several special cases of the above are particularly revealing. At broadside, the

directivity of this tapered array of isotropic elements reduces to the expression:

D =
|∑an |2

∑∑|am | |an | sinc[(n − m)kd ]
(2.40)

Figure 2.9(b) shows the dependence of directivity on the spacing d for a uni-
formly illuminated array (dashed curve) and an array with excitation coefficients
chosen to optimize directivity. For spacings larger than about l /2, the optimum
and uniform array directivities are nearly identical. The reduced directivity near
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Figure 2.9 Directivity of an array of omnidirectional elements: (a) array geometry; and (b) array
directivity for a 10-element array. (From: [11].  1964 IEEE. Reprinted with permission.)

d /l = 1 is a result of grating lobes entering real space. These curves also reveal
that the pattern has the same value for d any multiple of l /2. For such spacings,
the directivity becomes

D =
H∑|an |J2

∑|an |2
(2.41)

This relationship is fully general as long as the elements radiate isotropically
and does not imply any particular distribution. A given, well-tapered illumination
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with controlled sidelobes may have directivity D, but rearranging the element
excitations in any order would leave the directivity unchanged, even though the
sidelobe structure is severely distorted. The linear relation evident for spacing less
than l /2 leads to the simple relationship given in (1.66) and due to King [12]:

D = [2d /l ]eT N (2.42)

In the case of a scanned array, the double summation of (2.39) is reduced when
all the elements are excited equally. To understand this, let n and m run from
1 to N and substitute P for n − m in (2.39). Tabulating these terms p in the matrix
below shows a diagonal symmetry.

m
1 2 3 . . . N

1 0 −1 −2 . . . −(N − 1)

2 1 0 −1 . . . −(N − 2)

3 2 1 0 . . . −(N − 3)

n 4 3 2 1 . . . −(N − 4)

. . . . . . . −(N − 5)

. . . . . . . −(N − 6)

N (N − 1) (N − 2) . . . . 0

The previous double summation adds terms with the above values of p by
summing N rows of N columns. However, the matrix has odd symmetry about
the diagonal and all terms equal in any minor diagonal. Thus, one can combine
terms using this symmetry. The resulting summation (as long as all amplitudes are
equal) is given [13]:

D =
N2

N + 2 ∑
N −1

n =1
(N − n) sinc(nkd ) cos(nkd cos u0)

(2.43)

This result shows that if the array spacing d /l = 0.5, 1.0, 1.5, . . . , the directivity
is equal to the number of elements N, independent of the angle of scan. This
result, which promises a directivity invariance with scan, is the result of assuming
omnidirectional element patterns. The constant directivity is due to the real-space
imaginary space boundary (u2 + v2 ≤ 1). This causes a narrowing of the pattern
in the plane orthogonal to scan as the array scan angle approaches endfire. The
use of elements with narrower beams in the plane orthogonal to scan would thus
lead to directivity that falls off more severely, as will be described in a later section.
Furthermore, although the directivity may be constant, the gain varies with the
array reflection coefficient and so generally tends to decrease with scan if the array
is matched at broadside.

The directivity formulas given above are for omnidirectional elements. Hansen
[14] also gives convenient formulas for several fundamental elements, including
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the broadside directivity of short dipoles and half-wave dipoles (or slots). These
equations are not included here because of their availability and because they are
ultimately based on isolated element patterns.

One can obtain more general formulas for directivity in a manner similar to
that done for generalized element patterns, but based on the self- and mutual-
resistance of the array elements. In general, using the peak far fields E0 and H0
and the average power radiated at some distance R0 the directivity is written

D =
2pR2E0H0

*

Prad
=

R2E 2
0

60Prad
(2.44)

since |H0 | = |E0 | (120p ).
When the coupling can be described in terms of single mutual impedance terms

between elements (i.e., when higher order effects can be neglected), the denominator
term can be evaluated by circuit relations that include all mutual coupling terms
in the N-by-N matrix.

Prad =
1
2 ∑

n
Re[InVn*] (2.45)

=
1
2 ∑

n
In ∑

m
Im* Rnm

This expression is fully general, and what remains is to evaluate the peak far
field E0 in terms of the element current. Hansen [13] uses the relationship for an
array of half-wave dipoles at broadside:

E0 =
60
R0

∑
N

n =1
In (2.46)

and in this case the directivity becomes

D =
120F∑InG2

∑
n

∑
m

In Im Rnm

(2.47)

For an array of half-wave dipoles [14, 15] with uniform illumination:

D =
120N2

∑
N

n =1
∑
N

m =1
Rnm

=
120N

R00 +
2
N ∑

N −1

n =1
(N − n)Rn

(2.48)

In this expression, R00 is the element self-resistance and Rnm is the mutual resistance
between the m th and n th elements. The reduction from double to single summation
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noted in the above is accomplished as explained for (2.43). This result, like the
others in this section, pertains to arrays in free space. In the case of slots in a half
space, the directivity is doubled.

Optimum Directivity and Superdirectivity for Linear Arrays

The uniformly illuminated, constant phase excitation of linear array antennas gives
near-optimum directivity for most arrays. However, higher values of directivity
can be obtained for certain nonuniform phase distributions. This phenomenon,
called supergain, or more properly superdirectivity, has been well understood for
many years and is clearly explained in Hansen [15, 16]. Superdirectivity is produced
using rapid phase variations across an array of closely spaced elements. Unfortu-
nately, the higher directivity results from an interference process, and only the
sidelobes are in real space, with the pattern main beam in or partly in ‘‘invisible
space’’ (sin u > 1). The resulting ratio of stored-to-radiated energy (Q) is extremely
high, and so the circuit bandwidth is very small. Furthermore, since the radiation
resistance is very low, the efficiency is poor and the antenna noise temperature is
high in the presence of losses due to finite antenna and matching network conductiv-
ity. Since the high directivity depends on cancellation of the contributions from all
the array currents, superdirective array behavior is dependent on highly accurate
current determination, and small errors in array excitation can destroy the proper-
ties of superdirective arrays.

The above comments were qualitative, not quantitative, but it is the degree of
superconductivity that determines the ultimate practicality of the synthesis. Tai
[11], in his paper on optimum directivity of linear arrays, shows the onset of
superdirectivity to occur when the element spacings are less than l /2. When the
element spacing is greater than l /2 , broadside arrays have their maximum gain
approximately equal to the gain for the uniformly illuminated array. As the element
spacings are further decreased and the optimum directivity sought, the degree of
superdirectivity is increased. Small degrees of superdirectivity are achievable and
practical in single small elements or endfire arrays (the Hansen-Woodyard [17]
condition is an example), or for small, closely spaced arrays [11]. There have, in fact,
been very practical applications of superdirectivity combined with superconductive
antenna matching networks to improve circuit efficiency.

As the degree of superdirectivity is increased, so is the degree of difficulty in
practically implementing the synthesis. Hansen quotes the data of Yaru [18], who
studied a nine-element Chebyshev array with l /32 spacing between elements. The
required tolerance for maintaining the designed −26-dB sidelobes was one part in
1010. Hansen [14] lists other examples, including the extensive results of Bloch,
Medhurst, and Pool [19].

In all, it appears that superdirectivity is an interesting phenomenon, which can
be exploited to a small degree. There is new interest and excitement in using high-
temperature superconductivity to decrease the losses in superdirective arrays, and
that may open further possible uses, especially for small- to medium-gain arrays.
However, there remain the issues of high Q (limited bandwidth), difficult impedance
matching, and very high required precision for superdirective arrays that will
continue to limit the general use of this phenomenon. The synthesis topics discussed
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in Chapter 3 will assume that spacings are approximately l /2 and will therefore
exclude superdirective geometries.

2.2.2 Planar Array Characteristics

Pattern Characteristics and Grating Lobes/Array Grid Selection

A moderate- or large-size planar array of dimensions Lx and Ly , with uniform
illumination, has beamwidths of 0.886l /Lx and 0.886l /Ly . In the principal planes
(f = 0 and f = p /2), the patterns are the same as for a linear array aligned with
the scan plane. If Lx = Ly for a beam at broadside, the beam shape at the −3-dB
contour is approximately circular, and this is often termed a pencil beam. For Lx
not equal to Ly , the −3-dB contour becomes an approximate ellipse, as shown in
Figure 2.8(c).

The scanned planar array pattern also exhibits some distortion with scan, as
indicated in Figure 2.8(c), but if both beamwidths are kept narrow, the angle
ambiguity is much smaller than for the linear array.

Equation (1.59) gives the pattern of a planar array of equally spaced elements
arrayed in a rectangular grid. The grating lobe structure for this array is given in
that section also.

It is often advantageous to choose an alternate grid location with elements
arranged in a triangular lattice, as shown in Figure 2.10. In this case, the elements
are located at positions (xm , yn ), where

yn = ndy and xm = mdx for n even

xm = (m + 0.5)dx for n odd

The grating lobe lattice for this triangular grid is shown in Figure 2.10, and
the lobe positions are given by

up = u0 + pl /dx :vq = v0 + ql /dy for p = 0, ±2, ±4, . . . (2.49)

= v0 + (q − 0.5)l /dy for p = ±1, ±3, ±5, . . .

Other grid selections can lead to reduction of specific grating lobes within the
scan sector. One extreme of this is indicated in Figure 2.11, where all the rows of
the array are displaced by different distances Dn . In this case, the array factor is
given by

E(u, f ) = ∑
m

∑
n

|amn | exp{ j[(mdx + Dn )k(u − u0) + ndy k(v − v0)]}

(2.50)

If the amplitude distribution amn is chosen as being separable, then the array
factor is

E(u, f ) = H∑bm exp{ jk[mdx (u − u0)]}JH∑cn exp{ jk[(v − v0)ndy + Dn (u − u0)]}J
= f(u)g(u, v) (2.51)
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Figure 2.10 Geometry and grating lobe lattice of a triangular grid array.

In this form, it is clear that the sum over bm is unchanged by the row displace-
ments, but the sum over the rows cn is significantly altered by the exponential
factor that includes the displacements Dn , and the array factor is not separable.
The triangular grid, which is discussed above, has the displacements

Dn = (0, dx /2, 0, dx /2, . . . )

For a uniform array, the array factor is different for the various up locations.
For p = ±1, ±3, ±5, and so on, the pattern shape is

g(up , v) =
1

Ny

sin[Ny p (v − v0)dy /l ]
cos[p (v − v0)dy /l ]

(2.52)

This pattern has a zero at v = v0 and an asymmetrical distribution in v − v0 , with
principal maxima of unity (grating lobes) at (v − v0) = 0.5 + ql /dy , and so produces
the grating lobes at locations indicated above and in Figure 2.10.

At the grating lobes p = ±2, ±4, . . . , the summation becomes

g(up , v) =
1

Ny

sin[Ny p (v − v0)dy /l ]
sin[p (v − v0)dy /l ]

(2.53)
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Figure 2.11 Array grating with displaced rows.
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which again is the same distribution [see (1.66)] as for uniform with Dn = 0 and
offers no grating lobe suppression.

The triangular grid distribution thus suppresses the grating lobes with p odd
in one sector of space by splitting them each into two lobes and moving each out
to a relatively wide angle, where they are reduced by the element pattern. The
distribution does not alter the even grating lobes at all.

It is possible to choose other displacements that suppress grating lobes in
various regions of space, and this may be important for certain applications. Several
examples of such a choice are given in [20]. The best example of such selective
suppression is the triangular grid considered earlier, which suppresses those grating
lobes along the ridge (up , v) for p odd, but does not suppress those for p even.
This structure is advantageous because in most conventional arrays the elements
are spaced between 0.5l and l apart, so the grating lobes adjacent to the main
beam (p = ±1) are most significant. However, if the array element spacings are
much larger, so that many grating lobes are allowed to radiate, then by using
a random displacement Dn , one can still obtain good grating lobe suppression
everywhere, except along the ridge that includes the main beam (u = u0). One can
show [20] that, in general, although the peak grating lobes can be reduced, the
average power in the grating lobes is a constant. Consider the integral of the power
within the region −0.5 ≤ (v − v0)dy /l ≤ 0.5. After normalizing the total power to
the power at the peak of the main beam, one obtains for the normalized power
per unit length in (dy /l )(v − v0) space:

Pavg =

∑
Ny

n =1
|cn |2

| ∑
Ny

n =1
cn |2

(2.54)

independent of the Dn . For uniform illumination in the y-direction, this suppression
is the factor 1/Ny . Although it may be possible to choose the Dn displacements so
as to reduce the peak value of the grating lobe throughout the region specified,
the average value will remain constant at that level for an array with Ny rows.
For an array with uniform distribution in the y-direction ( |cn | = 1), one can thus
obtain the maximum of about 9-dB suppression of the peak lobes for an array of
8 rows, 12 dB for an array of 16 rows, and so on. The choice of a low-sidelobe
illumination in the y-direction reduces this suppression by the amount of the taper
efficiency.

This technique can be a significant advantage for certain types of limited scan
antennas, as will be described in Chapter 8.

Directivity Formulas for Planar Arrays

If the array average element pattern directivity is known, the directivity of a planar
array is given by (2.33):

D = Nde (u0 , f0)eT (2.55)
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where de is the average element directivity (gain divided by loss efficiency) and eT
is the taper efficiency.

A second expression pertains if elements are spaced to avoid grating lobes and
if the aperture efficiency is known. In this case, for a pencil beam antenna radiating
into a hemisphere (thus assuming a ground screen), one can use the area formula
[(1.69) repeated]

D =
4pA

l2 eA cos u (2.56)

to obtain the directivity. Then, if realized gain is desired, one can approximate the
scan loss for the average element using calculated mutual coupling parameters or
measured element patterns, or replace the cos u by scan loss according to cos u to
some power (see Figure 1.11).

Similarly, as in Chapter 1, one can use the half-power beamwidths for a pencil
beam antenna at any scan angle to estimate directivity using

D =
4p (0.886)2

ux3uy3
(2.57)

where the beamwidths are orthogonal and here given in radians. This expression
is equivalent to (1.67), where the angles are in degrees. This relation is approximate
and implies a degree of control over array average sidelobes. It has been found
accurate [21] for most pencil beam array distributions, including uniform, cosine
on a pedestal, and even Chebyshev distributions with sidelobes down to the level
where gain limitation sets in (see Chapter 3). In another convenient approximate
form, the directivity of a planar two-dimensional array with separable illuminations
can be written in terms of the directivities Dx , Dy of the illuminations that excite
its orthogonal planes [(1.70) repeated]:

D = KDx Dy (2.58)

In this expression, the linear array directivities Dx and Dy are the values for
omnidirectional elements.

Elliott [21] gives the constant K = p for the case of the maximum directivity
of an array over a ground plane (i.e., with hemispheric element patterns). For the
individual directivities Dx and Dy , Elliott uses the directivities of the column arrays
with isotropic element patterns and spacings l /2 ≤ dx , dy ≤ l to avoid supergain
or grating lobes. In this case, these directivities are given by Dx = 2Nx dx /l , and
(2.58) reduces to (1.70), where the cell area is dx dy .

An expression in terms of self- and mutual resistance is given by Hansen [22]:

D =
120H∑

m
∑
n

ImnJ2

∑
m

∑
n

∑
p

∑
q

Imn Ipq Rmnpq

(2.59)
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In this equation, each element has the double index mn, and Rmnpq is the
mutual resistance between the mn th and pq th elements. The relationship is valid
at broadside for arrays of small elements (slots or dipoles) spaced to eliminate
grating lobes.

Beyond the above expressions, a number of synthesis procedures for large
arrays are based on the near equivalence of the patterns of discrete arrays and
continuous aperture illuminations. In these cases, it is sometimes possible to obtain
a closed-form expression for the directivity or aperture efficiency. Among others,
this method has been used to derive aperture efficiency expressions for the Taylor
line source illuminations given later.

2.3 Scanning to Endfire

Equation (2.43) gives the directivity of a uniformly illuminated linear array of
isotropic elements for all scan angles, even scanned to endfire (u, f ) = (p /2, 0). In
order to scan to endfire, the element spacing should be less than l /2 so that no
grating lobe will enter real space at (p /2, p ). However, if the array is composed
of elements or subarrays (rows or columns) that are directive in the plane orthogonal
to scan, as in Figure 2.12, then the directivity of the two-dimensional array falls
off more severely with scan, and varies approximately like cos u. Since the array
is finite, the directivity is not zero at the horizon, but approaches a constant times
the square root of the array length.

An extremely convenient general (though approximate) formula can be
obtained from (2.57) relating beamwidth and directivity of pencil beam antennas.
The beamwidth of an array of length L = Nd in free space, with a perfectly
conducting ground screen and scanned to endfire, is obtained directly from
(1.62) by expanding the direction cosine u = sin u in a power series near the angle
u = p /2. Setting u = p /2 − Du and u = 1 − Du gives an expression for the beamwidth
Du in terms of Du as:

Du = [2Du]1/2 (2.60)

For an array over a ground screen, Du = 0.443Bbl /L , and so one obtains the
endfire beamwidth

u3 = [0.886Bb /(L /l )]1/2 (2.61)

Without the ground screen, the beamwidth is doubled.
For a planar array over a ground screen, the directivity can now be written

directly using the relationship between directivity and beamwidth (2.57) using the
broadside beamwidth for the length LT of the array in the plane orthogonal to
scan.

D =
4p (0.886Bb )1/2

BbT
(LT /l )(L /l )1/2 (2.62)
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Figure 2.12 Scanning to endfire: (a) array of directive elements; (b) beam shape near horizon;
and (c) conditions for Hansen-Woodyard endfire gain.

In this expression, BbT is the beam broadening factor in the transverse plane.
Though approximate, this result gives a value only 0.5 dB less than that obtained
from a direct integration [23].

One can obtain further narrowing of the beam and increased directivity by
scanning the array ‘‘beyond’’ endfire to values of the sin u parameter greater than
unity. Figure 2.12(b) shows a progression of scanned array factors as the array is
scanned toward endfire, at endfire, and beyond endfire. Only the main beam is
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shown to avoid confusion. The array factor is bidirectional, with even symmetry
about u = p /2. The solid curve shows the pattern scanned several beamwidths from
endfire, where the beamwidth is well defined and given by (1.62). The dashed
curve shows the beam scanned to less than one-half beamwidth from endfire, where
the beam for u0 < p /2 and that for u0 > p /2 have begun to merge, and the definition
of beamwidth is ambiguous. At u0 = p /2, both beams coincide and the beamwidth
is given by the equation above. If sin u0 is increased beyond unity, the peak of the
beam does not radiate and is said to be in ‘‘invisible’’ space, but what is left of
the main beam is narrowed and the directivity can increase beyond the normal
endfire value. The dotted curve represents this condition.

An early example of obtaining increased directivity by scanning beyond endfire
is known as the Hansen-Woodyard [17] condition. In this case, the array is scanned
beyond endfire to the angle

u0 = 1 +
2.94l

2p (N − 1)d
(2.63)

or by adding the additional phase lag d = 2.94/(n − 1) to the interelement phase
2pu0d /l .

The beam peak for a large array is at approximately

u0 = 1 + 0.468l /L (2.64)

The Hansen-Woodyard condition is depicted in Figure 2.12(c), where the
dashed part of the beam indicates that the beam is in imaginary space (sin u > 1).
One can estimate the 3-dB beamwidth for the uniformly illuminated case, since
the beam shape is then given by

F(u) =
sin[p (u − u0)L /l ]

p (u − u0)L /l
(2.65)

and at the actual peak u = 1 and u − u0 = −0.468l /L , F(1) = 0.677. At the 3-dB
point, F(u) is 0.478, and one can show that u − u0 = −0.619l /L , so the half
beamwidth in u-space is Du = 0.151l /L instead of 0.443l /L . This narrowed
beadwidth produces increased directivity and is a practical example of the super-
directivity discussed earlier.

Using (2.60), the beamwidth for the uniformly illuminated case (with no ground
screen) is

Du = 2[0.30l /L]1/2 (2.66)

which corresponds, upon using (2.57), to an increase in directivity of about 2.3 dB
relative to the endfire case.

The Hansen-Woodyard relation, which was derived for large arrays, does not
actually produce the optimum directivity, but in most cases has improved directivity
relative to that for ordinary endfire arrays. A useful comparison for a number of
uniformly excited arrays scanned beyond endfire is given by Ma [24].
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The above expressions describe the available endfire directivity. However, the
actual array gain is much less than the directivity, because most of the array
elements become substantially mismatched when the array is scanned to wide
angles. This mismatch is due to the cumulative effects of mutual coupling, which
are very severe at or near endfire. The definitive paper by King and Sandler [25]
shows examples of this phenomenon and reveals why scanning to endfire is
extremely inefficient. Studies have shown that it is necessary to tailor the feedline
impedance to optimally match an endfire antenna. Alternative techniques for excit-
ing efficient endfire radiation have been developed, but these are not phased array
approaches; rather they are surface wave antenna approaches and involve exciting
a passive slow wave structure with a single source [26, 27].

2.4 Thinned Arrays

A number of applications require a narrow scanned beam, but not commensurably
high antenna gain. Since the array beamwidth is related to the largest dimension
of the aperture, it is possible to remove many of the elements (or to ‘‘thin’’) an
array without significantly changing its beamwidth. The array gain will be reduced
in approximate proportion to the fraction of elements removed, because the gain
is related directly to the area of the illuminated aperture. This procedure can make
it possible to build a highly directive array with reduced gain for a fraction of the
cost of a filled array. The cost is further reduced by exciting the array with a
uniform illumination, thus saving the cost of a complex power divider network.

Typical applications for thinned arrays include satellite receiving antennas that
operate against a jamming environment, where the uplink power is adequate in
terms of signal-to-noise ratio in the absence of jamming. For this case, antenna
gain is of secondary value; only sidelobe suppression or adaptive nulling can counter
the jammer noise, and a narrow main beam can discriminate against jammers very
near to the main beam. A second application often satisfied by thinned arrays is
ground-based high-frequency radars, in which the received signal is dominated by
clutter and atmospheric noise. Here again, the emphasis is on processing and array
gain is of secondary value to the system. A third application, and one of the most
significant, is the design of interferometer arrays for radio astronomy. Here the
resolution is paramount, while gain is compensated by increased integration time.
For applications such as these, the goal of the antenna system is to produce high
resolution, so the array should be large, but not necessarily high gain.

Conventional closely spaced arrays have pattern characteristics that approach
those of continuous apertures as closely as desired and have directivity commensu-
rate with their area gain and aperture efficiency (4pA /l2)eA . Thinning the array
is always accompanied by pattern deterioration, although the characteristics of this
deterioration can be controlled by the method of thinning employed. Figure 1.12
shows an example of array thinning by using very wide spacings in a periodic array
and indicates very little beam broadening, but extremely high grating lobes. Periodic
thinning is thus seen to produce discrete high sidelobes. Sidelobe levels are also
increased for nonperiodic thinning algorithms, but in this case the peak sidelobe
level can be minimized.
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An excellent summary of developments in the theory of thinned arrays is given
by Lo [28]. In this reference, Lo reviews past works and points out that there is
no practical synthesis method for obtaining optimized solutions for large nonperiod-
ically or statistically thinned arrays. For small or moderate arrays, it can be conve-
nient to formulate the thinning procedure as a sidelobe minimization problem (see
[29–31]). These procedures do control both peak and average sidelobe levels, but
are numerically difficult to implement for large arrays.

The variety of statistical procedures for array thinning exert direct control
primarily on the average sidelobe level and can produce peak sidelobes for larger
than the average level. A paper by Steinberg [32] compares the peak sidelobes of
70 algorithmically designed aperiodic arrays with those of 170 random arrays. The
study showed that most techniques led to very similar average levels, although for
relatively small arrays the method of dynamic programming [33] was the most
successful procedure for control of peak sidelobe levels. Work using simulated
annealing [34] has shown some success at further reduction of sidelobes for small
thinned arrays.

Many thinning algorithms have been developed and applied to the design of
arrays. However, the bias of this text is to seek methods applicable to the design
of large arrays. For this purpose, the method of Skolnik et al. [35] is presented
because it is straightforward to implement for large arrays. In addition, studies by
Lo are summarized to state bounds on the operating parameters of arrays subject
to statistical thinning.

2.4.1 Average Patterns of Density-Tapered Arrays

Skolnik et al. [35] investigated a statistical thinning technique in which the density
of elements is made proportional to the amplitude of the aperture illumination of
a conventional filled array. The selection of element locations is done statistically
by choosing element weights as unity or zero with probabilities proportional to
the filled-array taper. The assumption made here is that the elements are regularly
(periodically) spaced, but whether they are excited or not depends on the results
of the statistical test. The filled-array pattern E0(u, f ) is given by

E0(u, f ) = ∑An exp( jFn ) (2.67)

where An is the amplitude weight for the filled array.
The pattern of the thinned array is given as

E(u, f ) = ∑Fn exp( jFn ) (2.68)

where Fn takes on the value zero or one, according to whether the n th element is
excited.

The probability of exciting a given element with unity excitation in any area
of the array is

P(Fn = 1) = K
An
A0

(2.69)

where A0 is the largest amplitude in the array.
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The thinning constant K is defined by Skolnik in the following way. If K is set
to unity and the above rule is used to approximate the average pattern of an array
with a given sidelobe level, then the array is said to be thinned by the ‘‘natural’’
degree of thinning. The average number of elements of the original N-element
array that remain excited are given by NE . If the array is further thinned so that
the total number of elements excited Nr is less than NE ,

Nr = KNE for K ≤ 1 (2.70)

and the probability rule (2.69) is used, then the resulting pattern is still an approxi-
mation of the desired pattern, but with the maximum probability density K instead
of unity and with higher sidelobes, as will be shown.

The resulting average field intensity (an ensemble average over many array
selections) is a constant times the pattern E0(u, f ) of the filled array:

E(u, f ) = KE0(u, f ) (2.71)

Skolnik showed that the average radiated power pattern is the sum of two
patterns; the first is the pattern of the filled array and the second is an average
pattern that is a constant value with no angle dependence.

|E(u, f ) |2 = K2 |E0(u, f ) |2 + K∑An (1 − KAn ) (2.72)

Since the far sidelobes of the filled array tend to be very low for most chosen
distributions, the average pattern dominates the sidelobe pattern at wide angles.
This average sidelobe level is given below, shown normalized to the pattern peak:

SL =
K∑An (1 − KAn )

∑|Fn |2
(2.73)

In the limit of a highly thinned array, the average sidelobe level is approximately
1/Nr .

The average array directivity for a large array is approximately equal to the
number of remaining elements times an element pattern directivity De , or

D = De ∑Fn = De Nr (2.74)

Figure 2.13(a) shows an array with elements arranged on a rectangular grid
but thinned to produce a low-sidelobe (−50 dB) pattern. Figure 2.13(b) shows the
desired Taylor (n = 8) [36] pattern for the filled array, and Figure 2.13(c) shows
a computed pattern for the statistically thinned pattern. The dashes in Figure 2.13(a)
indicate elements that have been removed. The array chosen has elements with l /2
grid locations occupying a circle with radius 25l and consisting of 7,845 elements
if filled. The average sidelobe level shown in Figure 2.13(c) exceeds the design
sidelobe, so clearly, in this example, the chosen sidelobe level was too low for the
array to synthesize. Section 2.4.3 gives data on directivity, EIRP, and sidelobe level
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Figure 2.13 Circular array with elements removed: (a) geometry (dashes show elements removed);
(b) desired Taylor pattern (filled array); and (c) thinned array pattern.
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for density-tapered arrays with one or a number of different quantized amplitude
levels.

The statistical procedure introduced above is readily applicable to the design
of large arrays, but it is only one of a number of approaches that have been
investigated. It is not optimum in that it does not ensure that peak sidelobes are
maintained below a given level.

2.4.2 Probabilistic Studies of Thinned Arrays

The studies of Lo [37] addressed the peak-sidelobe issue and showed that a statistical
description of these sidelobes is possible and yields useful bounds for array design.
Following Lo’s notation, a linear array of length a is excited by signals of equal
amplitude. The probability density function g(X ) is the probability of placing an
element at X, with |X | ≤ a /2.

E
a /2

−a /2

g(X ) dX = 1 (2.75)

If there are N equally excited elements within the aperture that are placed
according to the probability density g(X ), then for each set of random samples
[X1 , X2 , . . . , XN ] there is a pattern function

F(u) =
1
N ∑

N

n =1
exp( juxn ) (2.76)

where we have normalized the dimension x, so that

xn = 2Xn /a (2.77)

and u as defined by Lo is different from that used throughout this text, and is

u = ap (sin u − sin u0) (2.78)

for the main beam at the observation angle u0 .
In terms of this length normalization, the aperture extends from −1 to 1, and

g(x) = 0 for |x | > 1 (2.79)

E
1

−1

g(x) dx = 1

The major conclusions of Lo’s study will only be summarized here. The text
by Lo [28] contains many of the details in the original paper and is recommended
as a thorough and scholarly review of this material. Among other important points,
Lo showed the following:
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Mean Pattern

The mean of the pattern function F(u) is given as the Fourier transform of g(x):

f (u) = E{F(u)} = E
∞

−∞

g(x)e jux dx (2.80)

where the g(x) is a continuous function and E{. . .} is a probability average operator.
Note that this mean value f is equivalent to the average pattern of Skolnik et al.,
except that Skolnik sampled a discrete set of positions. Moreover, in this summary
of Lo’s work, the total number of elements is N, and this corresponds to Nr in
the above description of the Skolnik et al. study.

Variances Between Mean and Sample Patterns

Defining variances s 2
1 and s 2

2 as the mean of the squared difference between the
mean pattern and the pattern computed from (2.76) for both real (F1) and imaginary
(F2) parts, one obtains (since the mean pattern is real)

s 2
1 = Var F1(u) = E{[F1(u) − f (u)]2}

s 2
2 = Var F2(u) = E{[F2(u)]2}

Lo shows that outside of the main beam region, the variances of the real
and imaginary parts of the pattern are equal and approximately given by 1/2N,
independent of the probability density function. This significant conclusion implies
that although the pattern behavior in the main beam region is determined by g(x),
outside of the main beam area the variances are determined only by N, the number
of elements, not the probability density function g(x). Therefore, in many cases
(unless the near-in sidelobe level is of interest), it may be advantageous to use the
uniform density function for g(x) to maintain a narrow beam. As N increases,
however, the variances decrease, and F(u) approaches the mean pattern when the
variances are significantly less than the design sidelobe level. In these cases it may
be appropriate to use a nonuniform g(x). In general, one should only use a tapered
function g(x) if the value of the variances (1/2N ) is less than the desired mean
pattern sidelobes, or if only the first several sidelobes are of primary importance.

Peak Sidelobe

Another significant conclusion due to Lo has to do with specifying the highest
sidelobe in the visible pattern range. In this case, for a uniform probability density
function,

g(x) = 1/2 for |x | < 1 (2.81)

which thus satisfies the normalization criterion of (2.79). Lo obtained the probabil-
ity for a sidelobe level less than r. Outside of the main beam region, this is
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Pr { |F(u) | < r} = [1 − exp(−Nr2)] exp{[−4pN1/2r exp(−Nr2)](a2/12p )1/2}
(2.82)

Computer simulation by Agrawal and Lo [38] has verified this formula for an
array as small as 11 elements over an aperture of 5l to 10l .

For large numbers of elements, this reduces to

P{ |F(u) | < r} = [1 − 10−0.4343Nr2
][4a] (2.83)

where the bracket [4a] is the integer part of 4a.
This expression can be approximated and solved for the number of elements

N.

N =
−lnS−ln(P)

[4a] D
r2 (2.84)

This equation shows that unless the number of elements N is numerically on
the order of the sidelobe power r2, the probability of achieving a given sidelobe
level is very low. This similar dependence can be inferred from the variance data
previously mentioned. Figure 2.14 (from Lo [37]) is a plot of the above equation
and gives this critical number of elements versus the sidelobe level 20 log r for the
90% probability case. Figure 2.14 indicates that one needs very large arrays to
achieve low sidelobes, especially when considered in the light of decreasing directiv-
ity achieved with such highly thinned one-dimensional structures.

Figure 2.14 Number of elements required as a function of peak sidelobe level for various values
of a = 10q wavelengths with a 90% probability.
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Beamwidth

Lo [37] shows that for large arrays the beamwidth of the statistical array converges
to that of the mean pattern.

Directivity

The directivity D of a sample pattern function for a large array is related to the
directivity of the mean pattern D0 as

(D0 − D) dB ≤ 20 log10 X1 + d 1/2
avg / ||g(x) || C (2.85)

where

||g(x) ||2 = E
1

−1

|g(x) |2 dx (2.86)

and

davg = (average spacing) ∼ a /N

This expression says that the sample pattern for directivity D is less than D0 by a
quantity no greater than the term shown at the right above. As a corollary, two
arrays with identical distribution functions but different numbers of elements have
their directivities related by

(D1 − D2) dB = 10 log N1 /N2 (2.87)

or D is, with high probability, proportional to N.

Two-Dimensional Arrays

Lo’s results are extendable and more useful for two-dimensional arrays. If a rectan-
gular array dimension is ab with probability density function g(x, y), (2.82) and
(2.83) still give the relation between sidelobe level and total number of elements
N, except that [4a] in (2.83) is replaced by [16 ab]. Figure 2.14 is also directly
useful by writing a = 10q and b = 10p, and then the q in Figure 2.14 should be
replaced by (p + q) and the 90% probability replaced by (0.9)2, or approximately
80%. Or, indeed, one could redraw Figure 2.14 using (2.83) for the 90% proba-
bility.

2.4.3 Thinned Arrays with Quantized Amplitude Distributions

There may be advantages in the use of several discrete, quantized output power
levels for the array instead of a continuous taper. This discretization may be
appropriate, for example, in arrays of solid-state modules with output amplifiers
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operated in a saturated state. In such a situation, it is appropriate to arrange the
array into regions illuminated by each of the quantized weights and then to use
thinning to reduce the sidelobes that would be introduced if the quantization were
used alone. This array organization was addressed in [39, 40]. The values of average
parameters in the several included figures are due to Mailloux and Cohen [40].

Figure 2.15(a–c) shows the quantization of a circular array amplitude taper
and the array geometry in general. Added to the quantization is one of several
discretizing algorithms, indicated pictorially in Figure 2.16. The array is divided
into rings of radii r1 , r2 , r3 , . . . , with quantized voltage levels V1 , V2 , V3 , and
so on. The levels Vn were chosen to minimize the first few sidelobes of the pattern
of a quantized continuous aperture [Figure 2.16(b)].

With the algorithm called method 1, in any annulus rp − 1 < r < rp , the array
weights Fn are either Vp or reduced to zero according to the following rule.

The probability of assigning the weight Fn = Vp to an element at location rn
in the radial annulus rp − 1 ≤ r ≤ rp is given by

P(Fn = Vp ) = KAn /Vp (2.88)

where An is the amplitude of the ideal illumination at the n th element. Figure 2.17
shows an array with some of the elements left at the value Vp and others set to
zero. This ‘‘thinning’’ rule reduces to Skolnik’s when a single quantized level is
used.

With the algorithm called method 2, the array is not actually thinned (unless
K is less than unity). For K = 1, every element is excited, but the level of signal in
the annulus rp − 1 < r < rp is chosen to be either Vp or Vp + 1 according to the
probability rule below:

P(Fn = Vp ) =
K[An − Vp + 1]

Vp − Vp + 1
P(Fn = Vp + 1) =

K[Vp − An ]
Vp − Vp + 1

(2.89)

The average power patterns for arrays built according to these algorithms are
readily shown to consist of a term given by K2 times the ideal power pattern plus
an error term that is the average sidelobe level. Figure 2.17 shows the geometry
of an array filled according to the algorithm of method 1. The figure illustrates
that the probability rule forces a symmetrical quantization pattern denoted by
dashes that indicate use of the Vp level in an annulus rp − 1 < r < rp .

Figures 2.18 and 2.19 show the result of using these multiple-step discretization
rules. In these figures, the array input power is normalized to the total number of
elements N as

Pin = ∑F2
n

N
(2.90)

The average sidelobe level, normalized to the peak of the beam, is given by

SL =
PSL

S∑FnD2
(2.91)



2.4 Thinned Arrays 101

Figure 2.15 Array with quantized amplitude taper: (a) array amplitude taper A(x, y); (b) quantized
amplitude taper; and (c) array aperture and coordinates. (From: [40].  1991 IEEE.
Reprinted with permission.)

where the values of sidelobe power PSL are given by method 1:

PSL = ∑
p

Vp ∑
n ( p)

KAn [1 − kAn /Vp ] (2.92)

and method 2:
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Figure 2.16 Thinning and quantizing geometries: (a) ideal taper (dashed) and method 1 source
weight options; and (b) ideal taper (dashed) and method 2 source weight options.
(From: [40].  1991 IEEE. Reprinted with permission.)

PSL = ∑
p

∑
n ( p)

[KAn (Vp + Vp + 1) − VpVp + 1] − ∑
n

K2(An )2 (2.93)

The directivity for a thinned array can be computed in several ways, depending
on whether the element pattern directivity is known. If the array were not thinned,
if elements were placed l /2 apart, matched at broadside, tailored to have nearly
cosine scan dependencies, and if the array were large so that an average element
directivity could be assumed, then (2.30) would properly describe the directivity
using De = p :

D = De

F∑FnG2

∑F2
n

(2.94)

This expression is also valid if the array were thinned by simply not exciting
but properly terminating some elements of a periodic l /2 lattice to accomplish the
thinning. Such thinning leaves the element patterns unchanged.
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Figure 2.17 Distribution of nonexcited (thinned) elements for an array with three quantized steps.
(From: [40].  1991 IEEE. Reprinted with permission.)

If, however, the aperture is truly thinned by omitting elements (not just match
terminating them), then the element pattern directivity can be less than p and may
approach the result for nearly hemispherical element patterns with the directivity
of 2, depending on the isolated pattern directivity of the element in question.

One can also compute an average directivity for the thinned array radiating
into a half space using the basic definition of directivity and the power pattern.
The result is given below under the assumption of a constant sidelobe level SL
(implying a hemispherical element pattern)

D =
D0

1 +
1

2K2 D0SL
(2.95)

where SL = PSL /Pmax, and D0 is the directivity of the ideal pattern. K is defined
in Section 2.4.1. If a cosine element pattern were to be used, then the 2 in the
denominator of (2.95) above should be replaced by 4, and the results of using
(2.95) or (2.94) converge. In the above form, (2.95) is most appropriate for highly
thinned arrays (K < 1) or for use with method 1 with elements removed.
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Figure 2.18 (a) Input power, (b) directivity, and (c) average sidelobe level for method 1 (thinning
quantization). (From: [40].  1991 IEEE. Reprinted with permission.)

Figures 2.18 and 2.19 give the directivity, normalized input power, and average
sidelobe level for a circular planar array of (if filled) 7,845 elements and occupying
an area with radius 50l . The curves are given for one, two, four, and six quantiza-
tion levels. The axis at the right of the sidelobe and directivity figures is computed
directly, but the axes at the left are normalized to the number of elements in the
array, and so the results are applicable to different-size arrays. The asterisk at
several places gives the results using (2.94), while the circle near the same point is
the directivity evaluated from a direct pattern integration. The solid lines are
computed using (2.95).

These figures show a general increase in average sidelobe level as the design
sidelobe is lowered. Since there is little use in synthesizing a very-low-sidelobe
pattern with a thinned array that would have a higher average sidelobe level, Figure
2.20 gives the number of elements for which the design and average sidelobe levels
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Figure 2.19 (a) Input power, (b) directivity, and (c) average sidelobe level for method 2 (quantiza-
tion). (From: [40].  1991 IEEE. Reprinted with permission.)

are equal. These curves are readily generalized to maintain average sidelobes some
margin (of say 10 or 20 dB) below the design sidelobes by increasing the 10 log N
by the chosen margin. For an array with a single quantized level (p = 1), the
number of elements is seen as equal to the sidelobe level (r2 ≈ 1/Nr ).

The element numbers for a single quantized level (p = 1) on these curves should
display some similarity to the peak sidelobe data plotted by Lo [37] and given in
Figure 2.14, although Figure 2.14 is given for a linear array, and the two-
dimensional equivalent is for a rectanglar aperture. For example, taking the rectan-
gular aperture limit, with a = b = 44l , the q = log10 a and p + q = 3.29, for N
approximately 10,000 elements. For this case, Figure 2.14 gives a peak sidelobe
level of about −30 dB. Figure 2.20 gives the average sidelobe level (SL ) of approxi-
mately −40 dB, which is equal to 1/Ne . A brief look at Figure 2.14 confirms that
for arrays of up to thousands of elements, whether linear or planar, almost all of
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Figure 2.20 Number of array elements for average sidelobe level equal to design sidelobe level:
(a) method 1; and (b) method 2. (From: [40].  1991 IEEE. Reprinted with permission.)

the sidelobes are less than about 10 dB higher than the average sidelobe level
(1/Ne ).

In general, comparing all data for methods 1 and 2 shows that the technique
of method 2 results in significantly lower average sidelobes and higher directivity
for given design sidelobe levels than can be achieved by the quantized thinning
algorithm, method 1.
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C H A P T E R 3

Pattern Synthesis for Linear
and Planar Arrays

One of the major advantages of array antennas is that the array excitation can be
closely controlled to produce extremely-low-sidelobe patterns or very accurate
approximations of chosen radiation patterns. Many intricate procedures have been
developed for synthesizing useful array factors. These methods fit into three main
classes of synthesis: synthesis of various sector patterns that are usually many
beamwidths wide, synthesis of low-sidelobe, narrow-beam patterns, and procedures
that optimize some (usually receiving) array parameter, such as gain and signal-
to-noise ratio, subject to some constraint on the sidelobe level or the existence of
outside noise sources.

Most of the synthesis procedures described in the chapter are for narrow-beam,
low-sidelobe array factors. However, the Fourier transform method, the Woodward
synthesis technique, the alternative projection method, and power pattern synthesis
methods are very appropriate for the synthesis of shaped-beam patterns. The chap-
ters by Schell and Ishimaru [1], Ma [2], and Rhodes [3] present detailed treatments
of the synthesis problem. Such details are beyond the scope of this text, which is
devoted to the task of presenting specific results for practical design.

Throughout this chapter, the synthesis is carried out for arrays with broadside
beams, without loss of generality, because the scanned performance is obtained
from the broadside pattern by multiplying the excitation coefficients by the expo-
nential factor

exp[−jk(u0ndx + v0mdy )] (3.1)

for a two-dimensional array. Thus, replacing u by (u − u0) and v by (v − v0) will
produce the correct equations for the synthesis of beams scanned away from
broadside. This translation property ensures that array factors are unchanged with
scan, but does not necessarily ensure invariance of average pattern functions such
as signal-to-noise ratio or directivity.

3.1 Linear Arrays and Planar Arrays with Separable Distributions

3.1.1 Fourier Transform Method

Fourier series methods [4] can be applied to array synthesis problems. The pattern
function
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F(u) = ∑an e jkundx (3.2)

where the summation is performed over the range

−(N − 1)/2 ≤ n ≤ (N − 1)/2

and

n = ±1/2, ±3/2, ±5/2, . . . for N even

= 0, ±1, ±2, ±3, . . . for N odd

is a finite Fourier series and is periodic in u-space with the interval of the grating
lobe distance l /dx . Thus, given a desired pattern distribution F(u), one can obtain
an expression for the excitation coefficients an from orthogonality:

an =
dx
l E

l/(2dx )

−l/(2dx )

F(u)e−j(2p /l )undx du (3.3)

This method provides the least mean squared error approximation of the desired
pattern for dx ≥ 0.5l . If the spacing is closer, the domain of integration exceeds
the visible region and the definition of the pattern is not unique.

The Fourier series method is usually applied to the synthesis of shaped-beam
patterns that are wide compared to the minimum array beamwidth (l /L). The
example in Figure 3.1 shows two Fourier series approximations of the square-top

Figure 3.1 Fourier series synthesized representation of pulse-shaped pattern (solid curves for ideal
and pattern of 16-element array, dashed curve for 8-element array).
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pattern also shown in the figure. The two curves are for 8- and 16-element arrays
with l /2 spacing and show that the larger array provides a more accurate approxi-
mation of the desired pattern by reproducing steeper slopes to match the ideal
pattern.

3.1.2 Schelkunov’s (Schelkunoff’s) Form

A synthesis procedure developed by Schelkunov [5] makes use of the polynomial
form of the array factor and presents an insightful technique for pencil-beam pattern
synthesis. The array factor of (3.2) for a one-dimensional array can be written in
the form of a polynomial in the complex variable z, where

z(u) = exp( jkudx ) (3.4)

and the array polynomial is written

F(u) = ∑
N −1

n =0
an zn (3.5)

for excitation coefficients an at each element.
This form is a polynomial of degree N − 1, where N is the number of elements

in the array. The summation index range has been changed in the above to run
from zero to N − 1 in order to simplify the polynomial form. This does not change
the form of the array factor, but assumes the zero phase reference at an end element
instead of at the array center.

Since the polynomial is of degree (N − 1), it has (N − 1) zeros and may be
factored as

F(u) = aN −1(z − z1)(z − z2)(z − z3) . . . (z − zN −1) (3.6)

where the terms zn are the complex roots of the polynomial (as yet unspecified).
The magnitude of the array factor is thus

|F(u) | = |aN −1 | |z − z1 | |z − z2 | . . . |z − zN −1 | (3.7)

Although the zero locations zn are unknown in general, those that correspond
to real roots in the u-plane must all have magnitude unity, and so if plotted in
complex z-space (z = x + jy), they all occur on the unit circle shown in Figure 3.2.
The magnitude of the array factor, as observed from any point on the unit circle,
is the product of the lengths of the straight segments joining that point to the zeros
of the array factor.

The uniformly illuminated array has equally spaced zeros located at un =
(n /N )(l /dx ), and so at zn = exp[ j(2p /N )n], with the zero at n = 0 (corresponding
to the beam peak at u = 0) omitted, and in this special case the polynomial can be
written in the compact form
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Figure 3.2 Schelkunov unit circle representation of complex root locations for an 8-element uni-
formly illuminated array: (a) root locations (circles) and path limits (arrow) for positive
0 ≤ u ≤ 1 with l/4 spaced array; (b) path limit (arrow) for positive u (0 ≤ u ≤ 1) of
array with 3l/4 spacing; and (c) path limits (arrows) for array with 3l/4 spacing scanned
to u0; clockwise arrow for u0 ≤ u ≤ 1, counterclockwise arrow for −1 ≤ u ≤ u0.

F(u) =
zN − 1
z − 1

(3.8)

The polynomial representation provides a convenient tool for visualizing the
way pattern zeros and grating lobes occur. In the example above, the unit circle
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has fixed zeros at the zn given above, equally spaced around the unit circle and
indicated by the circle points. For positive values of scan angle, u varies from 0 to
1 and z varies between 1 (at u = 0) and exp[ jkdx ]. If that path crosses the zeros
at location zn , (3.8) shows that the pattern function F(u) has a null. Figure 3.2(a)
shows that for a uniform array of 8 elements with l /4 separation, the value of
z for 0 < u < 1 traces through only one quarter of the unit circle (from z = 1 at
u = 0 to z = exp[ jp /2] at u = 1). This path is indicated by the arrow. The x at
z = 1 indicates removal of the zero at that point. For 3l /4 spacing [Figure 3.2(b)],
the value of z traces through three-fourths of the unit circle for positive u. Although
the case of one wavelength is not shown, for l spacing, the z value traces through
the full 2p for positive or negative u and in fact reaches the grating lobe at
u = ±1.

If the array is scanned, one replaces u with u − u0 , z becomes exp[ jkdx (u −
u0)], and the unit circle is unchanged. The range of (u − u0) is not confined by
the limits of u (−1 ≤ u ≤ 1), but instead, for positive scan, the range of u − u0 is
−1 − u0 ≤ u − u0 ≤ 1 − u0 , and so the extent of the locus of z(u − u0) is reduced
in the positive direction and increased in the negative direction. Figure 3.2(c) depicts
this situation for an array with 3l /4 spacing. The counterclockwise arrow indicates
u varying from u0 to 1, while the clockwise arrow indicates the locus of z(u − u0)
as u varies from u0 to −1, passing through a grating lobe at u = u0 − l /dx or
z = −2p [zero locations have been omitted in Figure 3.2(c) for clarity].

These elements of intuition have led to detailed synthesis procedures as well
as iterative approaches to synthesize nearly arbitrary patterns. The first step toward
array synthesis is to recognize that if the first zeros were moved further away from
the z = 1 position, then the zeros would be crowded together and the resulting
sidelobes reduced at the expense of a broader main beam. The procedures described
by Taylor [6] and Bayliss [7] and summarized later in this chapter are based on
manipulation of the pattern zeros.

3.1.3 Woodward Synthesis

The pattern of a uniformly illuminated array, shown in Figure 1.7, has the form
sin(Npz)/(N sin pz) for z = (d /l ) sin u and is the narrowest pattern that can be
formed with an array (superdirectivity excepted). The uniform pattern has another
feature that makes it an ideal tool for synthesis: it is a member of an orthogonal
set of beams, and therefore one can devise lossless networks to superimpose groups
of beams and synthesize desired patterns [8, 9]. For an array of length L = Ndx ,
there are N such beams that will fill a sector of width (N − 1)l /L in u-space, as
shown in Figure 3.3(a). The beam peaks at locations ui are separated by l /L in
u-space, and their locations are given by the expressions next.

u1 = (l /L)i = [l /(Ndx )]i (3.9)

for i = ±1/2, ±3/2, . . . ±(N − 1)/2 for N even or i = 0, ±1, ±2, . . . ±(N − 1)/2 for
N odd. The i th beam is excited by the phase progression
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Figure 3.3 Synthesis method of Woodward and Lawson: (a) orthogonal Woodward beams for
array of N elements (plotted to first zeros); (b) two orthogonal beams (plotted over
domain of orthogonality) with i = 1/2 (solid) and i = −7/2 (dashed); and (c) pulse-
shaped pattern of Figure 3.1 synthesized by Woodward procedure (solid curve for ideal
and pattern of 16-element array, dashed curve for 8-element array). (From: [10].
 1988 Van Nostrand Reinhold, Inc. Reprinted with permission.)

ai
n = e−jkdxuin (3.10)

where n takes on the same values as i (above).
The normalized beam pattern is given by
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Figure 3.3 (Continued.)

fi (u) =
1
N ∑

(N −1)/2

n =−(N −1)/2
e jkndx (u − ui ) (3.11)

=
sin[(Npdx /l )(u − ui )]
N sin[(pdx /l )(u − ui )]

A given pattern E(u) is thus approximated by sampling it at N-points denoted
by the ui values. As shown in Figure 3.3(a, b) [10], only one of the beam patterns
fi has a nonzero value at each point, so one can write the approximate pattern as
the sum

E(u) ≈ ∑
i

Ai fi (u) (3.12)

Since the patterns fi (u) have peak values of unity, Ai is the sampled value

Ai = E(ui ) (3.13)

The total current at each element is the sum of those for all the beams. At the
n th element,

an = ∑
i

Ai a
i
n (3.14)

an = ∑Ai e
−jkdxuin

Figure 3.3(c) shows the Woodward synthesis of the same flat-top pattern
function approximated in Figure 3.1 by the Fourier series technique. Comparing
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these two figures shows that the Fourier series provides a lower ripple level and
lower sidelobes than the Woodward method. One of the disadvantages of Wood-
ward synthesis is that it does not control the sidelobe level in the unshaped region
of the pattern, since only the constituent beams within the shaped region are used
in the synthesis. The primary advantage of the Woodward synthesis technique is
that it can be implemented using lossless orthogonal beam networks, described in
Chapter 7, and so is a relatively simple distribution to approximate with virtually
no loss.

The Woodward technique is also the basis for a convenient iterative synthesis
procedure due to Stutzman [11]. In that procedure, which is not discussed further
in this text, Stutzman adds a correction term to a convenient original pattern whose
beamwidth is near to that of the desired pattern. The iterative procedure adds
Woodward-type beams, centered at sampling points, to bring the level of the total
pattern to the desired level. The procedure is repeated until the desired pattern is
matched to all sampled points.

Although Woodward synthesis is often thought of as a procedure for synthesiz-
ing shaped beams, Chapter 8 illustrates the synthesis of very-low-sidelobe patterns
with Woodward-type beams using so-called dual transform feeds.

3.1.4 Dolph-Chebyshev Synthesis

The procedure commonly referred to as Dolph-Chebyshev synthesis [12] equates
the array polynomial to a Chebyshev polynomial and produces the narrowest
beamwidth subject to a given (constant) sidelobe level. The synthesized pattern for
an array of NT elements spaced dx apart for l /2 ≤ dx ≤ l at broadside is

F(z) = TM (z) (3.15)

for

M = NT − 1

where TM (z) is the Chebyshev polynomial of order M :

TM (z) = cos(M cos−1 z) for |z | ≤ 1 (3.16)

= cosh(M cosh−1 z) for |z | ≥ 1

and

z = z0 cos[(pdx /l ) sin u ]

and

z0 = cosh(1/M cosh−1 r)

for voltage main beam to sidelobe ratio r > 1 such that SLdB = 20 log10 r is a
positive number. (Note that some of the figures due to other authors use upper case
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R for the voltage sidelobe ratio, so R and r should be considered interchangeable.
Although SLdB is always positive, it is sometimes convenient to refer to sidelobes
as negative with respect to the main beam. This should be considered as −SLdB.)

If the array polynomial is forced to match the Chebyshev polynomial in such
a way that the array sidelobe region occupies the range |z | ≤ 1 and the beam peak
(at u = 0) is in the region Z0 > 1, then

TM (z0) = r

Figure 3.4 shows the pattern of an 8-element array with Chebyshev illumination
and sidelobe levels of −20, −30, and −40 dB. The currents required to produce the
synthesized pattern are given by Stegen [13] for spacing dx /l ≥ 0.5 as

Im =
2

NT 3r + 2 ∑
(NT −1)/2

s =1
Tm {z0 cos(sp /NT )} cos[2spm /NT ]4 (3.17a)

m = 0, 1, 2, . . . , (NT − 1)/2

for NT odd and as:

Figure 3.4 Patterns of Dolph-Chebyshev arrays with eight elements (−20-, −30-, −40-dB sidelobes).
(From: [10].  1988 Van Nostrand Reinhold, Inc. Reprinted with permission.)
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Im =
2

NT 3r + 2 ∑
NT /2 −1

s =1
TM {z0 cos(sp /NT )} cos[(2m − 1)sp /NT ]4 (3.17b)

m = 1, 2, 3, . . . , (NT /2 − 1)

for NT even, where NT is the number of elements; 2N + 1 is NT odd; and 2N is
NT even; and again M = NT − 1.

Other authors have given formulas valid for dx /l < 0.5 for arrays with odd
numbers of elements. Stegen’s formulas are obtained by expanding the Chebyshev
radiation pattern in a Fourier series and are more convenient and stable to compute
than the original equation of Dolph or those derived prior to Stegen’s work. The
Chebyshev pattern synthesis procedure has received much attention in the literature.
Brown and Scharp [14] give extensive tabulations of current distributions computed
from the above formulas (although Hansen [15] has pointed out that the numerical
accuracy of the tabulated data does not meet current standards). Stegen and others
give equations for beamwidth, and there are several convenient expressions for
array gain valid for large arrays.

Stegen [16] gives the following expression for directivity

D =
NT

1 +
2

r2 ∑
W

s =1
FTMSz0 cos

sp
NT

DG2
(3.18)

where

W =
NT
2

− 1 for NT even

=
NT − 1

2
for NT odd

For spacings greater than l /2, Drane [17] gives the following equation for the
directivity of a large array:

D =
2r2

1 + (l /L′ )r2[ln(2r)/p ]1/2 (3.19)

and the beamwidth in radians:

uCH = 0.18(l /L′ )(SLdB + 4.52)1/2 (3.20)

In these expressions, L′ is the physical array length L′ = (NT − 1)dx . Drane also
gives similar relations for arrays with spacing less than l /2.

Elliott [18] gives the following approximate expression of the directivity in
terms of the beam broadening factor. This expression is valid for large arrays:



3.1 Linear Arrays and Planar Arrays with Separable Distributions 119

D =
2r2

1 + (r2 − 1)(l /L)Bb
(3.21)

where the beam broadening factor Bb for a large Chebyshev array is

Bb = 1 + 0.636{(2/r) cosh[(cosh−1r)2 − p2]1/2} (3.22)

and the beamwidth is, as in Chapter 1, u3 = 0.886(l /L)Bb . These two equations
are used in Figure 1.9.

Figure 3.5(a) compares directivity as computed by Drane [17], using Elliott’s
formulas [18] with the exact calculation. Good agreement is shown over a wide
range of array lengths. The figure also shows that the directivity does not increase
indefinitely with L, but reaches a maximum value 2r2, or 3 dB greater than the
numerical value of the specified sidelobe level. This effect is demonstrated in Figure
3.5(b), due to Elliott [18], which shows the computed directivity versus array length

Figure 3.5 Characteristics of Chebyshev patterns: (a) Array directivity versus length for −20-dB
(R = 10) and −40-dB (R = 100) sidelobe arrays: comparison between approximation of
Drane (....), Elliott (xxxx), and exact values. (From: [17].  1968 IEEE. Reprinted with
permission.) (b) Array directivity versus length. Note: text uses L in place of Elliott’s Lz;
sidelobe levels are −15 to −60 dB. (From: [18].  1966 Academic Press, Inc. Reprinted
with permission.) (c) Array beamwidth versus length for −20- and −40-dB sidelobe
arrays: comparison between approximation of Drane, Elliott, and exact values. (From:
[17].  1968 IEEE. Reprinted with permission.) (d) Taper efficiency eT = D/NT versus
sidelobe level.
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Figure 3.5 (Continued.)
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Figure 3.5 (Continued.)

for isotropic elements. The figure shows a linear increase in directivity with array
length for relatively small arrays, but each curve reaches a maximum directivity
related to its sidelobe level. This effect is due to the forced constant sidelobes that
take a progressively large part of the power as the array size increases and beam-
width narrows.

Figure 3.5(c) shows the Chebyshev beamwidth as computed from (3.20) and
the exact value, and Figure 3.5(d) shows the normalized directivity D /NT or taper
efficiency eT as defined in Chapter 1 as a function of sidelobe level SLdB, computed
from (3.19). The general trend of the curves (for SLdB > 40) is a result of beam
broadening and is almost independent of array size once the array is large enough.
For higher sidelobe levels at the left of the figure, the lowered efficiency ratio is a
result of the saturation effect mentioned earlier. The larger arrays need lower
sidelobes to be efficient.

Although the Chebyshev pattern is a classic synthesis procedure and is well
documented and conveniently tabulated, it is not useful for large arrays because
of the gain limitation mentioned earlier. The stipulation that the sidelobes remain
constant for large angles leads to a maximum in the directivity and then reduced
directivity with further increases in array length, as shown in Figure 3.5(a, b, d).
In addition, for increasingly large arrays, this requires a nonmonotonic aperture
illumination with peaks at the array edges and cannot be excited efficiently. These
details of aperture illumination are discussed in the next section, since they pertain
to Taylor pattern synthesis.

3.1.5 Taylor Line Source Synthesis

In a landmark paper, Taylor [6] analyzed the deficiencies of the Chebyshev pattern
and formulated a pattern function that has good efficiency for large arrays. Taylor
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examined the limit of a continuous line source and drew conclusions about allowed
illuminations and pattern far-sidelobe levels. He compared the pattern of the Cheby-
shev illumination with that of a constant illumination [sin(pz)/pz] for z = uL /l ,
which has the highest efficiency in the large-array limit.

As pointed out by Taylor, the loss in efficiency of the Chebyshev pattern results
from the requirement that sidelobe heights are constant. For large arrays, this
implies that increasingly more of the energy is in the sidelobe region. In the limit
of a very large array, maintaining the Chebyshev sidelobe structure requires an
unrealizable aperture illumination. He showed that the far sidelobes of a given line
source are a function only of the line source edge illumination. In particular, for
a line source of length 2a, and if the edge illumination has the behavior

(a − |x | )a (3.23)

for x measured from the center of the source, then for a ≥ 0, the far-sidelobe level
has the behavior indicated in Table 3.1. The values for a < 0 are not given because
the illuminations are unrealizable.

The above data show that selecting an aperture illumination with zero derivative
(a = 0) or a pedestal at the array edge leads to far sidelobes with angular dependence
sin pz /pz, like those of the uniform illumination. This pattern distribution main-
tains its efficiency as the array is made larger. Choice of larger values of a makes
the far sidelobes decay faster, as indicated in the table, but have generally lower
efficiency.

Taylor also showed that the location of the far zeros of the pattern are deter-
mined by the edge illumination. The n th pair of pattern zeros (for n large) occur
at locations

zn = ± (n + a /2)

as n tends to infinity.
Clearly, this too is consistent with the uniform illumination case for a = 0.

However, when compared with the actual location of the n th pair of zeros for the
Chebyshev pattern, it is found that these occur asymptotically at ± (n − 1/2). These
zero locations correspond to a = −1, an unrealizable illumination for the continuous
aperture case.

Taylor expanded upon these mathematical insights to suggest a pattern function
with zeros far from the main beam at locations that correspond to the uniform

Table 3.1 Array Far
Sidelobe Level Versus
Edge Illumination
Parameter a

a Asymptotic F(z)

0 (sin pz)/(pz)
1 (cos pz)/(pz2)
2 (sin pz)/(pz3)
3 (cos pz)/(pz4)
Note: z = uL /l .
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illumination, while the zeros closer to the main beam are chosen similar to those
of the Chebyshev pattern.

Since Taylor chose to simulate and then modify not the Chebyshev array
pattern, but that of a continuous source with similar features to the Chebyshev
pattern, he used the following ideal line source pattern as substitute:

F0(z, A) = cos[p (z2 − A2)1/2] for z2 > A2 (3.24)

= cosh[p (A2 − z2)1/2] for z2 < A2

where

z = uL /l

and the sidelobe ratio is evidently given as the value of F0 at z = 0, or

r = cosh(pA) (3.25)

so A is defined as

A =
1
p

cosh−1 r (3.26)

As shown by Van der Mass [19], this pattern corresponds to the limiting case
of the Chebyshev array as the number of elements is indefinitely increased, and
has zeros at the locations

ZN = ± [A2 + (N − 1/2)2]1/2 N = 1, 2, 3, . . . , ∞ (3.27)

The pattern has the Chebyshev characteristics with all sidelobes equal, but is
physically unrealizable for the reasons described earlier, since the far nulls have
asymptotic locations corresponding to a = −1.

An expression for the beamwidth of this idealized pattern is readily obtained
from the pattern function, since, in the main beam region,

cosh−1 F0(z, A) = p {[(cosh−1r)/p ]2 − z2}1/2 (3.28)

and at the half-power point

F0(z3 , A) = cosh−1(r /21/2) (3.29)

Combining these relations gives the half-power beamwidth (in u-space) as

u =
l
L

2
p

{(cosh−1r)2 − [cosh−1(r /21/2)]2}1/2 (3.30)

≈
l
L

b0
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The beamwidth is thus a constant b0 times the ‘‘standard beamwidth’’ l /L.
Although the idealized pattern is unrealizable, Taylor recognized that by select-

ing a new function with near zeros very close to those of the ideal pattern (3.27),
but with far zeros corresponding to those of the sin pz /(pz) function at integer
values of z, he could satisfy the requirement on both near and far sidelobes. Taylor
chose to keep all nulls at the integer location for |u | ≥ n, and to move those for
|u | < n near the locations (3.27) that would produce the nearly constant sidelobes
near the main beam.

To match these two sets of zeros, Taylor introduced a dilation factor s that
is slightly greater than unity to stretch the ideal space factor horizontally by moving
the ideal zero locations zn , such that eventually one of the zeros becomes equal to
the corresponding integer n.

The synthesized pattern normalized to unity is

F(z, A, n ) =
sin pz

pz Pn −1

n =1

1 − z2/z2
n

1 − z2/n2 (3.31)

for

z = uL /l

The numbers zn are the zero locations of the synthesized pattern and are given by

zn = ±s (A2 + (n − 1/2)2)1/2 for 1 ≤ n ≤ n (3.32)

= ±n for n ≤ n ≤ ∞

where

s =
n

[A2 + (n − 1/2)2]1/2

Note that at n = n, zn = n.
Since the dilation factor s stretches or dilates the ‘‘ideal’’ space factor to move

its zeros away from the main beam, then the beamwidth is increased to a first
approximation by that same factor. A good approximation for the beamwidth is
therefore given by

u3 ≈ sb0l /L radians (3.33)

for b0l /L, the beamwidth of the idealized pattern (3.30). Table 3.2 [20] gives
values of the parameter b0 in degrees and the dilation factor s used in computation
of the approximate beamwidth (3.33).

The aperture distribution required to produce Taylor patterns is expanded as
a finite Fourier series of terms with zero derivatives at the aperture edges.
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Table 3.2 Design Sidelobe Level and Beamwidth for Taylor Distributions

R
Design (Sidelobe Values of the Parameter (s )

Sidelobe Voltage 180b0 /p
Level (dB) Ratio) (Degrees) A2 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

15 5.62341 45.93 0.58950 1.18689 1.14712 1.11631 1.09528 1.08043 1.06969 1.06112 1.05453 1.04921
16 6.30957 47.01 1.64798 1.17486 1.14225 1.11378 1.09375 1.07491 1.06876 1.06058 1.05411 1.04887
17 7.07946 48.07 1.6267 1.13723 1.11115 1.11115 1.09216 1.07835 1.06800 1.06001 1.06367 1.04852
18 7.94328 49.12 0.77266 1.15036 1.13206 1.10843 1.09050 1.07724 1.06721 1.05942 1.05328 1.04815
19 8.91251 50.15 0.83891 1.13796 1.12676 1.10563 1.08879 1.07609 1.06639 1.05880 1.05273 1.04777

20 10.00000 51.17 0.90777 1.12549 1.12133 1.10273 1.08701 1.07490 1.06554 1.05816 1.05223 1.04738
21 11.2202 52.17 0.97927 1.11577 1.09974 1.08518 1.07367 1.06465 1.05750 1.06172 1.04697
22 12.5893 53.16 1.05341 1.11009 1.09668 1.08329 1.07240 1.06374 1.05682 1.05119 1.04654
23 14.1254 54.13 1.13020 1.10430 1.09352 1.08135 1.07108 1.06280 1.05611 1.05064 1.04610
24 15.8489 55.09 1.20965 1.09840 1.00029 1.07934 1.06973 1.06183 1.05538 1.05007 1.04565

25 17.7828 56.04 1.29177 1.09241 1.08598 1.07728 1.06834 1.06083 1.05463 1.04948 1.04518
26 19.9526 56.97 1.37654 1.08632 1.08360 1.07517 1.06690 1.05980 1.05385 1.04888 1.04669
27 22.3872 57.88 1.46395 1.08015 1.08014 1.07300 1.06543 1.05874 1.05305 1.04826 1.04420
28 25.1189 58.78 1.55406 1.07661 1.07078 1.06392 1.05765 1.05223 1.04762 1.04368
29 28.1838 59.67 1.64683 1.07300 1.06851 1.06237 1.05653 1.05139 1.04696 1.04316

30 31.6228 60.55 1.74229 06934 1.06619 1.06079 1.05538 1.05052 1.04628 1.04262
31 35.4813 61.42 1.84044 1.06561 1.06382 1.05916 1.05421 1.04963 1.04559 1.04206
32 39.8107 62.28 1.94126 1.06182 1.06140 1.05751 1.05300 1.04872 1.04488 1.04149
33 44.6684 63.12 2.04472 1.05893 1.05581 1.05177 1.04779 1.04415 1.04091
34 50.1187 63.96 2.15092 1.05642 1.05408 1.05051 0.04684 1.04341 1.04031

35 56.2341 64.78 2.25976 1.05386 1.05231 1.04923 1.04587 1.04264 1.03970
36 63.0957 65.60 2.37129 1.05126 1.05051 1.04792 1.04487 1.04186 1.03907
37 70.7946 66.40 2.48551 1.04868 1.04658 1.04385 1.04107 1.03843
38 79.4328 67.19 2.60241 1.04681 1.04521 1.04282 1.04025 1.03777
39 89.1251 67.98 2.72201 1.04491 1.04382 1.04176 1.03942 1.03711

40 100.0000 68.76 2.84428 1.04298 1.04241 1.04068 1.03808 1.03643
Source: [20].
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g(x) = F(0, A, n ) + 2 ∑
n −1

m =1
F(m, A, n ) cosS2mpx

L D (3.34)

for

−L /2 ≤ x ≤ L /2

The coefficients F(z, A, n ) are evaluated to be

F(m, A, n ) =
[(n − 1)!]2

(n − 1 + m)!(n − 1 − m)! P
n −1

n =1
[1 − m2/z2

n] (3.35)

Figure 3.6(a, b) shows 40-dB Taylor patterns computed from the function
(3.31) using n = 2 and 11. These patterns show that choosing n too small leads
to some pattern distortion. In this case, the distortion is evident because for n = 2
only one sidelobe is controlled, while the other zero locations are the same as for
the uniform illumination case. Only one sidelobe is suppressed in this case, and
the rest tend to return to the levels of the sin pz /pz function, which is greater
than −30 dB, even though the −40-dB Taylor taper is selected. Again, it is clear
that one must increase n as the sidelobe level is lowered.

Both figures show the pattern of a continuous source computed using (3.31).
The pattern of an array of 16 elements is plotted on the same figure to show the
result of sampling the continuous distribution (3.34). It is important that the dis-
tribution be sampled at points one-half element spacing from the end of the Taylor
distribution function, and so the aperture illumination is sampled at the points
(L /Nl )i for ±i = 1/2, 3/2, 5/2, . . . , (N − 1)/2 for arrays with an even number of
elements, and ±i = 0, 1, 2, . . . , (N − 1)/2 for arrays with an odd number of
elements. The sampling procedure maintains good control of the first sidelobe level.

The efficiency of this distribution is given by Hansen [21] as

h =
1

1 + 2 ∑
n −1

m =1
F2(m, A, n )

(3.36)

for factors F(m, A, n ), given by the previous expression. This efficiency h pertains
to the continuous distribution, but is analogous to the taper efficiency for the
discrete array.

The choice of the parameter n is not arbitrary, since increasing n retains more
of the sidelobes at the design sidelobe level and thus makes the Taylor pattern
closer to the Chebyshev pattern. Increasing n thus leads to narrower main beam
patterns and higher aperture efficiency, but eventually to aperture illuminations
that are not monotonic and have increased illumination near the aperture edges.
A rough guide to the selection of n is given in Table 3.3, which is due to Hansen
[21]. This table shows the efficiency h for Taylor patterns of various sidelobe levels
from −20 to −40 dB for two selections of n. One choice leads to maximum efficiency,
which is also accompanied by a peak in the aperture illumination near the array
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Figure 3.6 Taylor patterns of line sources and 32-element arrays. (a) Array with Taylor n = 2,
−40-dB sidelobe pattern (solid curve from function, dashed curve from array currents).
(b) Array with Taylor n = 11, −40-dB sidelobe pattern (solid curve from function, dashed
curve from array currents). (c) Taylor n aperture distributions for −25-dB sidelobe level.
(From: [15].  1983 Peter Peregrinus Ltd. Reprinted with permission.)

edge, and one choice corresponds to the maximum efficiency h obtainable with a
monotonic illumination.

Increasing n to the limit of maximum efficiency may not result in realizable
current excitation. Figure 3.6(c) shows results due to Hansen that compare the
Taylor aperture distributions for maximum efficiency n = 12 and maximum effi-
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Figure 3.6 (Continued.)

Table 3.3 Taper Efficiency for Taylor Patterns

Max h Values Monotonic n

SLdB n h n h

20 6 0.9667 3 0.9535
25 12 0.9252 5 0.9105
30 23 0.8787 7 0.8619
35 44 0.8326 9 0.8151
40 81 0.7899 11 0.7729

Source: [21].

ciency with a monotonic illumination (n = 5) for a 25-dB pattern. The figure shows
severe inverse tapering near the edge of the array with maximum efficiency. This
rapid variation in current is difficult to approximate with a discrete array and may
be unrealizable in a practical size. Moreover, the data cited in Table 3.3 indicate
that the efficiency penalty in going from maximum efficiency to maximum efficiency
with monotonic illumination is only 1% for the case of Figure 3.6(c).

3.1.6 Modified sin pz/pz Patterns

Taylor [22] also developed a procedure for synthesizing pattern functions with
arbitrary first sidelobe levels and a far sidelobe level similar to that of a uniformly
illuminated source. This distribution is known as the modified sin pz /pz distribu-
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tion [20] or the Taylor one-parameter distribution [21]. The pattern is given by
the expressions below.

E(z) =
sinh[p (B2 − z2)1/2]

p [B2 − z2]1/2 z ≤ B (3.37)

=
sin[p (z2 − B2)1/2]

p [z2 − B2]1/2 z > B

where z = Lu /l .
The value of B is chosen as indicated below to set the first sidelobe to some

given level r, where again SLdB = 20 log10 r. Since the first sidelobe occurs in the
region z > B, where the function has assumed the second form given above, the
level of that sidelobe is about 13.26 dB [or the factor E(z) is equal to 1/4.603].
However, at the beam peak, E(0) is equal to sinh(pB)/(pB), so the ratio of beam
peak to sidelobe level is

r = 4.60333
sinh pB

pB
(3.38)

The values of parameter B required to obtain a given sidelobe level are obtained
from the solution of the above equation. Table 3.4 from Hansen [21] gives the
appropriate values of B to produce the required sidelobe levels.

Inspection of (3.37) shows the far sidelobes to be clearly asymptotic to those
of the uniform array (sin pz /pz), since the far zeros are left at zn = ±n. The near
sidelobes are reduced by the placement of the pattern zeros, which have been set
at locations zn = [n2 + B2]1/2.

The normalized aperture illumination for maintaining this distribution is given
as the following.

a(x) =
1

I0(pB)
I0{pB[1 − (2x /L)2]1/2} (3.39)

where

x = distance from the center of the aperture,
L = aperture length,
I0 = modified Bessel function of the first kind (or order zero), and
B = parameter that determines the sidelobe level and is defined below by its

relation to the sidelobe level r.

Sampling this aperture illumination results in a set of array excitation coeffi-
cients that give an approximation to the pattern (equation). The normalized aper-
ture illumination is seen from the above to have the maximum value unity at the
aperture center, and the value 1/I0(pB) at the edge. Table 3.4 also gives the value
of this edge taper [−20 log10 I0(pB)] in decibels.
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Table 3.4 Modified sin(pz)/(pz) Line Source Characteristics

Z3 Edge Taper
SL (dB) B (radians) h (dB)

13.26 0 0.4429 1 0
15 0.3558 0.4615 0.993 2.5
20 0.7386 0.5119 0.933 9.2
25 1.0229 0.5580 0.863 15.3
30 1.2762 0.6002 0.801 21.1
35 1.5136 0.6391 0.751 26.8
40 1.7415 0.6752 0.709 32.4
45 1.9628 0.7091 0.674 37.9
50 2.1793 0.7411 0.645 43.3

Source: [21].

The beamwidth u3 is given in terms of the parameter Z3 by

u3 = 2 sin−1[z3 /(L /l )] (3.40)

For all but a very small aperture, the beamwidth expression above is accurately
given by

u3 = 2z3 /(L /l ) (3.41)

The parameter z3 is obtained from the solution of

sinh[pB /√2pB] = sin{p[z2
3 − B2]1/2}/{p[z2

3 − B2]1/2} (3.42)

The aperture efficiency of this line source illumination is given by Hansen as

h =
2 sinh2 pB
pBI0′ (2pB)

(3.43)

where I0′ is the integral of I0 from 0 to (2pB) and is a tabulated integral. Table
3.4 [21] gives values of the parameter B, half-power beamwidth, efficiency, and
edge taper for sidelobe levels from 13 to 50 dB.

Figure 3.7 shows patterns of line sources of length 4l and 16l , with modified
sin pz /(pz) patterns designed for −40-dB sidelobes, and compares the patterns
computed from (3.37) with those computed using arrays of 8 [Figure 3.7(a)] and
32 [Figure 3.7(b)] elements that sample the aperture illuminations (3.39) at half-
wavelength increments. The line source patterns are well approximated by the
discretized patterns, especially for the 32-element array.

The modified sin pz /pz pattern is an excellent low-sidelobe distribution and
has good efficiency. A comparison of Tables 3.3 and 3.4 reveals, however, that
the Taylor patterns can have higher efficiency if n is chosen appropriately.

3.1.7 Bayliss Line Source Difference Patterns

A useful synthesis procedure for the asymmetrical patterns required of monopulse
systems was developed by Bayliss [7]. Like the Taylor procedure, Bayliss patterns
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Figure 3.7 Modified sin(pz)/(pz) line source and array patterns (−40-dB sidelobes) (solid curves
from function, dashed curve from array currents): (a) four-wavelength line sources
(solid) and 8-element array patterns (dashed); and (b) 16-wavelength line source (solid)
and 32-element array patterns (dashed).

are fully described in terms of the two parameters A and n, which again control
the sidelobe level and decay behavior. The synthesized pattern is given by

F(z) = pz cos(pz)

Pn −1

n =1
{1 − (z /szn )2}

Pn −1

n =0
{1 − [z /(n + 1/2)]2}

(3.44)
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for

z = uL /l s =
n + 1/2

zn

and

zn = (A2 + n2)1/2

The zeros of this function are at szn and will be specified later.
The line source excitation is given by the Fourier series

g(x) = ∑
n −1

n =0
Bn sin[(2px /L)(n + 1/2)] −L /2 ≤ x ≤ L /2 (3.45)

and the Fourier coefficients are

Bm =5 1
2j

(−1)m(m + 1/2)2
Pn −1

n =1
H1 −

[m + 1/2]2

[szn ]2 J
Pn −1

n =0
n ≠m

H1 −
[m + 1/2]2

[n + 1/2]2 J
m = 0, 1, 2, . . . , n − 1

0 for m ≥ n

(3.46)

The null locations szn are given with zn defined as

zn = 5
0 n = 0

±Vn n = 1, 2, 3, 4

±(A2 + n2)1/2 n = 5, 6, . . .

(3.47)

The coefficients A and Vn are not available in closed form, but Bayliss presented
a table of coefficients for fourth-order polynomials to represent these five coeffi-
cients as a function of sidelobe level (SLdB). In addition to A and Vn , the table
lists values for the polynomial approximation of p0 , which is the location of the
difference peak. Recall that in u-space the peak locations are given by u = (l /L)p.
In this case, the polynomial is represented by

Polynomial = ∑
4

n =0
Cn [−SLdB]n (3.48)

with coefficients c0 through c4 given by Table 3.5. In addition, Elliott [23] gives
a table of coefficients themselves for sidelobe levels from −15 to −40 dB in increments
of 5 dB (Table 3.6). Figure 3.8 compares the patterns of the continuous distribu-
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Table 3.5 Polynomial Coefficients

Polynomial C0 C1 C2 C3 C4

A 0.30387530 −0.05042922 −0.00027989 −0.00000343 −0.00000002
V1 0.98583020 −0.03338850 0.00014064 0.00000190 0.00000001
V2 2.00337487 −0.01141548 0.00041590 0.00000373 0.00000001
V3 3.00636321 −0.00683394 0.00029281 0.00000161 0.00000000
V4 4.00518423 −0.00501795 0.00021735 0.00000088 0.00000000
p0 0.47972120 −0.01456692 −0.00018739 −0.00000218 −0.00000001

Source: [7].

Table 3.6 Parameters A, V1, V2, V3, V4 for Bayliss Patterns

Sidelobe Level (dB)

Polynomial 15 20 25 30 35 40

A 1.0079 1.2247 1.4355 1.6413 1.8431 2.0415
V1 1.5124 1.6962 1.8826 2.0708 2.2602 2.4504
V2 2.2561 2.3698 2.4943 2.6275 2.7675 2.9123
V3 3.1693 3.2473 3.3351 3.4314 3.5352 3.6452
V4 4.1264 4.1854 4.2527 4.3276 4.4093 4.4973

Source: [23].

Figure 3.8 Bayliss n = 4 line source and array (n = 16) difference patterns for −40-dB sidelobe level.
(From: [10].  1988 Van Nostrand Reinhold Inc. Reprinted with permission.)

tion (3.44) and that of a 16-element array sampling the continuous aperture distri-
bution of (3.45) for n = 4.

3.1.8 Synthesis Methods Based on Taylor Patterns: Elliott’s Modified Taylor
Patterns and the Iterative Method of Elliott

A variety of methods can be used to synthesize generalized patterns. Particularly
well-documented and convenient procedures have been developed by Elliott for
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the synthesis of patterns that can be generated beginning with Taylor and Bayliss
patterns. Since the details are given in an available text, the following lists only
the final formulas and definitions. Moreover, although this book makes reference
only to patterns generated from Taylor and Bayliss line source starting patterns,
Elliott has also derived analogous methods for circular aperture arrays. These are
well documented in [23]. A particular advantage of this technique is that it only
changes the locations of the innermost set of zeros, not the zeros far from the main
beam, which are left at locations zn = ±n. This ensures that the far sidelobes are
well behaved and follow the sin pz /(pz) dependence of the uniform array for
z = uL /l .

In the first instance, to produce a generalized sum pattern, Elliott [24] derived
a more general pattern function than the Taylor pattern, one that behaves like
Taylor patterns with different characteristics at either side of the main beam. For
example, the pattern could resemble a Taylor 20-dB pattern with n = 2 to the left
of the main beam and a Taylor 40-dB pattern with n = 5 to the right. To represent
the new pattern, Elliott writes a form that is equivalent to (3.31) if the null locations
are kept at the location of the Taylor patterns, but which is modified by removal
of some of the Taylor pattern nulls and multiplication by factors that produce new
nulls at desired locations. Elliott then expresses the sum pattern S(z), which he
terms a modified Taylor pattern:

S(z) = Cf (z) PnR −1

−(nL −1)
(1 − z /zn ) (3.49)

where

f (z) =
(sin pz)/(pz)

PnR −1

−(nL −1)
(n ≠0)

(1 − z /n)

(3.50)

The constant C is a normalization. The pattern of the starting distribution
S0(z) has zeros at locations zm for all −(nL − 1) ≤ m ≤ (nR − 1). The subscripts R
and L refer to the assumption of different numbers of zeros controlled to the right
and left of the pattern.

The zero locations for the modified Taylor distribution are given by

zn = −nL
[A2

L + (n + 1/2)2]1/2

[A2
L + (nL − 1/2)2]

n = − [1, 2, . . . , (nL − 1)] (3.51)

= nR
[A2

R + (n − 1/2)2]1/2

[A2
R + (nR − 1/2)2]

n = 1, 2, . . . , (nR − 1)

and
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AL =
1
p

cosh−1rL (3.52)

AR =
1
p

cosh−1rR

for (voltage) sidelobe levels rL and rR on the left and right sides of the main beam.
The values nL and nR must both be one greater than the number of controlled
sidelobes of the left and right of the main beam.

The aperture illumination required to produce this pattern is again readily
found from a Fourier series approximation, and is given by Elliott as

g(x) =
1
L ∑

nR −1

−(nL −1)
S(m)e−j2mpx /L (3.53)

where here the sum includes m = 0.
The S(m) is obtained from (3.49) evaluated at z = m, and truncates at n on

either side. Since evaluating the function f involves a limiting process, the resulting
equation for the function f is

f (m) =
−(−1)m

PnR −1

−(nL −1)
m ≠n

(1 − m /n)

(3.54)

for m ≠ 0, and

f (0) = 1

This modified Taylor pattern is itself a convenient illumination, since it can
produce patterns with different sidelobe levels at either side of the main beam.
Figure 3.9 shows typical patterns produced using the above expression (here applied
to a 32-element array) and compared with the pattern computed by the function
(3.49). This pattern is for an array with nL = 5 and nR = 7, with four sidelobes at
the left of the main beam set at −20 dB and six at the right set to −40 dB. The
patterns evaluated from the sampled illumination (3.53) are indeed an excellent
representation of the exact line source pattern, but it is clear that the line source
distribution itself has difficulty reproducing sidelobe levels different by a factor of
100, with the result that the sidelobes to the left are not constant, those to the left
are lower than required, and those to the right are too high. Although this modified
Taylor distribution of Elliott achieves a useful degree of pattern control, the iterative
procedure used to derive generalized patterns can give a far greater degree of
accurate pattern control.

The modified Taylor pattern is used in Elliott’s iterative procedure [25] as a
starting pattern, and in this context he uses the notation z0

m to index the zeros of
the starting pattern or the pattern from the previous iteration.



136 Pattern Synthesis for Linear and Planar Arrays

Figure 3.9 Modified Taylor pattern of Elliott. Pattern design for nL = 5, nR = 7 with −20-dB left
sidelobes and −40-dB right sidelobes (line pattern solid, array pattern dashed).

For a consistent notation, Elliott defines the position of the peaks in the starting
pattern as z p

m . With these definitions, one can show that if the perturbations are
small, the values of the new pattern S(z) can be written at the location of the peaks
of the starting pattern z p

m as

S(z p
m)

S0(z p
m)

− 1 =
DC
C0

+ ∑
(nR −1)

n =−(nL −1)
n ≠0

z p
m /(z0

n )2

1 − z p
m /z0

n
Dzn (3.55)

for −(nL − 1) ≤ m ≤ (nR − 1), where the constant C has been written to account
for the perturbation in the pattern normalization amplitude

C = C0 + DC (3.56)

and the Dzn are the changes in null locations, so that the nulls of the new pattern
are at

zn = z0
n + Dzn (3.57)

The S(z p
m) are the known heights of the peaks in the desired pattern. These

peaks must obviously be included between the nulls at znL
≤ z ≤ znR

, and so the
technique is not intended for control of far sidelobes, but only those within the
controlled nulls of the original modified Taylor patterns.

The starting pattern null locations z0
n are known and the peak locations z p

m
can be accurately found by a numerical search. Except for the main beam peak
location, I have found it entirely adequate to set each z p

m by choosing the location
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halfway between the adjacent zeros. However, in order to properly normalize the
pattern sidelobes to the pattern peak, one must accurately determine the main
beam location, and here a numerical search is often necessary.

Given these coefficients, the only remaining unknowns are the DC and the
values of the null shifts Dzn , so (3.55) is written at each pattern peak to form a
matrix equation with (nL + nR − 1) rows and the same number of unknowns.
Once the new nulls zn are found, the pattern S(z) for the continuous aperture can
be computed from (3.49) and used as a new starting pattern for another iteration
if necessary.

The amplitude illumination is obtained from (3.52) and is exact for the continu-
ous (line source) case.

Figure 3.10 shows an iterated pattern of a line source 16l long, in which the
three sidelobes on the left are set to −20 dB and the first three on the right set to
−40 dB, the next two set to −30 dB, and the next two to −40 dB. Beyond these,
the sidelobes are allowed to revert to whatever level is dictated by the sin(pz)/(pz)
pattern function, so these actually increase at the right, but decrease at the left.
The procedure is begun using the modified Taylor pattern of Elliott with nL = 4
and nR = 7. Only three iterations were necessary to obtain ±0.1-dB accuracy.

Generalized Patterns Synthesized from Bayliss Difference Patterns

Following the same procedure as that used for the sum patterns, Elliott [26] has
obtained an equally convenient iterative procedure to facilitate the synthesis of
difference patterns with arbitrary sidelobe levels. Only final results are given below,
and, again, the starting pattern is the Bayliss pattern written to express the factors
to the left and to the right of the origin separately, so that nL need not be equal
to nR .

Figure 3.10 Iterated sum pattern of Elliott. Pattern design for nL = 4, nR = 7 (solid horizontal lines
indicate constrained sidelobe levels).
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Written in this fashion, (3.44) becomes

D0(z) = C0zf (z) PnR −1

−(nL −1)
n ≠0

(1 − z /z0
n ) (3.58)

where z0
n is the location of the original n th Bayliss root szn from (3.47) and

f (z) =
p cos(pz)

PnR −1

n =−(nL −1)
[1 − z /(n + 1/2)]

(3.59)

The zero locations of the modified version of the Bayliss pattern and the
constants AR and AL are given by the Bayliss equations (3.47) and (3.48), with
the sidelobe levels as appropriate to the two sides of the pattern.

The desired pattern is expressed in terms of parameters Dzn and DC to give
the result

D(z)
D0(z)

− 1 =
DC
C0

−
Dz0

z
+ ∑

nR −1

n =−(nL −1)
n ≠0

[z /(sz0
n )2]

1 − z /(sz0
n )

Dzn (3.60)

Using the peak positions zp
m and nulls of the lobes in the starting pattern

produces a set of nL + nR simultaneous linear equations, which can be solved to
produce the desired perturbed solution, and used, if necessary, as the starting point
for further iterations.

The required aperture distribution for this synthesis is

g(x) = ∑
nR −1

−(nL −1)
F(n + 1/2)e−j (n + 1/2)2px /L (3.61)

with the end result (for 0 ≤ m ≤ nR − 1) being

F(m + 1/2) = (−1)m(m + 1/2)pC (3.62)

×

PnR −1

−(nL −1)
[szn − (m + 1/2)]

PnR −1

n =0
n ≠m

S1 −
m + 1/2
n + 1/2 D PnL −1

n =0
S1 +

m + 1/2
n + 1/2 D

and in the range −nL ≤ m ≤ −1, the result is
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F(m + 1/2) = (−1)m(m + 1/2)pC (3.63)

×

PnR −1

−(nL −1)
[szn − (m − 1/2)]

PnR −1

n =0
S1 −

m + 1/2
n + 1/2 D PnL −1

n =0
n ≠−(m +1)

S1 +
m + 1/2
n + 1/2 D

Figure 3.11 shows an iterated pattern, which was constructed from a Bayliss
30-dB, n = 10 pattern, but with the four innermost sidelobes suppressed to −40
dB. The horizontal axis, denoted by u in the figure, corresponds to our z − z0 for
a beam scanned to the direction cosine u0 . The pattern is accurate for the continuous
line source. A discrete array would necessarily suffer the approximation that results
from discretizing this continuous distribution.

3.1.9 Discretization of Continuous Aperture Illuminations by Root
Matching and Iteration

The Taylor and Bayliss patterns and the patterns derived from them for arbitrary
sidelobe distributions are exactly reproduced by applying the continuous aperture
illuminations given in previous sections, but the sampling process required to
discretize these continuous illuminations results in some errors. In the case of

Figure 3.11 Iterated difference pattern of Elliott. Pattern has four inner sidelobes symmetrically
depressed. (From: [26].  1976 IEEE. Reprinted with permission.)
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the Taylor pattern, an equivalent discrete array formulation has been derived by
Villeneuve [27]. This result is not reproduced here because the several discretizing
procedures [28, 29] are sufficiently accurate for most purposes.

The simplest way to approximate the pattern of a continuous illumination with
a discrete array is to periodically sample the continuous illumination. In the previous
sections, this sampling led to excellent approximations, but this procedure may
not be adequate for small arrays with very low sidelobes, or for relatively widely
spaced elements, or for synthesized patterns that have severe changes in sidelobe
levels (e.g., Figure 3.11).

A procedure that yields improved results for patterns with real roots, especially
for small arrays, is to choose the roots of the discrete array pattern so that they
match those of the pattern of the continuous aperture. The continuous aperture
root locations are given by (3.31) and (3.47) for the Taylor and Bayliss patterns
and are also readily derived for other continuous aperture distributions, such as
those derived from iterative solutions.

Referring to the series form (3.6), an array’s pattern is given by the product
of its zeros, which can be represented by a power series in the exponential form

F(u) = ∑anzn (3.64)

with coefficients an representing the array (complex) amplitude distribution for

z = exp( jkdxu) (3.65)

F(u) = aN −1(z − z1)(z − z2) . . . (z − zN −1) (3.66)

Since this polynomial is also given by the product of the roots (3.6), it is only
necessary to multiply the terms in (3.66) and then to identify them as the coefficients
an in (3.64). This procedure is tedious for large arrays, and in some cases it may
be easier to match roots using the adaptive procedure to be described in Section
3.4 or the set of simultaneous equations to find the array illumination corresponding
to the desired real roots. Since the N-element array has N − 1 independent roots
within the region −l /(2dx ) ≤ u ≤ l /(2dx ), one can write the homogeneous equation
below at the required location of the nulls corresponding to the desired pattern.

F(un ) = 0 (3.67)

In addition, one must satisfy a normalizing condition to fix the value of the main
beam peak at u0 :

F(u0) = ∑
NT

p =1
ap (3.68)

The solution of this set of simultaneous equations yields the excitations an .
Elliott [29] gives several examples of the utility of the real root matching

technique, which can result in an excellent approximation to a given pattern if the
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sidelobe topography is not too severe. In such cases where it is not adequate, Elliott
presents an iterative procedure to individually reset sidelobe levels to account for
discretization.

3.1.10 Synthesis of Patterns with Complex Roots and Power Pattern
Synthesis

The specialized distributions that produce pencil beam patterns while optimizing
sidelobe characteristics have proven very useful for antenna design. The Chebyshev,
Taylor, Bayliss, and the various iterative schemes are excellent, efficient solutions
and offer enough pattern selection options to satisfy most needs. These patterns,
as described in the previous section, have real zeros and well-defined main beams
and nulls. However, there is also a need to develop patterns that do not have zeros,
but have shaped beams. This is often done using the Fourier series method or the
Woodward synthesis method with (sin pz)/(pz) type patterns (Section 3.1.3), which
have the added advantage of being implemented with the lossless networks of
Chapter 7. But it can be done by moving the roots of the array polynomial off the
unit circle. A convenient procedure for accomplishing this is given in the work of
Elliott and Stern [30], which will not be specifically described here.

Power pattern synthesis [1] offers real advantages in the synthesis of shaped
antenna patterns, where a wide area of the pattern needs to be approximated. The
advantage results from the fact that the array factor is a complex function, with
both magnitude and phase, while most pattern control procedures need to synthesize
only the pattern amplitude. Most field pattern synthesis procedures assume real
pattern functions, and this reduces the number of degrees of freedom available to
approximate the desired pattern. The notation used in the following description
follows Steyskal [31].

Steyskal’s Synthesis Procedure

An array with an odd number (N + 1) of elements has the field pattern

F = ∑
N /2

−N /2
Im exp( jmpu) (3.69)

which is a set of N + 1 harmonics. The corresponding power pattern q is

q = FF* = ∑
N

−N
qn exp( jnpu) (3.70)

The coefficients qn are related to the element currents by the expression

qn =5 ∑
N

m =n
Im I*m −n n ≥ 0

∑
N +n

m =0
Im I*m −n n < 0

(3.71)
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Since the power pattern has (2N − 1) terms for an N + 1 element array, there
are many more degrees of freedom in the power pattern expression than in the
field pattern expression. Power pattern synthesis, by allowing amplitude and phase
of every element to be determined by the synthesis, recaptures all of the available
degrees of freedom.

Steyskal [31, 32] shows that if some desired shape is synthesized within a
given region using conventional field pattern synthesis, the resulting power pattern
includes the added zeros outside of the synthesized region. The added degrees of
freedom present in the power pattern are therefore not used to better match the
desired pattern shape. Steyskal considered minimization of the Gaussian or weighted
mean square error e between the desired power pattern pd (u) and the realizable
actual pattern q(u) subject to weighting criteria. The chosen error is the weighted
mean square

e = E
1

−1

[pd (u) − q(u)]2 w(u) du (3.72)

where u = sin u and w(u) is a weighting function chosen according to the relative
accuracy of the approximation over the interval in u. This error is the mean square
error when w(u) = 1.

Steyskal formulates the optimization in Hilbert space, in which a function is
interpreted as a vector. The inner product (x ? y) of two vectors x and y is defined
as the weighted integral

(x, y) = E
1

−1

xy*wdu (3.73)

He further defines the length or norm ||x || of a vector x as

||x || = (x, x)1/2 (3.74)

and the square of the ‘‘distance’’ of some point pD to some point q as

|| pD − q ||2 = E
1

−1

| pD − q |2 wdu (3.75)

which corresponds with the Gaussian measure of the error in approximating point
pD by q.

The problem solved by Steyskal is to find the best approximation to the desired,
but possibly nonphysical, pattern pD , with a realizable pattern qD such that

|| pD − qD || is a minimum (3.76)
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This is done in two steps. First the desired pattern pD is expanded (projected)
onto a set of orthonormal functions, resulting in an approximation p, which is the
best sum of 2N + 1 harmonics to approximate pD . This best approximation satisfies
the condition

|| pD − p || = minimum (3.77)

The approximation p is not achievable physically because it may lead to negative
power. What is required is the solution qD , which is the best nonnegative approxi-
mation of pD . Therefore, the second step is to now find a realizable qD that is the
best nonnegative approximation to the harmonic approximation p, and therefore
to minimize

|| p − qD || (3.78)

This process leads to the best realizable approximation to the desired minimization.
From (3.70), the power pattern is composed of the finite set of the harmonics

{exp( j2pnu)}N
−N (3.79)

One way of expanding the power pattern would be to construct an orthogonal set
of basis functions from the harmonic functions using the Gram-Schmidt process,
but Steyskal introduced the following technique, which is computationally simpler.
Since the best harmonic pattern p minimizes the error e1 = || pD − p ||2, that minimiza-
tion problem is solved for the basis vectors.

Using the notation en + N = exp( jnpu), the harmonic pattern p is written

p = ∑
2N +1

n =1
pn en (3.80)

then the error is written

e1 = || pD − p ||2 = E
1

−1

| pD − ∑
2N +1

n =1
pn en |2 wdu (3.81)

The solution to the minimization problem is the result

(pD , en ) = (p , en ) n = 1, 2, 3, . . . , 2N + 1

= 1 ∑
2N +1

m =1
pm em , en2 (3.82)

= ∑
2N +1

m =1
pm (em , en )
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Since the left side (pD , en ) is known for all n, this is a set of 2N + 1 equations
that can be solved for the unknown pm . The solution gives the best harmonic
approximation to pD , but is not necessarily realizable. Next is to find a nonnegative
expression for the pattern (call it q) and evaluate the currents such that the error
term

e2 = ||p − q ||2 (3.83)

is minimized.
In this regard, it is significant that the set of patterns Q is convex, and therefore

any local minimization of e2 is also the global minimum. This property allows q
to converge uniformly to p without fear of finding an incorrect minimum.

Writing q in terms of the element currents from (3.70), the minimization of
e2 is performed by a gradient descent method. Setting the currents to some initial
value In and writing a set of increments Dn so that the new currents are

In = Dn + In (3.84)

defines the new approximation to the desired pattern. The incremental change to
the currents is given by

DI = −
grad e2

|grad e2 | ? s (3.85)

where the scalar constant s is a measure of the step size and is progressively
decreased as the minimum is approached.

Steyskal gives several examples of patterns synthesized using this weighted or
Gaussian error minimization. Figure 3.12 shows two examples of the use of different
weighting functions to provide significantly different approximations of the desired
pulse pattern (dashed). The curves at the left use a 30-dB weighting function, while
those at the right use a 60-dB weighting function. The severe weighting of the
curves at the right reduces all sidelobes to about −37 dB as opposed to −20 dB for
the less severe weighting. Within the shaped region, it is clear that the price paid
for this sidelobe suppression is a higher ripple level and a narrowed pulse region.
The patterns shown at the bottom of the set of figures are the best harmonic
approximation to the desired pattern, and the negative portions are shown dashed.

The Procedure of Orchard et al.

The technique for power pattern synthesis proposed by Orchard et al. [33] differs
from that of Steyskal and others in that it combines the intuition presented by
Schelkunov’s unit circle with the added degrees of freedom accorded by power
pattern synthesis.

Figure 3.13(a) indicates that the pattern range is divided into two parts, a
shaped beam region (I) and a region of controlled sidelobes (region II). The goal
of this synthesis, as indicated in Figure 3.13(a), is to best approximate the shaped
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Figure 3.12 Gaussian power pattern synthesis. Curves at left use 30-dB weighting function. Curves
at right use 60-dB weighting function. Upper curves (a) show desired pattern (dashed)
and optimum realizable power pattern (solid). Center curves (b) show weighting
functions. Lower curves (c) show best harmonic approximation (magnitude only).
(From: [31].  1970 IEEE. Reprinted with permission.)

pattern [denoted by S(F)] in region I, while maintaining control of all the sidelobes
in region II.

The procedure begins with the antenna array factor, expressed

F = ∑
N

n =0
In exp( jknd cos u ) (3.86)
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Figure 3.13 Synthesis of shaped power pattern: (a) complete pattern showing shaped region,
sidelobe region, desired contour (dashed), and sidelobe topography; and (b) ripple
peaks and troughs in region I relative to the desired contour. (From: [33].  1984
IEEE. Reprinted with permission.)

in which the elements each support excitation currents In and are spaced d apart.
The angle u is here measured from endfire to agree with the definitions and figures
from the reference.

Using F = kd cos u and w = exp( jF), one can write F in the form of a product
of its zero locations

F = ∑
N

n =0
In wn = IN PN

n =1
(w − wn ) (3.87)

In general, the zero locations are not assumed real, so Orchard writes

wn = exp(an + jbn ) (3.88)
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where an and bn are both real. This facilitates visualization on the Schelkunov unit
circle.

The power pattern is given by

|F |2 = |IN |2 PN
n =1

[1 − 2ean cos(F − bn ) + e2an ] (3.89)

As a convention, Orchard sets the N th root as wN = 1 (so aN = 0 and bN = p ).
The power pattern expressed in decibels is

G = ∑
N −1

n =1
10 log10[1 − 2ean cos(F − bn ) + e2an ] (3.90)

+ 10 log10[2(1 + cos F)] + C1

The added constant C1 allows the value of G at the main beam peak to be set at
a given value, typically 0 dB.

For the purpose of ordering the pattern zeros, and with no loss in generality,
the shaped beam edge (region I) is arranged to end at F = p (as in the figure). Of
the total N − 1 roots, choose N1 roots to lie in region I and N2 roots in region II.
In the shaped beam region (I), the N1 roots are arranged to be outside of the unit
circle so that an > 0 and both an and bn are adjustable, while in region II the N2
zeros are constrained to lie on the unit circle so that the bn are adjustable while
the an are zero. There are thus a total of 2N1 + N2 + 1 = N3 constants that need
to be evaluated, and these are grouped together in a column vector x. The vector
x consists of N1 values of an and bn in region I, N2 values of b2 in region II, and
the constant C1 .

The pattern G is a function of the angular parameter F and the vector x. The
performance of G must be specified by means of the desired values of G at the N2
maxima of G in region II and the N1 + maxima and N1 minima of (G − S) in
region I [see Figure 3.13(b)]. These N3 known values, which are denoted by gi
(i = 1, 2, 3, . . . , N3), are grouped as the components of the column vector g.

The solution proceeds using a matrix form of the Taylor series as an iterative
scheme to arrive at an estimate of the an and bn coefficients.

ADx = g − ĝ (3.91)

where g is the column vector of the desired values (sidelobe peaks) of G in region
II and of the ripple peaks and troughs of (G − S) in region I. The ĝ is the present
approximation to g, and so is known once the procedure has started. The matrix
A is the matrix of derivatives, so the coefficients aij are

aij =
dG(Fi , x)

dxj
(i, j = 1, 2, 3, . . . , N3) (3.92)

Once solved, the updated vector x + Dx can be taken as a better approximation
vector.
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The required derivative of G is readily obtained from (3.90) as

dG
dan

= Mean
[ean − cos(F − bn )]

Dn
(3.93)

and

dG
dbn

= −Mean
sin(F − bn )

Dn
(3.94)

=
−M sin(F − bn )

2[1 − cos(F − bn )]
if an = 0

where

M = 20/ln 10 = 8.686 (3.95)

and

Dn = 1 − 2ean cos(F − bn ) + e2an (3.96)

In addition, since this procedure does not require that the main beam peak be
scaled to 0 dB, an extra constant C2 is added to the G(F, x) and before every new
iteration C2 is decreased by the value G(F0 , x) at the beam peak. This scaling
assures that each new iteration begins with the peak at 0 dB.

The procedure begins by selecting values of an and bn to lead to the proper
number of maxima and minima for (G − S) in region I, and G in region II. A good
first choice is

bn = [2n /(N + 1) − 1]p n = 1, 2, 3, . . . , N − 1 (3.97)

which makes N2 roots lie within region II and on the unit circle, so in region II,

an = 0 for n = 1, 2, 3, . . . , N2 (3.98)

The next N1 roots are required to be in region I and are chosen slightly outside
the unit circle. It is usually sufficient to choose

an = 0.01 n = N2 + 1, N2 + 2, . . . , N − 1 (3.99)

The initial value of C1 can be taken as zero.
It is now necessary to find the values of Fi that are the locations of the maxima

or minima. These are obtained numerically by using the Newton-Raphson technique
to find the location of each zero of the derivative of g in region II and of the
derivative of (G − S) in region I. This requires both first and second derivatives of
G and S with respect to the angular variable F. The derivative of G is readily
obtained from (3.90):
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dG
dF

= M ∑
N −1

n =1
ean

sin(F − bn )
Dn

− M
sin F

2(1 + cos F)
(3.100)

d2G

dF2 = M ∑
N −1

n =1
ean

[(1 + e2an ) cos(F − bn ) − 2ean ]

D2
n

− M
1

2(1 + cos F)

(3.101)

Derivatives of S depend on the specific mathematical description chosen for S.
Orchard et al. chose a polynomial form for S and so derived useful expressions
for the derivatives in the reference. These are not repeated here, since use of
the polynomial approximation is not fundamental to the method, but is a useful
mathematical convenience. It is assumed here that the function S is well defined
within the region I.

Figure 3.14 shows four patterns that demonstrate control of ripple level to
various degrees which approximate a (csc2 u )(cos u ) pattern over a region. The
first four sidelobes on one side of the main beam are at −30 dB, while all other
sidelobes are set to −20 dB. The four patterns demonstrate that it is possible to
restrict the ripple level amplitude within a controlled region. A detailed analysis
of the patterns also reveals, however, that requiring the extremely tight ripple level
of Figure 3.14(d) (±0.1 dB) within the controlled region produced two undesirable
results in comparison with a less restricted (±1.5 dB) approximation of the desired
pattern. One is that the main beam width is reduced from 41° for the ±1.5-dB
ripple to 34° for the lesser ripple. The second disadvantage of the result of Figure
3.14(d) is that the relative amplitude of the currents is only 4.34 dB for the ±1.5-dB
case, but is about 9.3 dB for the ±0.1-dB case.

These disadvantages can be minimized by placing more pattern zeros in the
shaped region I at the cost of sidelobe levels in region II.

Unlike the method developed by Steyskal, the procedure outlined above does not
produce a mathematically optimum result. It does, however, introduce substantial
flexibility and individual control of each ripple level or sidelobe level, and, most
importantly, controls the entire radiation pattern.

The Alternating Projection Method

The technique called alternating projection or the intersection approach is an
extremely powerful and versatile procedure for synthesizing the excitation of very
general antenna structures. Based on the theory of intersecting sets [34], and applied
to antenna arrays [35–37] and image restoration [38], the method has been extended
by Bucci and others to address problems of reflector feed syntheses and conformal
arrays and other more comprehensive problems [39–42]. However, for the purposes
of this section, the details provided here follow the periodic array and the description
of Bucci et al. [39, 40]. Several other examples are given in Chapter 8.

The procedure is based on a statement of the fundamental task of synthesis
(here reduced to the linear periodic array case) that the radiated patterns for a
specific array can be grouped into two sets. One set (B) is the set of all possible
patterns that can be radiated by the array. A subset of this set (Bc) is the set of
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Figure 3.14 Representation of shaped beam with csc2 u cos u pattern with a 16-element array; d
= l/2. Ripple requirement: (a) ±1.5 dB; (b) ±1.0 dB; (c) ±0.5 dB; and (d) ±0.1 dB.
(From: [33].  1984 IEEE. Reprinted with permission.)

all possible patterns subject to the required constraints. The second set is the set
of patterns that satisfy the desired synthesis result. The resulting solution must be
a pattern that is in both sets (i.e., the union or intersection of the two sets).

Given a periodic array of N elements, the array factor F(u) is:



3.1 Linear Arrays and Planar Arrays with Separable Distributions 151

F(u) = ∑
n

cne jkndu (3.102)

where it is understood that certain external constraints might be imposed on the
coefficients cn (e.g., a limitation to the dynamic range or the phase progression
between adjacent elements).

The set B contains all possible functions F(u), and when constraints are put
on the excitation they define the subset Bc .

The requirements on the pattern are put in the form of two masks, an upper
bound MU (u) and a lower bound ML (u), such that the required patterns must fall
on or between these two bounds, and the set of all such patterns is the set M. An
array factor that belongs to both sets M and Bc is a solution to the synthesis
problem. Figure 3.15(a) shows the mask set for a particular case of a flat-topped
radiation pattern with sidelobe below the −20-dB level and decaying at larger
angles. The synthesis is complete when a function within set Bc is also within the
mask set M.

The term alternating projection refers to the use of the concept of successive
projectors. A projector is an operation that gives the best possible approximation
to some function subject to a chosen norm, like the mean square norm (L2). In
this case, the Fourier series is known to give the best mean square approximation
to a given function and is the basis for the alternating projection scheme.

The iterative process leads from an approximation of the pattern function xn
to the next iterated pattern function xn + 1 by means of two projectors using the
iteration

xn + 1 = PBPMxn (3.103)

where PB and PM are projection operators applied in the sequence shown. The
projector operation described by the mask is:

PMF(u) = HMU (u)
F(u)

|F(u) | |F(u) | > MU (u)

= {F(u) ML (u) ≤ F(u) ≤ MU (u) (3.104)

= HML (u)
F(u)

|F(u) | |F(u) | ≤ ML (u)

which is a projector that edits F(u) so that it is everywhere either within or on the
mask boundaries.

The projector over the excitation constrained set Bc is given by:

PBc
= fs fc fN f −1

s (3.105)

where fs is the Fourier series operator, fc is the constraint operator imposed on
the Fourier series terms (the currents), and fN is an operator that sets to zero all
Fourier coefficients that are outside of the array.



152
Pattern

Synthesis
for

Linear
and

Planar
A

rrays

Figure 3.15 Synthesis of a pulse-shaped pattern using the method of alternating projection: (a) mask set chosen for projection (initial estimate shown as straight
line at 0 dB); (b) radiation pattern of the first projection-upper mask of (a); (c) projection of the pattern of (b) onto the mask set; and (d) result of
tenth iteration.
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With this expression and (3.103), the procedure is clear. One begins with a
starting point that is an approximation xn to the desired pattern. Projecting that
into the set M with PM and then taking its inverse transform leads to the Fourier
series that best approximates the excitation cn . These currents are fitted to the
array and perhaps constrained in some sense; the transform then leads to the next
far-field approximation.

With these two projectors, the iterative sequence is defined by (3.103). Ampli-
tude constraints are imposed with fc by merely forcing the Fourier series coefficients
to be constrained. For example, to require the dynamic range to be constrained to
be within cmin ≤ |cn | ≤ cmax, the fc maps a sequence an into bn using:

bn = Hcmax
an

|an | |an | > cmax

= {an cmin ≤ an ≤ cmax (3.106)

= Hcmin
an

|an | |an | < cmin

Similarly, one can impose a maximum phase variation between elements or other
constraints.

Convergence with this system is not guaranteed, for M and possibly Bc are not
convex sets, so it is important that the initial guess at the pattern be reasonably
good. Otherwise, the sequence could converge to a local minimum.

Figure 3.15 shows several iterations of a sequence that demonstrates the applica-
tion of this technique to generating a flat pulse radiation pattern with decaying
sidelobes using 16 elements with half-wave spacing. Throughout these curves, the
upper and lower masks are shown dashed. The sequence shows how simple the
procedure is to implement because in this case, instead of approximating the pattern,
an initial pattern was chosen as unity over all space. Its projection PM onto the
masks using (3.103) made it coincide with the upper mask boundary—see Figure
3.15(a). Not shown is the trivial next step of applying (3.105) for the first iteration,
namely taking the inverse transform of this initial pattern to get the first estimate
of the coefficients, applying the operator fN , and taking the Fourier transform to
get the far field. Figure 3.15(b) shows this far field for the first iteration, and Figure
3.15(c) shows how Figure 3.15(b) was projected onto the subspace M. Figure
3.15(d) shows that the result of the tenth iteration is a pattern narrowed to fit
within the masks with only slight deviations outside of the mask.

With more complicated patterns, it is often necessary to take more care with
the initial estimate. In addition, care must be taken to make sure that the selected
mask has a union with the constrained Bc (i.e., that the pattern with the constrained
excitation is physically realizable).

3.2 Circular Planar Arrays

3.2.1 Taylor Circular Array Synthesis

A technique analogous to the Taylor line source method was also developed by
Taylor [43] in 1960. The synthesized pattern is derived as a modification of the
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pattern of a uniformly illuminated circular aperture, which is J1(pz)/(pz). Taylor’s
expansion removes the first zeros (to n − 1) and substitutes the new zeros. This
synthesized pattern is

F(z, A, n ) = 2
J1(pz)

pz Pn −1

n =1

1 − z2/z2
n

1 − z2/m2
n

(3.107)

for z = (D /l )sin u, and J1(w) is the Bessel function of order one.
The zeros of the function F(z, A, n ) are given by

zn = ±s [A2 + (n − 1/2)2]1/2 (3.108)

for 1 ≤ n ≤ n, the zeros mn are the natural zeros of the J1(pz)/(pz) function and
are listed in Table 3.7. The parameter s is defined as

s =
mn

[A2 + (n − 1/2)2]1/2 (3.109)

The parameter A is defined as in the Taylor line source method:

A =
1
p

cosh−1 (r) (3.110)

for voltage sidelobe level r, as in the earlier sections.
The beamwidth is given as with the Taylor line source method as

u3 = sb0l /D (3.111)

with b0 defined in (3.30).
The aperture distribution is given by

g(x) =
2

p2 ∑
n −1

m =0

FmJ0(xmm )

[J0(pmm )]2 (3.112)

Table 3.7 Zero Locations mm for J0(pmm )

m mm m mm

1 1.2196699 11 11.2466228
2 2.2331306 12 12.2468985
3 3.2383155 13 13.2471325
4 4.2410629 14 14.2473337
5 5.2439216 15 15.2475086
6 6.2439216 16 16.2476619
7 7.2447598 17 17.2477974
8 8.2453948 18 18.2479181
9 9.2458927 19 19.2480262

10 10.2462933 20 20.2481237
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for x ≤ 2pr /D, with r the radial measure within the circular aperture. Here J0 is
the Bessel function of order zero.

It is necessary to compute n − 1 values of the coefficients Fm given by

F0 = 1 Fm = − J0(pmm )

Pn −1

n =1
1 − m2

m /z2
n

Pn −1

n =1
n ≠m

1 − m2
m /m2

n

(3.113)

The required zero locations of the J0(pmm ) function are given in Table 3.7. Once
again, the useful values of n are limited to maintain balance between efficiency,
sidelobe levels, and realizability of the amplitude distribution.

The aperture efficiency for the circular Taylor pattern is

ea =
1

1 + ∑
n −1

n =1

F2
n

J 2
0 (pmn )

(3.114)

Rudduck [44] presents a table showing aperture efficiency for various sidelobe
levels and n values.

3.2.2 Bayliss Difference Patterns for Circular Arrays

In his classic paper [7], Bayliss presented the development of a two-parameter
difference pattern for circular aperture antennas. The pattern is expressed in a
Fourier-Bessel series of n terms similar to Taylor’s treatment of the sum pattern.
The development of the line source pattern (presented here in Section 3.1.7) is
given in the appendix to the Bayliss paper. The synthesized patterns are again
described in terms of the two parameters A and n, which control the sidelobe level
and decay behavior.

The synthesized pattern is given by

F(z, f ) = C(cos f )2pzJ1′(pz)

Pn −1

n =1
[1 − (z /szn )2]

Pn −1

n =0
[1 − (z /mn )2]

(3.115)

for

z =
2a
l

sin u s =
mn
zn

=
mn

[A2 + n2]1/2 (3.116)

The mn are the zeros of the Bessel function derivatives J1′(pmm ) = 0. The first
twenty roots are given in the Bayliss paper. Table 3.8 lists these two zero locations.
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Table 3.8 Zero Locations of pmm for Bessel
Function Derivatives

m mm m mm

0 0.5860670 10 10.7417435
1 1.6970509 11 11.7424475
2 2.7171939 12 12.7430408
3 3.7261370 13 13.7435477
4 4.7312271 14 14.7439856
5 5.7345205 15 15.7443679
6 6.7368281 16 16.7447044
7 7.7385356 17 17.7450030
8 8.7398505 18 18.7452697
9 9.7408945 19 19.7455093

The zero locations of the synthesized function are at szn , with s defined above,
and zn is defined as in the line source description (3.47).

The circular aperture excitation is given by [8]:

g(p, f ) = cos f ∑
n −1

m =0
BmJ1(mm , p) p < p (3.117)

for p = pr /a and r is the radial variable.
After evaluating an indeterminate form, the coefficients Bm are given as [8,

p. 635]:

Bm =
−2jCm2

m
J1(mmp )

Pn −1

n =1
[1 − (mm /szn )2]

Pn −1

L =0
L ≠m

[1 − (mm /mL )2]

m = 0, 1, . . . , n − 1 (3.118)

= 0 m ≥ n

As described in the earlier sections of this chapter, the selected value of n has
a primary effect on the aperture efficiency and the level of specific sidelobes,
although the maximum sidelobe level is primarily determined by the parameter A.

Bayliss gives a relative directivity expression e, defined relative to the maximum
directivity of a circular aperture (uniform illumination).

e =
8

p4 5 ∑
n −1

L =0
|BL |2J1(mLp )[1 − (mLp )−2]6

−1

(3.119)

Figure 3.16 shows the relative directivity in decibels (10 log e ) as a function
of sidelobe level. The selection of larger values of n does not lead to increased
efficiency for any given sidelobe level, but it is clear that to achieve progressively
lower sidelobe levels, one must increase the selected values of n in order to maintain
good efficiency. The maximum relative directivity that can be achieved in any
difference pattern is −2.47 dB [45].
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Figure 3.16 Relative directivity of Bayliss patterns. (From: [7].  1968 Bell System Technical Journal.
Reprinted with permission.)

3.3 Methods of Pattern Optimization/Adaptive Arrays

3.3.1 Pattern Optimization

Patterns synthesized by the various procedures described above are commonly used
with passive feed networks because of their overall good qualities. However, it is
sometimes desirable to select optimized distributions subject to special circum-
stances which might include external interference or receiver noise. The mathematics
of pattern optimization were developed beginning in the 1960s. Among the earlier
papers in this area is one by Tai [46] on gain optimization of linear arrays. The
results of this work, noted in Chapter 2, showed that the uniformly illuminated
array has the highest gain except in the ‘‘superdirective’’ limit. A formal treatment
leading to the same result is given by Uzkov [47]. The optimization of various
array power measures like directivity, gain, efficiency, or signal to noise ratio is
obtained by casting these parameters into an expression that is the ratio of Her-
mitian quadratic forms. The theorem for gain optimization is stated concisely in
a paper by Cheng and Tseng [48]. Their method of presentation is followed here.

The generalized gain of an antenna array with signal amplitudes an at each
n th array element is given by the ratio

G =

∑
n =1

∑
m =1

am*amnan

∑
n =1

∑
m =1

am*bmnan

(3.120)
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where the numerator represents the power density radiated at a point in space,
and the denominator represents the input power. In general,

amn = exp{ jku0[r̂ ? (rm′ − rn′ )]} (3.121)

where the scalar product

r̂ ? rm′ = u(x − xm′ ) + v(y − ym′ ) + (z − zm′ ) cos u (3.122)

and

bmn =
1

4p E
2p

0

df E
p

0

du exp{ jku[r ? (rm′ − rn′ )]}g(u, f )

Here, g(u, f ) is the element pattern, which is normalized to unity at peak u = u0 .
In matrix form, G can be written in terms of a matrix vector (column matrix

a) as

G =
a†Aa

a†Ba
(3.123)

where a = [a1 a2 a3 . . . ]T, a† is the conjugate transpose of a, and the matrices A
and B,

A = [amn ] B = [bmn ]

are both Hermitian N × N square matrices. (The dagger symbol means conjugate
transpose.) In addition, B is positive definite, and so the roots of the characteristic
equation (eigenvalues of the ‘‘regular pencil’’) are defined (A − lB):

det(A − lB) = 0 (3.124)

where l1 ≥ l2 ≥ . . . lN , are real.
With the eigenvalues ordered as shown above, l1 and lN represent the upper

and lower bounds of the value of G, with the upper and lower bounds of gain
determined from the equations

Aa = l1Ba Aa = lNBa (3.125)

This theorem is used for maximizing gain, directivity, or other array parameters
and requires only the evaluation of the maximum eigenvalues and the associated
eigenvector, which becomes the complex excitation vector a.

Cheng and Tseng further show that for a linear array with uniformly spaced
elements and using the coordinate system of Figure 2.9 (Chapter 2) to facilitate
gain computation, the matrices A and B have terms
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amn = e+jku (m − n)dx (3.126)

and

bmn =
1

4p E
2p

0

df E
1

−1

du g(u, f )e+jku (m − n)dx (3.127)

where here u is defined as u = cos u.
The matrix A can be written as an outer product using the column vector

notation

e = [e1 e2 . . . eN ]T (3.128)

where

em = e jkmdxu0 (3.129)

then

A = ee† (3.130)

All of the roots of the characteristic equation (3.120) are zero except

l1 = Gmax = e†B−1e > 0 (3.131)

and the optimum array excitation is

a = B−1e (3.132)

The method applies to arbitrarily oriented arrays and can include nonisotropic
element patterns. It is also applicable to arrays in which the total power is evaluated
in terms of circuit parameters using array element impedances. This formulation
is presented in a paper by Harrington [49].

The method has been applied to produce gain optimization in the presence of
random errors in the design parameters [50], and by Lo et al. [51] to optimize
directivity and signal-to-noise ratio.

McIlvenna and Drane [52, 53] have used similar matrix methods to achieve
maximization of gain while constraining the antenna pattern to have specific null
locations. These techniques were later extended to include the use of measured
array element scattering matrices [54]. Other summaries of developments in this
area are presented in [21, 55].

3.3.2 Adaptive Arrays

Often pattern optimization is done by real-time active weighting of the received
signal and can adapt to changes in the outside environment. Although in principle
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it is possible to adapt transmit patterns to optimize the transmission subject to
some received signal or noise distribution, this is seldom done except for the
formation of so-called retrodirective beams, which automatically transmit in the
direction of a received signal or pilot tone.

Adaptive array theory has undergone extensive development, and only the most
skeletal descriptions of the theory are included here in order to facilitate the calcula-
tion of radiation patterns that would result from adaptation to steady-state interfer-
ence. The mathematics of pattern optimization is based on matrix theory and
specifically on the optimization of quadratic forms [54–56]. An excellent treatment
of optimization is given by Harrington [57], while detailed descriptions of the real-
time response of adaptive arrays in a transient environment are given in the texts
[58, 59], as well as in many journal publications and tutorial papers [60–62].

Among the algorithms chosen for adaptive optimization, the most commonly
selected are derived from the so-called Howells-Applebaum [63] method and a
procedure due to Widrow et al. [64, 65] that minimizes the least mean square
(LMS) difference between the array output signal and some known reference signal.
The technique of Howells and Applebaum performs signal-to-noise optimization
subject to the constraint of a specified quiescent array pattern formed by the
array weighting network in the absence of interference. In principle, both types of
optimization could be used for either radar or communication, but in practice the
Howells-Applebaum algorithm is often used for radar systems because the direction
of the desired return signal is known, while the LMS algorithm can be used for
communication systems, where the direction of the desired incident signal may not
be known. In this case, the reference signal can be some replica of the format of
the received signal, a pilot tone or code sequence. The LMS algorithm is also used
in radars, with the transmit waveform as a reference.

The weighting of the received signals can either be done using analog circuits
or by digital operations on the output signals, and by closed-loop feedback methods
or open-loop procedures that seek to optimize the returns based on measurements
of the signal environment.

Figure 3.17 shows several adaptive array configurations and serves to point
out the distinction between fully and partially adaptive arrays. Fully adaptive
arrays, whether organized with element level controls, as in Figure 3.17(a), or as
multiple beam arrays with a network to excite the orthogonal sin(x)/x ‘‘Woodward’’
beams, as in Figure 3.17(b), have every element port controlled adaptively;
NT − 1 available degrees of freedom are used for pattern control, and the remaining
degree of freedom points the main beam.

In order to reduce the cost of adaptive systems, one can use partially adaptive
arrays, defined as those in which only some of the elements are controlled adap-
tively, as shown in Figures 3.17(c, d). Such arrays include the so-called sidelobe
cancelers, which use one or several elements weighted to cancel interference at the
level of the array sidelobes. In practice, the elements used for cancellation can
either be within [see Figure 3.17(c)] or outside [see Figure 3.17(d)] of the array,
and can be grouped into subarrays (rows, columns, areas) or randomly oriented
elements. In each case, the analysis is unchanged, but the practical results of such
choices are of major importance in determining antenna performance. Often, the
use of individual elements for adaptivity is called element space adaptation, but if
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Figure 3.17 Adaptive array configurations: (a) fully adaptive array (element weighting); (b) fully
adaptive array with multiple-beam feed (beam space adaptivity); (c) partially adaptive
array; and (d) array with multiple canceler elements.

a large number of elements are grouped together passively and then used adaptively
for cancellation, then this is called subarray level adaptation. In any case, an array
with NT elements, and fewer than NT − 1 available for the adaptive process, is a
partially adaptive array and usually suffers some limitations that are the price to
be paid for the desired simplifications.
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3.3.3 Generalized S/N Optimization for Sidelobe Cancelers, Phased and
Multiple-Beam Arrays

Assume that the n th port of the receiving system receives a signal,

En = en (uj , vj ) (3.133)

corresponding to an incident or interfering signal of unity amplitude at an angle
given by the direction cosines uj and vj . The angular function en contains the
amplitude and phase of the signal received by the n th port. The port can either
be an element port, as in Figure 3.17(a, b), or a multiple-beam port, as in Figure
3.17(d).

For a fully adaptive array [Figure 3.17(a)], in which the output ports are the
NT element ports, or a linear array used with canceler elements [Figure 3.17(d)],
the en include the complex element patterns fn sampled at the interfering angles.
For a linear row array of elements, as in Figure 3.17(a),

en = fn (uj , vj )z
n
j (3.134)

where

zj = exp( jk0dxuj /l ) (3.135)

In the more general situation of a two-dimensional array or an array with
arbitrary element locations,

en = fn (uj , vj ) exp( jk0rn ? r̂0j) (3.136)

using the notation of Chapter 1.
For a multiple-beam matrix forming specific beams, the en are the complex

received patterns at the n th beam ports. As a simple example, for a linear array
forming the orthogonal beams (as will be described in Chapter 8), this term is (for
assumed isotropic element patterns):

en (u) = Fn (u) (3.137)

where

Fn (u) =
sin[NTp (u − un )dx /l ]
NT sin[p (u − un )dx /l ]

In either case of multiple-beam or element-level adaptation, upon receiving an
interfering signal from a source Sj at angle (uj , vj ), the adaptive network applies
a set of weights wn to obtain the resulting received interfering signal.

E = ∑wnen (uj , vj ) = wTe (3.138)
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Adaptive Weights—Howells-Applebaum Method

For an array of N elements with adaptive control at the element level, the beam-
former selects the set of weights wn to receive some desired signal at angle u0 . For
the linear row array, if the interfering source were not present, the set would be

w0
n = |w0

n | exp(−jkndx sin u0) = |w0
n |zn

0 (3.139)

or, in vector form,

W0 = Xw0
1, w0

2, w0
3, w0

4, . . . , w0
N CT (3.140)

where the superscript T indicates transpose, so that W0 is a column vector.
The amplitude of the weights |w0

n | are chosen to produce some desired quiescent
pattern. This excitation (3.140) is referred to as the quiescent steering vector. The
quiescent steering vector for a multiple beam array depends on whether the beam
ports are used separately or combined to form shaped patterns as in the Woodward-
Lawson synthesis procedure. For example, the quiescent steering vector

W0 = (0, 0, 0, . . . , 1, 0, 0, . . . )T (3.141)

excites a single beam in the direction of the one beam switched on.
Neglecting receiver noise, and if the interference and desired signals are mono-

chromatic, then for a single interfering signal, the ratio of signal to interference is
maximized by choosing array weights to move one of the pattern zeros to the
interfering angle uj . This argument holds when there are a number of interfering
sources, and so there has been much work on antenna pattern synthesis and
optimization subject to the constraints of setting pattern nulls at arbitrary locations.
An N-element array can have up to (N − 1) nulls, and in principle can cancel up
to (N − 1) interfering signals. In practice, one cannot place too many of the nulls
close together without incurring severe pattern distortion.

In the more general case, there may be a number of wideband interfering
sources and a noisy receiver in each channel. The treatment of wideband signal
response is beyond the scope of this text, and so for the purposes of illustration,
it has been assumed that the signals are all represented as narrowband modulation
about some carrier at frequency f. It will be assumed that all interfering signals
are uncorrelated with each other and with the desired signal and the channel noise.
In terms of a total signal (noise plus interference plus desired signal) en at the n th
channel of the receive array, the weighted and combined signal at the output port
is given by

E = ∑wnen (3.142)

or, in vector form,

E = WTe (3.143)
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for column vector e = (e1 , e2 , . . . , eN )T, and the sum is taken over all N output
ports. Note that in this form en may include signals from input ports of an array
with arbitrary element locations or be the output of a multiple-beam matrix.

The average power received at the combined output port is E*E, where the
overbar indicates a time average over the correlation interval. It is this average
power that determines the signal-to-noise-plus-interference ratio for the system.
Excluding the signal power, the average noise-plus-interference power is given by

E*E = {WTe}*{WTe} = ∑
m

∑
n

wm* em* wnen (3.144)

= W†MW

where the matrix M is the noise covariance matrix and is given by the outer product

M = e*eT = 3
e1*e1 e1*e2 … e1*eN

e2*e1 e2*e2 … e2*eN

A A A
eN*e1 eN*e2 … eN*eN

4 (3.145)

where the en terms include only noise and interference, with the desired signal
excluded. Once again, the symbol † means conjugate transpose. Note that some
texts use the matrix form ee† instead of the above e*eT. In that case, the solution
vector is W* instead of the W obtained in the following results.

The received power of the desired signal after passing through the same
weighting network is similarly given by

ES*ES = W†MSW (3.146)

where MS is the signal covariance matrix and has the same form as the noise
covariance matrix above, but only includes the signal terms and is evaluated at
the beam peak.

The above expressions E*E and ES*ES are quadratic forms, and the ratio of
signal to noise plus interference is the ratio of these two quadratic forms.

S /N =
W†MSW

W†MW
(3.147)

The procedure for maximizing this ratio is well known and was outlined in the
previous discussion of gain optimization. Subject to these conditions, the optimum
weight vector W is given as

W = M−1W0 (3.148)

For a linear array of NT elements receiving uncorrelated noise, narrow-band
interference, and a monochromatic desired receive signal, the total undesired signal
at the n th port is made up of the sum of noise (nn ) and interference signals as



3.3 Methods of Pattern Optimization/Adaptive Arrays 165

en = nn + ∑
j

Aj exp[ j2p (dx /l )uj n] (3.149)

The covariance matrix is made up of terms

Mnm = en*em = Nnd (n, m) + ∑
j

Pj exp[ j2p (dx /l )uj (m − n)] (3.150)

where Nn = nn*nn and Pj = |Aj |2, and d (N, m) = 1 for n = m and zero otherwise.
The expression for a two-dimensional array with arbitrarily located elements

is given by

Mnm = en*em = Nnd (n, m) + ∑
j

Pj exp[ j2p r̂j ? (rm − rn)/l j ] (3.151)

for rn , the position vector of the n th element in the two-dimensional array, and
r̂j , the unit vector denoting the interfering source of wavelength l j .

Adaptive optimization of a multiple-beam array is also controlled by (3.148),
but in this case the terms of the noise covariance matrix are

Mnm = en*em = Nnd (n, m) + ∑
j

Pj Fn*(uj )Fm (uj ) (3.152)

It is assumed that the interfering signals are narrowband and uncorrelated. The
Fn could be of the form of the orthogonal beams of (3.137) or any more general
form.

3.3.4 Operation as Sidelobe Canceler

If one considers the simplest case of a single sidelobe canceler, in which the covari-
ance matrix has but four terms, then the inverse matrix is written

M−1 =
1

M11M22 − M12M21 F M22 −M12

−M21 M11
G (3.153)

since the quiescent weight vector is just the input to the main antenna

W0 = [1, 0]T (3.154)

and the weights of an adaptively optimized two-element system are

W = M−1W0 =
1

M11M22 − M12M21 F M22

−M21
G (3.155)

The analysis of a two-antenna canceler system applies to a two-element array
[Figure 3.17(a)] or to an array with scanned beam and a single sidelobe canceler,
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or a two-beam multiple-beam system. In either of these cases, the analysis shows
that the system weights are adjusted so that the signal at terminal 1 is

e1w1 =
e1

M11M22 − M12M21
e2*e2 (3.156)

while that from the canceler output port 2 is

e2w2 =
−e2

M11M22 − M12M21
e2*e1 (3.157)

For a monotonic interfering signal, these two signals are equal and opposite,
and their sum cancels. The resulting pattern from the antenna plus canceler has a
zero at the angular location of the interference. In some cases, the covariance matrix
can become singular. This would occur in the above case if the uncorrelated
noise were not included in the receiver channels. In the expressions above, the
denominator would be zero except for the uncorrelated noise terms in the covariance
matrix coefficients.

For multiple sidelobe canceler, locating elements at positions xn (either within
or outside of the array) and labeling the main antenna port #1, then the signal at
any port (canceler or main antenna) is given as

en = nn + ∑
J

AJ Fn (J) (3.158)

where Fn (J) = exp[ j2p (xn /l )uJ] for n ≠ 1, and where Fn (J) = the main antenna
pattern at u = uJ for n = 1. With this substitution, the power in each port is given
by the previous expression for the multiple-beam case.

The steering vector is simply the weighting of the antenna port alone (in the
absence of interfering signals) as

W0 = [1, 0, 0, 0, . . . ]T (3.159)

Although the mathematics of the canceler circuit is the same for any of the
configurations, the pattern performance of this basic canceler circuit is very different
for the several configurations. Figure 3.18(a) shows pattern nulling with a low-
gain canceler element pattern. As the figure shows, the low-gain element with its
broad pattern can cancel interference that enters at the level of the main antenna
sidelobes. Since the canceler pattern is much broader than the main antenna pattern,
sidelobe cancellation produces an effective total pattern with some sidelobe distor-
tion, but with a null at the location of the interference. Low-gain sidelobe cancelers
are not usually used to cancel interference entering through high sidelobes of the
pattern main beam because of the extreme sidelobe distortion that results. For the
case shown, in which an omnidirectional canceler is used to produce a null at an
interfering signal entering the first sidelobe (−13 dB), the resulting pattern distortion
is significant and the gain obviously lowered because of the resulting sidelobe
at the −16-dB level. For this reason, sidelobe cancelers are primarily useful for
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Figure 3.18 Pattern nulling with sidelobe cancelers: (a) single canceler at location 2l from center
of 8-element array [interference at peak of first sidelobe, initial pattern from uniform
array (dashed)]; and (b) two cancelers for 16-element low-sidelobe array (cancelers
at 5l , 5.5l from array center, −40-dB Chebyshev pattern dashed).

cancellation in regions where sidelobes are small relative to the rest of the pattern
structure to be left undistorted.

If several sources of interference are present, the single sidelobe canceler still
optimizes S/N, but the system does not have sufficient degrees of freedom to
satisfactorily complete the task. However, as long as the number of interfering
signals is not too large, there is still the possibility of using a multiplicity of sidelobe
antenna cancelers to produce closely spaced nulls for interference cancellation.
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Figure 3.18(b) shows an example of two cancelers used effectively to suppress
sources of interference in a relatively low-sidelobe pattern region.

Effective pattern nulling with low distortion can be obtained using one of a
set of multiple beams as a sidelobe canceler. In this case, the pattern distortion is
reduced, as compared with the low-gain canceler example, because the beam pattern
acting as canceler has high gain and a narrow beam, and so produces only localized
distortion of the total pattern. The difficulty in using a single multiple-beam or
any kind of narrow-beam antenna in the canceler mode is that one must choose
the appropriate beam or scan the canceler to perform the cancellation.

Although the abbreviated treatment in this text does not consider wideband
cancellation of interfering signals, it is worth mentioning that another limitation
of the use of cancelers, especially those located outside of the main antenna aperture,
is that there may be substantial distances between the phase centers of the main
antenna and the canceler. In this case, wideband cancellation is only achieved using
tapped delay lines to equalize the electrical line length between phase centers for
all interference angles.

3.3.5 Fully Adaptive Phased or Multiple-Beam Arrays

Applebaum has shown that the cancellation process that takes place in a fully
adaptive array with a single source of interference is equivalent to forming a
uniformly illuminated canceler pattern with the full array and weighting that beam
to exactly cancel the interfering signal. Figure 3.19 illustrates the quiescent pattern
and a cancellation pattern chosen by the optimization process to suppress a single
source of interference.

Phased Array

Figure 3.20 shows two patterns of a 16-element array with a quiescent steering
vector chosen to form a 40-dB Chebyshev pattern. If interfering sources are located
very near the natural nulls of the quiescent pattern, the resulting pattern, although
not shown, is nearly unchanged. The solid curve of Figure 3.20 results from placing
10 interfering sources (see solid vertical lines) separated by about one-quarter

Figure 3.19 Quiescent pattern and canceler beam for single source of interference. (From: [63].
 1976 IEEE. Reprinted with permission.)
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Figure 3.20 Adapted pattern of a 16-element array with quiescent −40-dB Chebyshev pattern.
Response to 10 (solid line) and 15 (dashed line) interfering sources. (From: [66].
 1989 John Wiley and Sons, Inc. Reprinted with permission.)

beamwidth; a placement that results in a wide trough in the pattern. Still, there
are many degrees of freedom not being used, and the pattern is not yet significantly
distorted. Placing up to 15 sources of interference between one-eighth and one-
quarter wavelength apart (at locations shown by the solid and the dashed vertical
lines) produces very little change in the pattern if the interfering power is maintained
at 10 times the noise (curve not shown). However, if the interfering sources are
all 100 times as large as the noise, one additional null is moved into the region
(see dashed curve) and the average level is reduced over the trough region. The
pattern has not been adapted to place nulls at each of the interferers, but to optimize
the signal to a noise-plus-jammer power ratio.

Increasing pattern distortion results when there are not enough degrees of
freedom to place zeros very close together in the array factor. In principle, there
can be N − 1 zeros for an N-element array, but one cannot move all the zeros to
a small area of the pattern without radically changing the rest of the pattern. The
limitation in available degrees of freedom places ultimate limits on the width and
depth of nulled sectors and upon the bandwidth of adaptive pattern control.

Multiple-Beam Array

Adaptive cancellation with multiple-beam systems has advantages for certain
applications, especially when the beams are used to cover only a restricted section
of space (as in a satellite antenna). Most often this ‘‘beam space’’ nulling is used
when the antenna configuration is a multiple-beam lens or reflector, but the beam
forming could also be done digitally. Mayhan [67] has outlined the advantages of
beam space nulling and has shown that cancellation with a multiple-beam antenna
produces a lower sidelobe level outside of the angular extent of the multiple-beam
set. Figure 3.21 shows two patterns of a 16-beam array with four interfering sources
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Figure 3.21 Adapted patterns of 8-element multiple-beam array. Quiescent beam at u = 0.0625
interference levels (relative to quiescent pattern) 99 (solid) and 1,000 (dashed).

at u = 0.3, 0.35, 0.40, 0.45. The quiescent pattern is a single orthogonal beam
with peak at u0 = 0.625. The two patterns are for interfering power levels of
approximately 100 (solid) and 1,000 (dashed) times the quiescent level. The higher
level of interference drives the sidelobes lower throughout the trough region formed
by the four sources and produces a slight lowering of sidelobes near the trough,
but does not alter the pattern or main beam significantly.

3.3.6 Wideband Adaptive Control

Although this discussion has necessarily been limited to narrow-band signals and
interfering sources, adaptive arrays provide wideband cancellation. This is done
naturally by using extra degrees of freedom or through the use of special techniques
to process the various frequency components.

If the array has a sufficient number of degrees of freedom, the pattern of an
array subject to wideband interference will adapt by placing additional nulls in
the vicinity of the interfering signal.

Figure 3.22 illustrates why this relates to broadband cancellation. If the adaptive
array weights are fixed as a function of frequency, then the array pattern is
unchanged with frequency, except for a compression in scale as frequency is
increased. If the pattern of Figure 3.22 has a trough of width Du centered at un ,
then one can readily show that the bandwidth over which good suppression of the
interference at the angle un is given as

D f
f0

=
Du
un

(3.160)

If the angle is time-delay steered to some angle u0 , then the bandwidth repre-
sented by the trough region is
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Figure 3.22 (a) Broadband interference: relations between bandwidth and angular null width; and
(b) broadband interference: 40-dB Taylor pattern modified to produce two trough
areas that are 0.1 unit wide (in u-space).

D f
f0

=
Du

un − u0
(3.161)

because the pattern is stationary about the u0 position.
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To produce such a trough in an antenna pattern requires one to relocate a
number of the pattern nulls into the region of the trough. This statement leads to
a simple analytical procedure for modifying a covariance matrix to produce wide
troughs for wideband interference suppression [68].

The method is most simply presented by considering a line array with elements
spaced at xn . Assuming that the noise terms and any incident waves are uncorre-
lated, the terms in the covariance matrix MN are:

mnm = Nnd (n, m) + ∑
j

Pj e
j
2p
l j

(xm − xn )uj

(3.162)

This sum is performed over all interfering sources with averaged power Pj and
direction cosines uj . Nn is the receiver noise and d (n, m) is the Kronecker delta
function.

For strong sources at discrete angles, the array will place a null at each source.
If, instead of the single source Pj , there was a cluster of nn equal strength incoherent
sources arranged in a line centered about each source, the pattern would have
troughs centered at each source. For a line array with interference sources at angles
uj , these new sources are at

u = uj + qd for −
nn − 1

2
≤ q ≤

nn − 1
2

(3.163)

Choose d = W /(nn − 1), where W is the trough width between the outermost nulls.
In this case the additional sources can be summed in closed form as a geometric

sum, and the modified covariance matrix term becomes:

Mnm = Nnd (n, m) +
sin(nnDnm )

sin(Dnm ) ∑
j

Pj e
j
2p
l j

(xm − xn )uj

(3.164)

for

Dnm =
p
l

(xm − xn )d

The components in the new covariance matrix are thus multiplied by the sinc
function, which has not an angle dependence but a spatial dependence. A simple
way to modify the original (which may be a measured) covariance matrix is just
to multiply the original terms nm of (3.162) by the sinc function, or

Mnm = mnm
sin(nnDnm )

sin(Dnm )
(3.165)

This simple procedure multiplies the diagonal noise terms by multiplying the chan-
nel noise by nn, and this extra diagonal loading may be removed, but otherwise
it produces a trough represented by the cluster of width W of artificial sources.
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Figure 3.22(b) shows the pattern of a 64-element array with a 40-dB Taylor
pattern (n = 8). The array is subject to two interfering sources of the same amplitude,
located at uj = 0.3 and 0.8. The interfering sources are taken as 30 dB larger than
the channel noise. The pattern without augmentation of the covariance matrix is
not shown. The array covariance matrix is modified as indicated in (3.165) using
nn = 7 and W = 0.1. The resulting pattern shows two trough regions as required
by the chosen parameters.

This technique has been extended by Zatman [69] and by the author, who
used a similar procedure for arrays simultaneously forming near- and far-field
troughs [70].

If we were to place many nulls together to form a trough, then clearly one
must move the nulls close together to form a deep trough, and further apart if the
trough need not be so deep. Hence, the number of required nulls must increase if
either the required trough width (frequency bandwidth) is increased or if the
required trough depth is increased. Stated another way, this is seen to lead to a
very fundamental question: for a given array, what is the minimum number of
degrees of freedom required to suppress pattern interference to some given level
over a specified bandwidth? Steyskal [71] has investigated the relationship between
the number of pattern nulls and the width and depth of a pattern trough. Figure
3.23 shows the cancellation relative to the local sidelobe level for several equivalent
alternative abscissas, and parametrically with the number of equispaced pattern

Figure 3.23 Sidelobe cancellation versus number of equispaced pattern nulls M, normalized array
length ,/l , and nulling sector Du. (After: [71, 72].)
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nulls M. The alternative choices of abscissa are the desired number of canceled
sidelobes n , the spatial angle normalized to the beamwidth (, /l )Du, and the normal-
ized bandwidth (, /l )uj D f /f0 , where D f /f0 and uj denote the bandwidth and direc-
tion of the interference. Using this set of curves, one can estimate the number of
degrees of freedom (nulls) required to place a trough of given depth and width in
the pattern of linear array.

Steyskal’s results were obtained through a numerical search using an optimum
mean square approximation of the pattern. A simple formula that approximates
Styeskal’s results was obtained by Franchi [72] using a polynomial representation
based on the Schelkunov method. Since Franchi’s procedure is too complicated to
repeat here, only the result is stated below. Given an original pattern with sidelobe
level SLL0 throughout some pattern region Du which is M fundamental beamwidths
(l /L) wide, a new pattern is made to have a lower sidelobe region SLL1 by forcing
a larger number of nulls N into the same region. The relationship between the two
sidelobe levels and the number of nulls N and M is given by Franchi [72] as

SLL1
SLL0

= H(e /2)[1 − (M /N )2] M
N J2N

(3.166)

This equation is plotted (dashed) in Figure 3.23.
Fully adaptive arrays are expensive in terms of hardware costs and processing

costs, and even with partially adaptive arrays, the cost of adding additional degrees
of freedom can be significant. Therefore, it is sometimes convenient to provide
wideband cancellation by using several other approaches. The first is to use a filter
bank behind each array channel and then optimally process each band separately.
If p such subbands are used, the processing is essentially the same as for p separate
arrays. The optimized outputs of these virtual arrays are then combined to produce
the wideband output of the full array. This approach can be implemented in the
analog version described, or digitally by first taking a Fourier transform of the
array element outputs and then processing the spectral components separately.
Frequency domain processing, whether analog or digital, has the effect of producing
an array pattern that changes with frequency to keep essentially a single null at
the source of interference.

An alternative to the frequency domain processing of a wideband signal, but
one that achieves similar results, is to use a programmable tapped delay line in
each array channel. This alternative produces a pattern that is stationary at the
signal frequency and the frequency of the interfering source. The required number
of taps at each channel increases with the array size and with the instantaneous
bandwidth. The delay-line function could also be implemented digitally. Mayhan
et al. [73] present a discussion of the tapped delay-line matching of adaptive
cancelers.

The details of these and other adaptive optimization procedures constitute an
exciting field of antenna research. Some of these are described in antenna texts
[74, 75], as well as in three books [58, 59, 76] dedicated to this exciting subject.
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3.4 Generalized Patterns Using Covariance Matrix Inversion

The adaptive procedure provides a generalized method for the adaptive control of
patterns. Although it was introduced in connection with pattern optimization in
the presence of system noise and interfering signals, if the interfering signals are
much larger than the system noise, then the method of covariance matrix inversion
becomes a pattern nulling scheme. The technique can be used as a generalized root
matching procedure and so is directly applicable for discretizing the continuous
aperture distributions of the Taylor and Bayliss patterns or the more generalized
procedures described earlier. This is done by fully constraining all the pattern zeros
and so can lead to relatively large matrices to invert.

A procedure first suggested by Sureau and Keeping [77] involves the use of an
interference spectrum for the synthesis of sum and difference patterns from cylindri-
cal arrays. This innovative use of the very general adaptive array process allows
the direct incorporation of array element patterns and arbitrary (conformal) element
location in the synthesis process. Sureau and Keeping distributed interfering sources
around the entire cylindrical array, except for a window arc that defined the width
of the main beam. The number of interfering sources was chosen to be several
times the number of array elements. Although there was no explicit way of directly
synthesizing desired sidelobe structures, the authors found that by inversely tapering
the ‘‘noise’’ interference amplitude, it was possible to produce a variety of radiated
patterns, including some with nearly constant sidelobe levels over specified regions.
Dufort [78] also investigated the use of adaptive methods for pattern control,
but for periodic arrays of isotropic elements. By making the angular interference
spectrum equal to the reciprocal of the desired pattern, he obtained improved
pattern sidelobe control.

A paper by Olen and Compton [79] extended these numerical approaches and
iteratively tailored the interference spectrum. In this procedure, an initial quiescent
pattern is computed and the sidelobes compared with the desired sidelobe level.
The number of interfering sources is again taken to be several times the number
of elements in the array. Figure 3.24 shows a sample case of 10 elements with
isotropic element patterns. The desired sidelobe level is −30 dB; but with the
interference power set uniform for the initial (zeroeth) iteration, the optimum array
pattern is that of a uniformly illuminated array, shown in Figure 3.24(a). Figure
3.24(b) shows the first iteration of the interference spectrum which results from
choosing an interference-to-noise ratio spectrum that has no interference within
the main beam region, and outside of the main beam has an interference level
proportional to the difference between the desired and existing pattern level. Further
iterations proceed in like manner, choosing the interference at each location to be
varied with each iteration in proportion to the difference between calculated and
desired sidelobe structure for the previous iteration. The cycle is repeated until the
pattern is judged satisfactory. Figure 3.24(c) shows the converged pattern after
nine iterations, and Figure 3.24(d) shows the interference spectrum that would
have been used at the next iteration, had it been necessary.

To illustrate the flexibility of the scheme, Figure 3.25(b) shows the pattern of
an array of 17 elements with l /2 spacing, designed to have a sidelobe envelope
like that of Figure 3.25(a), with −30- and −40-dB levels. The resulting pattern is
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Figure 3.24 Patterns and interference powers: (a) pattern with uniform noise spectrum; (b) interference
spectrum (first iteration); (c) final pattern (nine iterations); and (d) final interference spectrum
(ten iterations). Dashed line is desired −30-dB level. (From: [79].  1990 IEEE. Reprinted with
permission.)

an excellent representation of this two-level sidelobe structure and illustrates the
power of this relatively simple technique. This degree of control, coupled with the
ability to insert known or measured element patterns and to readily address confor-
mal array structures, is a major advantage of this new technique.

3.5 Pattern Synthesis Using Measured Element Patterns

Most of the synthesis procedures outlined in this chapter require that the array
pattern can be written as a product of an element pattern and an array factor. The
pattern of an element in an array is not, however, the same as the pattern of that
same element when used alone. As indicated in Chapter 6, this is because exciting
one element in the array produces radiation from that element and additional
radiation from all other elements, because of currents induced on them by the
excited radiator. Nevertheless, the synthesis procedures are still valid if the radiating
currents or aperture field has the same distribution on each element. In this case,
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Figure 3.25 Synthesized pattern with −30- and −40-dB sidelobe levels: (a) desired level; and
(b) resulting pattern. (From: [79].  1990 IEEE. Reprinted with permission.)

one can speak of there being only a single ‘‘mode’’ of excitation on each element,
with higher order terms negligible. The assumption of a single mode is approxi-
mately true for most small elements when higher order current distributions are
relatively small compared with that part of the current that is common to all
elements. Assuming that the element current distributions are the same, in an actual
array, the interelement coupling results in currents that are not proportional to
the applied sources, and this in turn produces the unequal element patterns. One
can, however, synthesize a required array factor and then invert the coupling
matrix, as indicated in Section 2.2 (Chapter 2), to solve for the required excitation.

Experimentally, one could use measured reflection coefficient or impedance
data to determine the array coupling and then readjust excitations. Alternatively,
one can obtain measured array element patterns and use these measured data to
remove the deleterious effects of mutual coupling. Using measured element patterns,
one can follow the procedure of Steyskal and Herd [80] and expand the element
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pattern of the n th element of a linear array in the form of a set of radiating signals
from each of the N-array elements. Corresponding to an incident signal An at the
n th element is the radiation

gn (u) = e0(u) ∑
N

m =1
Cnm e jkmdu (3.167)

where e0(u) is the isolated element pattern and Cnm is an unknown coupling
coefficient relating the signals incident at the n th element to the radiating signal
at the m th element.

The radiated signal from the whole array is

F(u) = ∑
n

Angn (u) = e0(u)∑
n

An∑
m

Cnm e jkmdu (3.168)

This element pattern relationship can be inverted to solve for the coefficient Cnm
based on a measured element pattern gn (u ). This result is given next and, apart
from a constant, is the same as (3.3). From (3.167), using orthogonality:

Cnm =
1

2p E
p /kd

−p /kd

gn (u)
e0(u)

e−lkmdu du (3.169)

When the spacing is less than l /2, the convenient orthogonality is lost.
Once the coefficients Cnm are known, the desired array excitation An is obtained

by equating the radiated pattern to that which would be radiated from some desired
source excitation Dn (which might be any of the illuminations studied in this
chapter).

F(u) = e0(u)∑
m

Dm e jkmdu (3.170)

Comparing this with (3.168) leads to the relationship between the desired
excitation coefficients Dm and the required incident signals An :

Dm = ∑
n

An Cnm (3.171)

and so the An are evidently given by the matrix inversion

A = [C−1]D (3.172)

Steyskal and Herd [80] give an example of this method applied to correct the
excitation of an 8-element waveguide array. Typical element patterns for a central
and edge element are given in Figure 3.26(a). The element is an open-ended
waveguide measured in the E-plane. In Figure 3.26(b, c), the array is excited with
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Figure 3.26 Pattern control using measured element patterns: (a) the measured pattern magnitudes
for center (solid line) and edge (dashed line) elements in an 8-element array;
(b) 30-dB Chebyshev patterns without coupling compensation (solid line = measured;
dashed line = theory; dashed line is ideal); and (c) 30-dB Chebyshev patterns with
coupling compensation. Dashed pattern is ideal. (From: [80].  1990 IEEE. Reprinted
with permission.)
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a 30-dB Chebyshev taper and scanned to −30° from broadside. In Figure 3.26(b),
the Chebyshev excitation is applied to the array input ports without correction,
but such a small array is dominated by edge effects and the actual sidelobe level
is well above the desired −30-dB level. In Figure 3.26(c), the correction above has
been computed from the measured array element patterns, and the resulting side-
lobes are improved to the point of approaching the design sidelobes. The ability
to perform such correction requires precise control of array amplitude and phase
and is one of the major advantages of digital beamforming technology.

Array Failure Correction

When elements of an array fail, it is of course possible to change the array excitation
to produce a new array pattern that approximates the pattern of the original array
without failures. In order to do this, one must first know what elements have failed
and whether the element has completely failed (with no current) or only a phase
shifter bit has failed. Throughout the years, a number of authors have addressed
this problem and developed techniques of resynthesizing the desired pattern with
a reduced set of operating elements. Examples include the work of Peters [81].
Clearly, the alternating projection scheme described earlier is well suited to this
resynthesis problem, as the missing or incorrect current can be added in as another
constraint on the fc or fn operators.

There is also one procedure that is not a resynthesis, but a substitution proce-
dure. It can only be done practically with a digital beamformer. The technique
does not produce an optimum pattern; it has a unique feature possessed by none
of the resynthesis methods. The feature is that the procedure is independent of the
initial weights applied to the array: it is the same procedure whether one applies
initial weights for uniform illumination, low sidelobes, shaped beams, or even
multiple simultaneous beams at the same or different frequencies. For an array of
N elements, it corrects the array manifold of currents to produce exactly the same
radiated field at some fixed number of points P in space as the original filled array
(with P < N ). This could be an advantage when communicating with or addressing
some fixed number of points in space while allowing the pattern to deteriorate at
other angles.

The mechanics of the technique will not be detailed here due to space require-
ments, but it, along with a more generalized derivative procedure, is described in
[82–84].

References

[1] Schell, A. C., and A. Ishimaru, ‘‘Antenna Pattern Synthesis,’’ in Antenna Theory, Part 1,
R. Collin and F. J. Zucker, (eds.), New York: McGraw-Hill, 1969.

[2] Ma, M. T., Theory and Application of Antenna Arrays, New York: Wiley Interscience,
1979.

[3] Rhodes, D. R., Synthesis of Planar Antenna Sources, London, England: Clarendon Press,
1974.

[4] Silver, S., Microwave Antenna Theory and Design, MIT, Rad. Lab., Series, Vol. 12, New
York: McGraw-Hill, 1979.



3.5 Pattern Synthesis Using Measured Element Patterns 181

[5] Schelkunov, S. A., ‘‘A Mathematical Theory of Linear Arrays,’’ Bell System Tech. J., 1943,
pp. 80–107.

[6] Taylor, T. T., ‘‘Design of Line Source Antennas for Narrow Beamwidth and Low Side-
lobes,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-3, January 1955, pp. 16–28.

[7] Bayliss, E. T., ‘‘Design of Monopulse Antenna Difference Patterns with Low Sidelobes,’’
Bell System Tech. J., Vol. 47, 1968, pp. 623–640.

[8] Woodward, P. M., ‘‘A Method of Calculating the Field over a Plane Aperture Required
to Produce a Given Polar Diagram,’’ Proc. IEE, Part IIIA, Vol. 93, 1947, pp. 1554–1555.

[9] Woodward, P. M., and J. P. Lawson, ‘‘The Theoretical Precision with Which an Arbitrary
Radiation Pattern May Be Obtained From a Source of Finite Size,’’ Proc. IEEE, Vol. 95,
P1, September 1948, pp. 362–370.

[10] Mailloux, R. J., ‘‘Periodic Arrays,’’ Ch. 13 in Antenna Handbook, Y. T. Lo and
S. W. Lee, (eds.), New York: Van Nostrand Reinhold, 1988.

[11] Stutzman, W. L., ‘‘Synthesis of Shaped-Beam Radiation Patterns Using the Iterative Sam-
pling Method,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-19, No. 1, January
1971, pp. 36–41.

[12] Dolph, C. L., ‘‘A Current Distribution for Broadside Arrays Which Optimizes the Relation-
ship Between Beamwidth and Sidelobe Level,’’ Proc. IRE, Vol. 34, June 1946, pp. 335–345.

[13] Stegen, R. J., ‘‘Excitation Coefficients and Beamwidths of Tschebyscheff Arrays,’’ Proc.
IRE, Vol. 41, November 1953, pp. 1671–1674.

[14] Brown, L. B., and G. A. Scharp, Tschebyscheff Antenna Distribution, Beamwidth, and
Gain Tables, Naval Ordnance Lab., Corona, CA, NAVORD Rept. 4629 (NOLC Rept.
383), February 1958.

[15] Hansen, R. C., ‘‘Linear Arrays,’’ Ch. 9 in The Handbook of Antenna Design,
A. W. Rudge, et al., (eds.), London, England: Peter Peregrinus, 1983, p. 22.

[16] Stegen, R. J., ‘‘Gain of Tschebyscheff Arrays,’’ IEEE Trans. on Antennas and Propagation,
Vol. AP-8, 1960, pp. 629–631.

[17] Drane, C. J., Jr., ‘‘Useful Approximations for the Directivity and Beamwidth of Large
Scanning Dolph-Chebyshev Arrays,’’ Proc. IEEE, Vol. 56, November 1968,
pp. 1779–1787.

[18] Elliott, R. E., ‘‘The Theory of Antenna Arrays,’’ Ch. 1 in Microwave Scanning Antennas,
Vol. II, R. C. Hansen, (ed.), New York: Academic Press, 1966, pp. 29, 32.

[19] Van der Mass, C. J., ‘‘A Simplified Calculation for Dolph-Chebyshev Arrays,’’ J. Appl.
Phys., Vol. 25, No. 1, pp. 121–124.

[20] Tang, R., and R. W. Burns, ‘‘Phased Arrays,’’ Ch. 20 in Antenna Engineering Handbook,
R. C. Johnson and H. Jasik, (eds.), New York: McGraw-Hill, 1984.

[21] Hansen, R. C., ‘‘Linear Arrays,’’ Ch. 9 in The Handbook of Antenna Design, Vol. 2,
A. W. Rudge, et al., (eds.), London, England: Peter Peregrinus, 1983, p. 309.

[22] Taylor, T. T., One Parameter Family of Line Sources Producing Modified Symmetry
Patterns, Rept. No. TM 324, Hughes Aircraft Co., Culver City, CA, 1953.

[23] Elliott, R. S., Antenna Theory and Design, Englewood Cliffs, NJ: Prentice-Hall, 1981.
[24] Elliott, R. S., ‘‘Design of Line Source Antennas for Narrow Beamswidth and Asymmetric

Low Sidelobes,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-23, 1975,
pp. 100–107.

[25] Elliott, R. S., ‘‘Design of Line-Source Antennas for Sum Patterns with Sidelobes of Individu-
ally Arbitrary Heights,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-24, 1976,
pp. 76–83.

[26] Elliott, R. S., ‘‘Design of Line Source Antennas for Difference Patterns with Sidelobes of
Individual Arbitrary Heights,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-24,
1976, pp. 310–316.

[27] Villeneuve, A. T., ‘‘Taylor Patterns for Discrete Arrays,’’ IEEE Trans. on Antennas and
Propagation, Vol. AP-32, 1984, pp. 1089–1093.



182 Pattern Synthesis for Linear and Planar Arrays

[28] Winter, C. F., ‘‘Using Continuous Aperture Illuminations Discretely,’’ IEEE Trans. on
Antennas and Propagation, Vol. AP-25, September 1977, pp. 695–700.

[29] Elliott, R. S., ‘‘On Discretizing Continuous Aperture Distributions,’’ IEEE Trans. on
Antennas and Propagation, Vol. AP-25, September 1977, pp. 617–621.

[30] Elliott, R. S., and G. J. Stern, ‘‘A New Technology for Shaped Beam Synthesis of Equispaced
Arrays,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-32, 1984, pp. 1129–1133.

[31] Steyskal, H., ‘‘On Antenna Power Pattern Synthesis,’’ IEEE Trans. on Antennas and
Propagation, Vol. AP-18, No. 1, January 1970, pp. 123–124.

[32] Steyskal, H., On the Problem of Antenna Power Pattern Synthesis for Linear Arrays,
FDA Reports, Vol. 5, No. 3, Research Institute of National Defence, Stockholm 80,
Sweden, May 1971, pp. 1–16.

[33] Orchard, H. J., R. S. Elliott, and G. J. Stern, ‘‘Optimizing the Synthesis of Shaped Antenna
Patterns,’’ IEEE Proc. (London), Pt. H, No. 1, 1984, pp. 63–68.

[34] Gubin, L. G., B. T. Polyak, E. V. Raik, ‘‘The Method of Projections for Finding the
Common Point of Convex Sets,’’ USSR Comput. Math and Math Phys., No. 7, 1967,
pp. 1–24.

[35] Bakhrakh, L. D., and C. D. Kremenski, Synthesis of Radiating System, Moscow, Russia:
Sov. Radio, 1974 (in Russian).

[36] Elmikati, H., and A. A. Elsohly, ‘‘Extension of Projection Method to Nonuniformly Linear
Antenna Arrays,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-32, No. 5,
May 1984, pp. 507–512.

[37] Poulton, G. T., ‘‘Antenna Power Pattern Synthesis Using Method of Successive Projec-
tions,’’ Electronics Letters, Vol. 22, 1986, pp. 1042–1043.

[38] Levi, A., and H. Stark, ‘‘Image Restoration by the Method of Generalized Projections
with Application to Restoration from Magnitude,’’ J. Opt. Soc Am. A., No. A1, 1984,
pp. 932–943.

[39] Bucci, O. M., et al., ‘‘A General Projection Approach to Array Synthesis,’’ IEEE Interna-
tional Symp. on Antennas and Propagation, 1989, pp. 146–149.

[40] Bucci, O. M., et al., ‘‘Intersection Approach to Array Pattern Synthesis,’’ IEE Proceedings,
Vol. 137, Pt. H, December 1990, pp. 349–357.

[41] Bucci, O. M., et al., ‘‘Antenna Pattern Synthesis: A New General Approach,’’ IEEE
Proceedings, Vol. 82, No. 3, March 1994, pp. 358–371.

[42] Bucci, O. M., G. D’elia, and G. Romito, ‘‘Power Synthesis of Conformal Arrays by a
Generalized Projection Method,’’ IEE Proc. Microwaves, Antennas and Propagation,
Vol. 142, No. 6, December 1995.

[43] Taylor, T. T., ‘‘Design of Circular Apertures for Narrow Beamwidth and Low Sidelobe,’’
IRE Trans. on Antennas and Propagation, Vol. AP-8, 1960, pp. 17–22.

[44] Rudduck, R. C., et al., ‘‘Directive Gain of Circular Taylor Patterns,’’ Radio Science,
Vol. 6, 1971, pp. 1117–1121.

[45] Kinsey, R. R., ‘‘Monopulse Difference Slope and Gain Standards,’’ IRE Trans. Antennas
and Propagation, Vol. AP-10, May 1962, pp. 343–344.

[46] Tai, C. T., ‘‘The Optimum Directivity of Uniformly Spaced Broadside Arrays of Dipoles,’’
IEEE Trans. on Antennas and Propagation, Vol. AP-12, 1964, pp. 447–454.

[47] Uzkov, A. I., ‘‘An Approach to the Problem of Optimum Directive Antenna Design,’’
Comples Rendus (Doklady) de L’Academie de Sciences des l’RSS, Vol. 3, 1946, p. 35.

[48] Cheng, D. K., and F. I. Tseng, ‘‘Gain Optimization for Arbitrary Antenna Arrays,’’ IEEE
Trans. on Antennas and Propagation, Vol. AP-13, November 1965, pp. 973–974.

[49] Harrington, R. F., ‘‘Antenna Excitation for Maximum Gain,’’ IEEE Trans. on Antennas
and Propagation, Vol. AP-13, No. 6, 1965, pp. 896–903.

[50] Tseng, F. I., and D. K. Cheng, ‘‘Gain Optimization for Antenna Arrays with Random
Errors in Design Parameters,’’ Proc. IEEE, Vol. 54, 1966, pp. 1455–1456.



3.5 Pattern Synthesis Using Measured Element Patterns 183

[51] Lo, Y. T., S. W. Lee, and Q. H. Lee, ‘‘Optimization of Directivity and Signal-to-Noise
Ratio of an Arbitrary Antenna Array,’’ Proc. IEEE, Vol. 54, 1966, pp. 1033–1045.

[52] McIlvenna, J. F., and C. J. Drane, Jr., ‘‘Maximum Gain, Mutual Coupling and Pattern
Control in Array Antennas,’’ The Radio and Electronic Engineer, Vol. 41, No. 12, 1971,
pp. 569–572.

[53] Drane, C. J., and J. F. McIlvenna, ‘‘Gain Maximization and Controlled Null Placement
Simultaneously Achieved in Aerial Array Patterns,’’ The Radio and Electronic Engineer,
Vol. 39, No. 1, 1970, pp. 49–57.

[54] McIlvenna, J. F., J. Schindler, and R. J. Mailloux, ‘‘The Effects of Excitation Errors in
Null Steering Antenna Arrays,’’ RADC-TR-76-183, Rome Air Development Center.

[55] Lo, Y. T., ‘‘Array Theory,’’ Ch. 11 in Antenna Handbook, Y. T. Lo and S. W. Lee, (eds.),
New York: Van Nostrand Reinhold, 1988.

[56] Gantmacher, F. R., The Theory of Matrices, translated by K. A. Hirsch, Vol. 1, New
York: Chelsea Publishing, 1959.

[57] Harrington, R. F., Field Computation by Moment Methods, New York: Macmillan, 1968.
[58] Monzingo, R. A., T. W. Miller, Introduction to Adaptive Arrays, New York: John Wiley

and Sons, 1980.
[59] Hudson, J. E., Adaptive Array Principles, London, England: Peter Peregrinus, 1981.
[60] Gabriel, W. F., ‘‘Adaptive Arrays—An Introduction,’’ Proc. IEEE, Vol. 64, No. 2,

February 1976, pp. 239–272.
[61] Barton, P., ‘‘Adaptive Antennas,’’ AGARD Lecture Series 151, ‘‘Microwave Antennas for

Avionics,’’ AGARD-LS-151, ISBN 92-835-1547-1.
[62] Griffiths, J. W. R., ‘‘Adaptive Array Processing: A Tutorial,’’ IEEE Proc., Vol. 130,

Pts. F and H, No. 1, February 1983.
[63] Applebaum, S. P., ‘‘Adaptive Arrays,’’ IEEE Trans. on Antennas and Propagation,

Vol. AP-24, September 1976, pp. 585–598.
[64] Widrow, B., and J. M. McCool, ‘‘Comparison of Adaptive Algorithms Based on the

Methods of Steepest Descent and Random Search,’’ IEEE Trans. on Antennas and Propa-
gation, Vol. AP-24, No. 5, September 1976, pp. 615–637.

[65] Widrow, B., et al., ‘‘Adaptive Antenna Systems,’’ Proc. IEEE, Vol. 55, December 1967,
pp. 2143, 2159.

[66] Mailloux, R. J., ‘‘Array Antennas,’’ Sec. 1, Ch. 12, Handbook of Microwave and Optical
Components, Vol. 1, K. Chang, (ed.), New York: John Wiley and Sons, 1989.

[67] Mayhan, J. T., ‘‘Adaptive Nulling with Multiple Beam Antennas,’’ IEEE Trans. on Anten-
nas and Propagation, Vol. AP-26, No. 2, March 1978, p. 267.

[68] Mailloux, R. J., ‘‘ Covariance Matrix Augmentation to Produce Adaptive Array Pattern
Troughs,’’ Electronics Letters, Vol. 31, No. 10, May 1995, pp. 771–772.

[69] Zatman, M., ‘‘Production of Adaptive Array Troughs by Dispersion Synthesis,’’ Electronics
Letters, Vol. 31, No. 25, December 1995, pp. 2141–2142.

[70] Mailloux, R. J., ‘‘Receive Array Pattern Modification Using Covariance Matrix Modifica-
tion,’’ IEEE International Symposium on Phased Array Systems and Technology,
October 15–18, 1996, pp. 391–394.

[71] Steyskal, H., ‘‘Wide-Band Nulling Performance Versus Number of Pattern Constraints
for an Array Antenna,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-31, No. 1,
January 1983, pp. 159–163.

[72] Franchi, P. R., ‘‘Degree of Freedom Requirements for Angular Sector Nulling,’’ Proc.
1992 Antenna Applications Symp., September 1992.

[73] Mayhan, J. T., A. J. Simmons, and W. C. Cummings, ‘‘Wide-Band Adaptive Antenna
Nulling Using Tapped Delay Lines,’’ IEEE Trans. on Antennas and Propagation,
Vol. AP-29, No. 6, November 1981, pp. 923–935.

[74] Davies, D. E. N., et al., ‘‘Array Signal Processing,’’ Ch. 13 in The Handbook of Antenna
Design, A. W. Rudge, et al., (eds.), London, England: Peter Peregrinus, 1983, pp. 408–417.



184 Pattern Synthesis for Linear and Planar Arrays

[75] Ricardi, L., ‘‘Adaptive Antennas,’’ Ch. 22 in Antenna Engineering Handbook,
R. C. Johnson and H. Jasik, (eds.), New York: McGraw-Hill, 1961, 1984.

[76] Compton, R. J., Jr., Adaptive Arrays—Concepts and Performance, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[77] Sureau, J. C., and K. J. Keeping, ‘‘Sidelobe Control in Cylindrical Arrays,’’ IEEE Trans.
on Antennas and Propagation, Vol. AP-30, No. 5, September 1982, pp. 1027–1031.

[78] Dufort, E. C., ‘‘Pattern Synthesis Based on Adaptive Array Theory,’’ IEEE Trans. on
Antennas and Propagation, Vol. AP-37, 1989, pp. 1017–1018.

[79] Olen, C. A., and R. T. Compton, Jr., ‘‘A Numerical Pattern Synthesis Algorithm for
Arrays,’’ IEEE Trans. on Antennas and Propagation, Vol. AP-38, No. 10, October 1990,
pp. 1666–1676.

[80] Steyskal, H., and J. S. Herd, ‘‘Mutual Coupling Compensation in Small Array Antennas,’’
IEEE Trans. on Antennas and Propagation, Vol. AP-38, No. 12, December 1990,
pp. 1971–1975.

[81] Peters, T. J., ‘‘A Conjugate Gradient-Based Algorithm to Minimize the Sidelobe Level of
Planar Arrays with Element Failures,’’ IEEE Trans. on Antennas and Propagation,
Vol. AP-35, October 1991, pp. 1497–1504.

[82] Mailloux, R. J., ‘‘Phased Array Error Correction Scheme,’’ Electronics Letters, Vol. 29,
No. 7, April 1993, pp. 573–574.

[83] Mailloux, R. J., ‘‘Array Failure Correction with a Digitally Beamformed Array,’’ IEEE
Trans. on Antennas and Propagation, Vol. AP-44, No. 12, December 1996,
pp. 1543–1550.

[84] Steyskal, H., and R. J. Mailloux, ‘‘Generalization of an Array Failure Correction Method,’’
IEE Proc., Vol. 145, Issue 4, August 1998, pp. 332–336.



C H A P T E R 4

Patterns of Nonplanar Arrays

4.1 Introduction

An important class of applications for arrays requires them to conform to some
shaped surface, often the surface of an aircraft, missile, or some other mobile
platform. The conformality may be required for aerodynamic reasons or to reduce
the antenna’s radar cross section. Sometimes arrays are conformal to a stationary
shaped surface in order to increase the angular sector served by a single array.
Arrays required to provide 180° azimuth coverage may be conformal to a cylinder,
depending on the elevation coverage required, while a spherical surface may be
required for full hemispherical coverage.

Arrays on nonplanar surfaces can be categorized according to the two sketches
shown in Figure 4.1. If the array dimensions are small compared to the radius of
curvature as in Figure 4.1(a), the array is treated as locally planar, with planar
array elements summed in accordance with the geometry of the curved surface.
Such nearly planar arrays also have coverage limited by the field of view of the
planar array. Arrays that are large with respect to the radius of curvature [Figure
4.1(b)] conform to the surface and may be used to scan over a far larger sector if
the illuminations are somehow commutated around on the surface. This commuta-
tion is accomplished by several means, which are discussed briefly in this chapter.
For such large arrays, the analysis and synthesis are significantly more complex
than for a nearly planar or a conventional planar array.

Figure 4.1 Conformal arrays: (a) aperture dimensions much less than local radius of curvature;
and (b) aperture dimensions comparable with local radius of curvature.

185



186 Patterns of Nonplanar Arrays

The analysis and synthesis of nonplanar arrays differ from planar arrays in
several aspects. Pattern synthesis is complicated because the element positions are
not in one plane and the element spacings are not always equal. For these arrays,
the array factor and element patterns are not separable, and the array factor is not
generally a simple polynomial. This situation alone is not a major detriment, and
procedures are developed for properly handling the synthesis to almost any degree
of accuracy. Further, to produce a low-sidelobe pattern with an array that is large
with respect to the radius of curvature, one must commutate the illumination
around the radiating surface in order to utilize the elements that radiate efficiently
in the direction of desired radiation. A third aspect is that the polarization radiated
by elements on surfaces that are not parallel to one another will not generally be
aligned. This can cause high cross polarization. Finally, the element patterns on
shaped surfaces may all be different and can also be very distorted. This can lead
to high sidelobes and poor scanning performance.

To these practical aspects, one must add a fundamental analytical difficulty.
Except for relatively simple nonplanar surfaces like circular cylinders, it is generally
not possible to obtain convergent, accurate Green’s functions for the sources on
or above these surfaces. In addition, the surfaces of aircraft, spacecraft, and other
platforms are often dielectric coated. In such cases, it is customary to obtain
approximate element patterns using the Uniform Theory of Diffraction (UTD) or
other asymptotic techniques for metalized surfaces, and finite element or finite
difference time domain methods for dielectric coated bodies. The detailed calcula-
tions required for computing the radiation and mutual coupling of elements confor-
mal to nonplanar surfaces are beyond the scope of this text, but these evaluations
are implicit in the use of array element patterns throughout the chapter, as the
element patterns incorporate all of the electromagnetic effects.

4.1.1 Methods of Analysis for General Conformal Arrays

The analysis of conformal antennas and arrays is undertaken using a variety of
methods, depending upon whether the antenna or array dimensions are small with
respect to the platform radius of curvature or in fact the platform itself is large or
small with respect to the operating wavelength. Full numerical solutions (moment
method, finite element, or finite difference methods) are still not practically applied
for the largest host bodies, and to date hybrid methods have proven more useful
for the larger structures. Array analysis involves an additional complication in that
the interaction between elements, or mutual coupling, must be included in the
solution for the fields and currents. This analysis is also very dependent upon the
host body dimensions and relative curvature.

Historically, the first methods to find utility for conformal arrays were based
on integral equation solutions. These pertained to structures, like spheres, cones,
and infinite cylinders for which full Green’s functions exist. These structures were
analyzed using the Method of Moments (MOM) [1–4]. The need to analyze micro-
strip antennas on dielectric substrates has led to the use of spectral methods that
have become practical because of the increased computing power now available
[5–7]. These conformal structures are analyzed by MOM using one of several
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forms of spectral Green’s functions and matching to boundary conditions either
in the spectral domain or after transforming back to the spatial domain.

The cavity method [8] has found application in treating conformal microstrip
antennas. Descardeci and Giarola [9] combined the cavity method with the use of
the dyadic Green’s function for a perfectly conducting cone in order to obtain
impedance and radiation patterns for microstrip patch antennas on cones, assuming
the radius of curvature and cone tip distance is large compared with the wavelength.
A related approach, but one not requiring a geometry with an exact Green’s
function, allowed Jin et al. [10] to evaluate the radiation from microstrip elements
and arrays on cylindrical bodies of arbitrary cross section. In this case, the cavity
problem is solved with the finite element technique, while the external fields are
obtained using an MOM solution based on reciprocity.

Kildal and others [11–13] have developed software using the spectral domain
MOM techniques for cylinders of arbitrary cross section, including multiple dielec-
tric layers. They have demonstrated the technique for spherical structures as well.

Elements and arrays on generalized surfaces have also been analyzed using the
finite difference time domain (FDTD) [14, 15] and finite element (FEM) [16, 17]
methods. Both of these methods offer the flexibility to treat elements on arbitrary
three-dimensional surfaces, including dielectric volumes, but have thus far been
limited to structures of a few wavelengths in extent.

Analytical results for antennas on electrically larger bodies have been obtained
using a combination of MOM plus quasi-optical techniques. Early work had its
origins in the use of the Geometrical Theory of Diffraction (GTD) for simply
computing single-term mutual coupling between elements on general convex cylin-
ders and on cones [18, 19] and grew into methods that used GTD to compute the
local fields for MOM solution.

The work in [20, 21] extends the utility of the hybrid methods using new
Green’s functions developed from the UTD. Demirdag and Rojas [21] used these
Green’s functions for evaluation of the mutual coupling between elements on a
uniformly coated, perfectly conducting but otherwise arbitrarily shaped convex
surface. The procedure uses generalized high-frequency UTD solutions for circular
cylinder and sphere to develop solutions for the arbitrarily shaped convex surface via
the local electromagnetic wave propagation at high frequencies. The demonstrated
example evaluated coupling between current elements on a dielectric coated circular
cylinder with inner radius 3l and a coating 0.06l thick. The coating dielectric
constant er was 3.25. These results compared well against the exact eigenfunction
expansion for elements greater than 0.5l apart.

Data by Persson and Joseffsen [22], also using UTD-based techniques, investi-
gated the mutual coupling of apertures and arrays of apertures in circular cylinders.
The accuracy of this approach was such as to demonstrate agreement with measured
data down to the −60- to −80-dB levels.

4.2 Patterns of Circular and Cylindrical Arrays

Circular and cylindrical arrays possess the advantage of symmetry in azimuth,
which makes them ideally suited for full 360° coverage. This advantage has been
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exploited for the development of broadcast antennas and direction-finding anten-
nas. A book chapter by Davies [23] summarizes practical developments in circular
arrays, and the Conformal Array Antenna Array Design Handbook [24], edited
by Hansen, presents an extensive literature search and practical pattern results for
both circular and circular arc arrays, as well as other conformal array geometries.

Figure 4.2(a) shows a group of elements disposed around a circle. The array
pattern for the circular (or ring) array of radius a with N elements at locations
f ′ = nDf is given by the usual array expression (1.47), with

rn = R0 − a sin u cos(f − nDf ) (4.1)

The resulting pattern is

F(u, f ) = ∑
N −1

n =0
In fn (u, f )e+jka sin u cos(f − nDf ) (4.2)

In this expression, the element patterns are shown as scalar, although in the general
case they would be vector. Further, because of symmetry, the element patterns are
dependent on the element location and have the form:

fn (u, f ) = f (u, f − nDf ) (4.3)

and generally include element interaction and the effects of ground plane curvature.
The element patterns are typically not hemispherical, and often their phase center
is not well known, so this must be accounted for in determining the excitation
current.

The excitation In contains the amplitude and phase required for array taper
and collimation. To produce an inphase collimated beam at the angle (u0, f0),
one selects

In fn (u0, f0) = |In fn (u0, f0) |e−jka sin(u0) cos(f0 − nDf ) (4.4)

while for a near constant radiation as a function of f , one selects constant In .
Notice that the ring array can be focused at an elevation angle u0 that is not
necessarily in the plane of the array (u = p /2).

The circular array is of particular importance because it is also the basic element
of cylindrical arrays and even conical and spherical arrays, or arrays on generalized
bodies of revolution, as shown in Figure 4.2(c). In the generalized system that is
depicted in Figure 4.2(c), one can write the far-field pattern of the kth circular
array by using the local radius ak of the array and the position vector r′ that is
measured to the n th element of the kth circular array (xnk , ynk , zk ) on the array.
Using

r′nk = x̂xnk + ŷynk + ẑzk (4.5a)

where

xnk = ak cos fnk ynk = ak sin fnk (4.5b)
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Figure 4.2 Circular and cylindrical array geometries: (a) circular array; (b) cylindrical array; and
(c) generalized array conformed to a body of revolution.

and the position vector in space at the angle (u, f )

r̂ = x̂u + ŷv + ẑ cos u (4.6)

one obtains
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r′ ? r̂ = ak cos fnk sin u cos f + ak sin fnk sin u sin f + zk cos u (4.7)

= ak sin u cos(f − fnk ) + zk cos(u )

and the resulting equation for the field of the k th loop with Nk elements located
at equally spaced angles fnk = nDfk :

Fk (u, f ) = ∑
Nk −1

n =0
Ink fnk (u, f )e+jk [ak sin u cos(f −n Df k ) + zk cos u ] (4.8)

The element patterns fnk of any kth circle are assumed identical except for displace-
ment in the angle f .

Specific characteristics of the patterns of circular and cylindrical arrays are
discussed in the following sections.

4.2.1 Phase Mode Excitation of Circular Arrays

The concept of phase modes is useful in explaining the radiation of circular and
cylindrical arrays and is especially valuable in the synthesis of desired patterns.
This subject is treated only briefly in this edition because of space constraints, but
a detailed treatment of this subject is given in the book chapter by Davies [23].

Most circular (and cylindrical) arrays are made up of directional elements. This
section, however, will introduce the circular array in its most elementary form with
omnidirectional elements.

In either case, starting with (4.8), for a single ring array at z = 0, and assuming
the element patterns to be omnidirectional, the pattern of (4.8) is evidently periodic
in angle and can be expanded in a Fourier series:

F(f ) = ∑
∞

q =−∞
Aq e jqf (4.9)

where the coefficients Aq are

Aq =
1

2p E
p

−p

F(f )e−jqf df (4.10)

In this Fourier series form, each term is called a phase mode of the radiation
pattern. The q th phase mode of F(f ) is a harmonic term that has a 2pq variation
in phase as f varies from 0 to 2p .

The Fourier coefficients Aq of (4.10) can be evaluated in terms of the sum of
all n element currents In , but that sum cannot generally be summed in closed form
for all In . However, there are special choices of the set of currents that correspond
to symmetries of the array, and it is convenient to write the current in terms of
these special symmetrical sets, which are the phase mode excitation of the array.
Without loss in generality, the currents In are written as the finite sum over phase
mode currents I p

n
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In = ∑
P

p =−P
I p

n = ∑
P

p =−P
Cpe jpnDf (4.11)

where

P = (N − 1)/2

The phase mode currents are thus

I p
n = Cp exp[ jp (nDf )] (4.12)

This expansion is more than just a mathematical artifice, since the phase mode
currents have precisely the range of periodic phases obtainable from an N × N
Butler matrix (see Chapter 8). This application of Butler matrices is described in
[25].

One can find the far-field pattern for each phase mode using the expression
(4.10) and writing the Fourier coefficients on the far field Aq as a series of contribu-
tions due to each phase mode current. The pattern for any p th phase mode of
current is written next, and the entire pattern is then given using (4.9). For the
p th mode, with N the total number of elements:

Fp (f ) = CpN3j pJp (ka sin u )e jpf + ∑
∞

I =1
j−(NI −p)J−(NI −p) (ka sin u )e j (p −NI )f (4.13)

+ ∑
∞

I =1
j (p +NI )Jp +NI (ka sin u )e j (p +NI )f4

where Jp (x) is the Bessel function of the first kind and order p.
Equation (4.13) reveals a great deal about the behavior of circular arrays. The

first term of the summation has the same angular dependence [exp( jpf )] as the
phase mode excitation. The additional terms have angular dependence {exp[ j (p ±
NI )f ]}, and so have either much slower or much faster angular variation than the
first term if the number of elements N is large. The order of the Bessel function
Jp (ka) is critical for determining the amplitude of the radiated signal. Figure 4.3
shows the values of several functions Jp (ka) and indicates that the amplitudes
corresponding to large values of p (higher-order phase modes) are small unless the
array radius a is large accordingly. The array will not radiate phase modes higher
than about ka, and so modes with faster angular variation correspond to superdirec-
tive excitation. The application of only one phase mode thus results in a far field
with one term having the same angular dependence as the applied phase mode and
a set of other radiating modes which can be considered as distortions to the far-
field pattern.

Synthesis and Scanning Using Phase Modes of Continuous Current Sheets

The first term of the above is the radiation pattern of a continuous current sheet
with phase mode currents
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Figure 4.3 Bessel functions Jp (ka) versus radial parameter ka for p = 1, 2, 10.

I p
n = Cp e jpa

where here the discrete location nDf is replaced by the continuous variable a (for
infinitesimal separation of current elements). It is this first term that is often used
in pattern syntheses by recognizing the mathematical similarity between the phase
mode radiation of the continuous current sheet and the corresponding far-field
pattern of a finite linear array.

A finite linear array of N = 2Q + 1 isotropic element has the pattern

FL (f ) = ∑
Q

p =−Q
Bp e jp (kdx sin f ) (4.14)

Comparing this with the circular-array far-field pattern of all phase modes in (4.13),
but using only the first term of (4.13), one has (for u = p /2)

F(f ) = N ∑
P

p =−P
Cp j pJp (ka)e jpf (4.15)

The similarity of the two expressions (4.14) and (4.15) is apparent, and so by
exciting phase modes with the coefficients

Cp =
Bp

j pJp (ka)
(4.16)
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and identifying f of the circular array with kdx sin f of the linear array, one can
select a group of phase mode excitations Cp for a given cylindrical array to produce
approximately the same pattern in f space as the linear array produces in sin f
space. Notice that for the linear array the summation is over array elements, while
for the circular array the summation is over phase modes. The synthesis in any
plane does not produce the same pattern for other u because the elevation pattern
of each phase mode is different. This constitutes another difference from linear
array pattern synthesis, where the linear array element currents all have identical
elevation element patterns except for second-order mutual coupling effects.

Examples of this synthesis are given in the literature [25, 26]. The synthesis is
exact for the circular current sheet loop, but the presence of higher order terms in
(4.13) distorts the actual radiated pattern of the discrete array.

The expression above also indicates the choice of excitation to scan the beam
to a particular direction, since the excitation coefficients that scan the linear array
to a given angle f0 are obtained by multiplying the current mode excitation above
by exp(−jpf0).

The particular case of a uniform element illumination of a linear array |Bp | = 1
leads to a radiated pattern of the form

sin[(kNdx /2)(sin f − sin f0)]
[(kNdx /2)] sin(sin f − sin f0)

(4.17)

while choosing equal current modes in a circular array leads to the radiated pattern

F(f ) =
sin[N /2(f − f0)]
N sin[(f − f0)/2]

(4.18)

in the plane u = p /2.
The synthesis achieved by selecting the mode coefficients Cp (4.26) is not always

ideal because, for larger arrays, the Jp (ka) might be zero for a given frequency and
circle radius. Phase modes corresponding to these ka cannot be excited.

Array Bandwidth

The argument of the Bessel function also restricts the array bandwidth and elevation
patterns. The bandwidth criterion given by Davies [23] is that the argument (ka)
of the Bessel functions not change more than about p /8 to avoid excessive changes
in the coefficients. This leads to the bandwidth criterion

D f / f0 ≈ l /8a (4.19)

This corresponds to an extremely narrow bandwidth, for even a moderately large
array, and is one reason why circular arrays of omnidirectional elements do not
suit many applications. The severe limitation is due to cancellation effects between
those elements at opposite sides of the circle.
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4.2.2 Patterns and Elevation Scan

Using only the first term of (4.13) for arbitrary elevation angles, one obtains an
expression for the p th phase mode.

F(u, f ) ≈ N ∑
P

p =−P
Cp j pJp (ka sin u )e jpf (4.20)

The elevation pattern of each p th mode is very narrow, with a peak at the
maximum of Jp (ka sin u ). The argument (ka sin u ) limits the pattern bandwidth,
as indicated earlier, but since it is the only expression in which the elevation angle
u enters, it contains the elevation pattern shape, which is shown as severely nar-
rowed compared to the elevation pattern of a linear array. Again using the criterion
of a ±p /8 change in the Bessel function argument (ka sin u ), Davies obtains an
expression for the phase mode vertical beamwidth as

u3 ≈ (l /2a)1/2 (4.21)

which is the same as that of a linear endfire array of length equal to the diameter.
This severe pattern narrowing also makes the elevation pattern very frequency-
dependent, and, moreover, introduces significant complications in the synthesis of
azimuth patterns at elevations other than p /2.

The pattern is scanned by choosing modes that add at u0 , f0 .

Cp =
e−jpf0 |Bp |

j pJp (ka sin u0)
(4.22)

Figure 4.4 shows the elevation and azimuth patterns of an array of 30 omnidi-
rectional elements with l /2 spacing, arrayed in a ring or loop array and scanned
to various elevation angles. The excitation chosen to scan the array is that of (4.4),
with an equal amplitude distribution |In | = 1. The array radius is 4.775l . Figure
4.4(a) shows f -plane patterns at the scan planes (u ) for chosen scan angles u0 =
90° (horizon) and u0 = 45°. Aside from slight broadening, the patterns are similar.
Figure 4.4(b, c) shows elevation patterns for a progression of elevation scan angles
from u0 = 90, 60° [Figure 4.4(b)] to u0 = 45, 30° [Figure 4.4(c)]. These patterns
show the bidirectional scanned beam with symmetry about the plane of the circle,
since there is no ground screen. The elevation pattern is broadest at the horizon
u0 = 90°, where the vertical projection of the array is minimal. Scanning up from
the horizon narrows the pattern and forms two distinct beams that narrow with
increasing angle from the horizon (decreasing u0).

4.2.3 Circular and Cylindrical Arrays of Directional Elements

Since the pattern characteristics of circular and cylindrical arrays cannot be repre-
sented in terms of the product of an element pattern and an array factor, it is
especially important to consider the array patterns with directional elements.
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Figure 4.4 Radiation patterns for 30-element array of omnidirectional elements. Cylinder radius
4.7746l : (a) Azimuth plane patterns (u, u0) = (90, 90) solid curve, (u, u0) = (45, 45)
dashed curve; (b) elevation patterns for f = f0 = 0 dashed curve and for array scanned
to u0 = 90° (solid), 60° (dashed); and (c) elevation patterns for u0 = 45° (solid) and
30° (dashed).

Beyond this general statement, however, there are two special reasons why the
directive properties of elements are particularly important in such conformal arrays.
First, the mutual coupling between elements narrows the element pattern, and so
in general one cannot design omnidirectional elements. Although this is true for
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Figure 4.4 (Continued.)

planar arrays as well, it is much more important in conformal arrays because all
elements ‘‘point’’ in different directions. Second, the very limited bandwidth and
narrowed elevation pattern of the circular arrays discussed in the last section are
due to the interaction between widely separated omnidirectional elements located
at opposite sides of the array. If the array is built using elements that radiate
primarily in the radial direction, or at least into some forward sector, then the
circular array characteristics are substantially different and the bandwidth signifi-
cantly improved.

For such generalized element patterns, inclusion of an element pattern in the
phase mode representation is a relatively simple operation if the element pattern
is written as a Fourier series.

A particular case studied by Rahim and Davies [27] using an element pattern
of the form (1 + cos f ) yields an especially simple form for the phase mode pattern
for both u0 and f0 equal to zero:

Fp (f ) = Cp j pe jpf [Jp (ka) − jJp′ (ka)] (4.23)

where Jp′ (x) is the derivative of Jp (x).

Bandwidth and Elevation Patterns

Davies [23] provides a useful interpretation of (4.23) and points out that the sum
Jp (ka) − jJp′ (ka) is not strongly dependent on (ka), and so the bandwidth of an
array of directional elements can be much wider than that of the same array with
omnidirectional elements. A striking demonstration of this effect is given by Figure
4.5 [27], which shows the amplitude of a phase mode (p = 1) versus frequency for
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Figure 4.5 Theoretical results showing the stability of mode 1 versus frequency due to the use of
directional elements of the form (1 + cos f ) (solid curve) and omnidirectional (dashed
curve) elements for 2l radius array at 300 MHz. (From: [23].  1983 Peter Peregrinus
Ltd. Reprinted with permission.)

omnidirectional elements (dashed) and directional (1 + cos f ) elements as a function
of frequency. The directional elements remove all of the zeros that were present
in the omnidirectional element array wideband excitation. Similarly, the elevation
beamwidth of each phase mode is no longer limited by interactions between ele-
ments separated on the order of the array diameter and so can be substantially
broadened. Both of these effects (increased bandwidth and broadened elevation
patterns) imply that the array is behaving more like a line source array.

Like the array of omnidirectional elements, however, it is difficult in practice
to synthesize low-sidelobe patterns with the full array excited, because of the
radiation from elements with contributions in the sidelobe region. This topic is
addressed in Section 4.2.4.

4.2.4 Sector Arrays on Conducting Cylinders

Practical Means for Commutation

Cylindrical arrays require commutation [28, 29] of an illuminated region around
the array. Practical surveillance and communication systems with azimuth scan
requirements of 360° use cylindrical array geometries, but with only a restricted
sector of the cylinder illuminated. Typical illumination regions span between 90°
and 120° of the cylinder. The illumination is commutated around the cylinder by
means of a switching network. Phase mode excitation is not often used for large
circular or cylindrical arrays because of the complexity of large Butler matrices
(see Chapter 8) and the difficulty in obtaining sufficient accuracy to cancel all
radiation in the back direction. Figure 4.6 shows several networks for commutating
a given illumination around a cylinder. Four basic approaches are used: mechanical
rotation of a fixed illumination, diode or ferrite switch networks, lens scanning,
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Figure 4.6 Commutating networks for circular and cylindrical arrays. (a) Waveguide commutator.
(b) Switch network. (From: [30].  1969 IEEE. Reprinted with permission.) (c) R-2R
Lens. (From: [31].  1970 IEEE. Reprinted with permission.)
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and matrix beamformers to excite phase modes. Not shown in the figure, but
extremely important to note, is that conformal arrays can also be controlled by
digital beamformers, and in many ways this is the most flexible mode of control.

The simplest kind of commutator is typified by the mechanically scanned
waveguide structure of Figure 4.6(a) using a power distribution network that rotates
in contact (or proximity) with a fixed stator. In this design it is important that the
stator and rotor have different element spacings to avoid excessive modulation of
the scanned radiation.

Switching networks using diode or ferrite switches and microwave hybrid
power dividers have also been used for commutating an amplitude and phase
distribution around a circular array. Giannini [30] describes a technique that uses
a band of switches to bring a given illumination taper to one sector of the array
(usually a 90° or 120° arc), and a set of switches to provide beam steering between
those characteristic positions determined by the sector switching network. For a
32-element array, the circuit shown in Figure 4.6(b) requires eight phase shifters and
twelve transfer switches (double-pole, double-throw), and achieves sector selection
using eight single-pole, four-throw switches. This network excites an eight-element
quadrant of the array that can be moved in increments of one element to provide
coarse beam steering. Fine steering (selecting angles with separation less than the
angular separation between radiating elements on the cylinder) is provided by the
phase controls.

Several lens-fed circular arrays have been constructed using R-2R, Luneberg,
and geodesic lenses. The R-2R lens of Figure 4.6(c) described by Boyns et al. [31]
forms as many beams as there are elements in the array, but does not provide fine
steering unless additional phase controls are added to each element.

Holley et al. [32] show that lens systems can provide fine steering by using an
amplitude illumination with a movable phase center. This is accomplished using
a set of phase shifters at the input to a Butler matrix. With all input elements
excited with zero relative phase, the amplitudes of signals into the Butler matrix
are chosen to produce the required array excitation. By inserting a progressive
phase distribution at the Butler matrix input, the amplitude distribution at the
output ports can be moved with very little change in the shape of the distribution.
This phase shift is adequate for fine steering between the normal increments of
one element. An alternative point of view to explain this operation is to consider
the relative weighting of the multiple beams available from the lens feed. From
this perspective, the net resulting phase tilt at the input of the Butler matrix can
synthesize intermediate beams from a composite of the available lens beams and
so provide high-quality fine steering of the lens-radiated pattern.

Holley et al. [32] applied this principle to a geodesic lens, as shown in Figure
4.7(a), which offered the advantage that the desired array amplitude distribution
could be formed with very few probes. With the geodesic lens feed, only 8 elements
need to be switched to move an illumination spanning about 100 elements of the
cylindrical array (of 256 elements). Figure 4.7(b) shows the broadside amplitude
distribution for the illuminated lens (solid) and the displaced illumination due to
inserting a progressive phase at the input terminals. This economy, added to the
phase center motion produced by the Butler matrix, resulted in good-quality
scanned beams with a near-minimum number of controls.
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Figure 4.7 Electronically scanned array: (a) system configuration; and (b) fine beam steering with
diode phase shifters and Butler matrix. (From: [32].  1974 IEEE. Reprinted with
permission.)

There have been a number of developments in the area of multimode electronic
commutators for circular arrays. These systems derive from techniques similar to
that first used by Honey and Jones [33] for a direction-finding antenna application,
where several modes of biconical antennas were combined to produce a directional
pattern with full 360° azimuthal rotation. Studies by Bogner [34] and Irzinski [35]
specifically address the use of such a commutator combined with phase shifters
and switches at each element. The phase shifters provide collimating and fine
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steering, and the switches are used to truncate the illumination so that only a finite
sector of the array is used at any time, a procedure that is required for sidelobe
control.

Butler matrices (see Chapter 8) have been used to excite the phase modes of
circular arrays directly. As originally proposed by Shelton [36] and developed by
Sheleg [25], a matrix-fed circular array with fixed phase shifters can excite current
modes around the array, and variable phase shifters can then be used to provide
continuous scanning of the radiated beam over 360°. The geometry is shown in
Figure 4.8. Another extension of this technique proposed by Skahil and White [37]
excites only that part of the circular array that contributes to the formation of the
desired radiation pattern. The array is divided into a given number of equal sectors,
and each sector is excited by a Butler matrix and phase shifters. With either of
these circuits, sidelobe levels can be lowered by weighting the input excitations to
the Butler matrix. The technique by Skahil and White was demonstrated by using
an 8 × 8 Butler matrix, eight phase shifters, and eight single-pole, four-throw
switches to feed four 8-element sectors of a 32-element array. The design sidelobes
were −24 dB and measured data showed sidelobes below −22 dB.

Cylindrical sector arrays are excited by currents to focus the far-field distribu-
tion for each ring Fk (u, f ) [see (4.8)] to some point (u0 , f0). Assuming element
patterns with constant far-field phase, one uses

Ink = |Ink |e−jk [ak sin u0 cos(f0 − nDf k ) + zk cos u0 ] (4.24)

This excitation is applied only to the desired illuminated sector, while the other
elements of the array are, ideally, terminated in matched loads. In this manner,

Figure 4.8 Matrix scanning system. (From: [25].  1968 IEEE. Reprinted with permission.)
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all element patterns in any particular ring array are equal except for angular
displacement.

In addition to mechanical devices, there are several new technologies for com-
mutating the illumination needed to scan a large conformal array. The first is the
technology of using solid-state T/R modules to control the aperture illumination.
In this case, one can control the distribution using resistive attenuators and linear
amplifiers or by amplifiers with variable gain to move the amplitude distribution
around the array structure, thus achieving high-quality patterns, even for highly
curved arrays.

The second approach is to implement full digital beamforming across the array.
This approach, which can be used for transmit and receive, has thus far been
implemented in a number of receive arrays that transmit using conventional analog
methods. In the receiving array, the received signals are amplified, possibly down
converted, and then digitized. Amplitude and phase weights for commutation are
applied to the digitized signals. Though presently expensive, this technology is
seen as the ultimate in performance. Significant examples were presented at array
symposia. Kanno et al. [38] presented data taken with an array of 570 X-band
active T/R modules with digital receivers at each element that excite an array
conformal to an elliptical cylinder, and they achieved measured low sidelobe receive
patterns below −38 dB. Additional measured patterns demonstrated the accurate
synthesis of flat-topped sector patterns, cosecant squared patterns, and several
patterns with anticlutter nulls. In each case, the patterns were synthesized using
measured element patterns. This degree of versatility is clearly not possible with
any of the other techniques discussed in this chapter.

Patterns of Elements and Arrays on Cylinders

Since the elements of a cylindrical array point in different directions, the element
pattern is far more important than in planar arrays. This is illustrated in Figure
4.9(a), which shows a sector array that occupies 120° of the cylinder. If the array
is collimated to radiate broadside (f0 = 0), then the elements near the top of the
cylinder have their element pattern peaks at the desired scan direction, while those
at ±60° have their peaks at ±60°. However, to form a beam at f0 = 0, the elements
near the ends of the array have a local scan angle of 60°, and so these elements
are operating as if in a wide-angle scanned array. Notice from the dashed lines
that if, in addition, the array were scanned to 60° [Figure 4.9(b)], then the end
elements at the right side would be locally scanned to broadside, while the ones
at the left end would be scanned well beyond endfire and shadowed by the cylinder,
and thus would have essentially no contribution to the radiation.

The above description and sketches should make two points clear. First, even
if the array is not scanned, the pattern synthesis for a sector array is critically
dependent on the array element pattern. Second, it is generally impractical to build
a cylindrical array with only a few stationary sectors and then scan the array to
gain angular coverage. These two facts are the basis for separate discussions to
follow.

Element patterns in cylindrical sector arrays behave similar to those in finite
planar arrays, but exhibit additional effects due to array curvature. These effects
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Figure 4.9 Conformal cylindrical sector array: (a) array filling 120° sector of cylinder; and
(b) conformal array scanned to 60° from broadside.

from mutual coupling are discussed in the following paragraphs, but, in addition,
there are certain bounds imposed even on isolated elements because of the cylindri-
cal surface.

Isolated Element Patterns

If the circular sector array is small compared to the radius of the cylinder, and if
the cylinder itself is large compared to wavelength, then the element patterns will
be similar to those in a planar array, but modified by the presence of the cylinder.
Figure 4.10 shows the upper hemisphere element power pattern for a single slot
with axial or circumferential polarization at the top of a large cylinder. The figure
indicates that for a large cylinder neither polarization radiates substantially into
the lower hemisphere, while in the upper hemisphere the pattern is nearly unchanged
from that over an infinite ground plane except in a small transition region near
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Figure 4.10 The approximate pattern of slot on cylinder of radius a for circumferential polarization
[ f (u ) = 1] and axial polarization [ f (u ) = cos (u )].

the horizon of width approximately (ka)−1/3 on either side of the horizon. In this
transition region, the circumferential polarized radiation is reduced from unity for
the infinite ground plane case to about −3.2 dB for the cylinder, and the axial
polarization, which is zero for the infinite ground screen, is only reduced to about

0.4(2/ka)1/3 (4.25)

for the cylinder. This result is obtained from the geometrical theory of diffraction
and is valid as long as the cylinder radius is large compared to wavelength.

Array Element Patterns

If the sector array is large compared to the cylinder radius, or if the element is in
an illuminated region of an array fully wrapped around the whole cylinder [Figure
4.11(a)], then the element patterns are those of the full cylindrical array with a
ground plane. Element patterns in a cylindrical array can be significantly different
from those in a planar array and have been the subject of careful research. Figures
4.11(b) through 4.11(d) show data of Herper et al. [39] that describe the element
pattern behavior of axial dipoles in the cylindrical phased array shown in Figure
4.11(a). The dipoles are mounted a distance s from the conducting cylinder ground
screen and separated by the circumferential distance b and axial distance d. Figure
4.11(b) compares the H-plane (u = 90°) voltage element gain of a cylindrical array
(b /l = 0.6; d /l = 0.7; ka = 120) with that of a planar array with the same lattice
dimensions. The essential similarity of the patterns is obvious, since both exhibit
a substantial dropoff near 42° due to an endfire grating lobe of the planar structure.
In the cylindrical array case, the slope is less steep because of the array curvature
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Figure 4.11 Element patterns of dipoles on arrays on cylinders: (a) geometry of the circular array
of dipoles in a rectangular lattice; (b) H-plane voltage element gain patterns for
cylindrical and reference planar arrays (b/l = 0.6, d/l = 0.7, ka = 120). H-plane voltage
element gain pattern: (c) parameter: (d/l = 0.7, ka = 120); azimuth spacing b/l =
0.5, 0.6, 0.7; and (d) parameter: (b/l = 0.6, d/l = 0.7); ka = 30, 60, 240. (From: [39].
 1983 IEEE. Reprinted with permission.)

that shadows distant elements and so reduces the number of elements that play a
role in the endfire grating lobe effect. The cylindrical array element pattern also
has a periodic ripple that is not due to edge effects, but to interference of the single
element with the grating lobes of other localized sections of the array excited by
creeping waves. This is discussed further in Chapter 6.



206 Patterns of Nonplanar Arrays

Figure 4.11 (Continued.)

Figure 4.11(c) exhibits the dependence of element circumferential spacing (b)
on the pattern dropoff and ripple in the u = 90° plane for a fixed-cylinder radius
(ka = 120). As expected, the pattern broadens with decreasing b /l and becomes
smooth, exhibiting neither the ripple nor grating lobe falloff when the spacing is
made l /2. The broadening is similar to planar array behavior, but is an even more
important phenomenon in cylindrical arrays because it is not possible to synthesize
low-sidelobe azimuth patterns using element patterns with angle- and frequency-
dependent ripples. These results are extremely important, because they first demon-
strated that it was possible to obtain well-behaved element patterns by reducing
the spacing to l /2, and this revealed the potential for forming low-sidelobe radiation
patterns with cylindrical arrays.

Figure 4.11(d) shows the dependence of circumferential element patterns on
the cylinder radius for fixed element spacing. Several effects are observed. For
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larger radii, the period of the element pattern ripple gets shorter, its amplitude is
reduced, and the endfire grating lobe pattern dropoff moves out to wider angles.
The ripple period is apparently reduced because for a given change in observation
angle f , a larger number of elements are traversed at the array surface. The ripple
amplitude is reduced because of the increased creeping wave loss with increasing
ka. In the planar limit, the ripple disappears. Herper et al. give other convincing
data to show the pattern slope being constant within the shadow region and
proportional to ka (sin u ).

A very significant issue in the design of microwave lenses and reflectors is the
phase center data shown in Figure 4.12. This figure, due to Tomasic and Hessel
[40], shows element pattern data for two arrays of monopoles fed within a parallel
plane, as shown in Figure 4.12(a). In this analysis, the arrays were considered
infinitely long and were alike except for their element spacings, which were taken
as d /l c = 0.4 and 0.6 at center frequency fc . The other dimensions were l /l c =
0.233 and 0.25, s /l c = 0.163 and 0.245, and h /l c = 0.369, and were kept constant.
Figure 4.12(b, c) gives the results of the array with 0.6l c separation at frequencies
within a 20% frequency band centered at fc , and depicts significant element pattern
distortion at angles fEGL that correspond to an endfire grating lobe condition.

fEGL = sin−1(l /d − 1) (4.26)

For angles less than fEGL , the far-field amplitude is smoothly varying and
phase nearly constant, signifying a well-defined phase center. At approximately
fEGL , the amplitude and phase of the element pattern undergo significant changes,
and for larger angles there is no phase center and a significantly distorted element
pattern. The figure also shows the severe frequency dependence of the behavior of
such elements, where performance is based primarily on the location of the endfire
grating lobe.

Figure 4.12(d, e) shows the primary result of this important work. For spacings
less than 0.5l , the element pattern amplitude and phase are well behaved out to
wide scan angles. These figures show the array pattern of elements spaced nominally
0.4l at frequencies 0.9fc to 1.1fc . The dramatic phase center and amplitude distor-
tion seen in the previous figures for the larger spacing is now eliminated. These
results were the first to emphasize the role of element phase centers in conformal
arrays and showed conclusively that reduced spacing on the order of 0.4l to
0.5l , as is normally required for scanning arrays, is also required for low-sidelobe
conformal arrays.

Herper et al. [39] and Tomasic and Hessel [40] performed a detailed study of
phase center location and showed that for arrays of monopoles or dipoles mounted
in front of the cylindrical ground screen or parallel plate back plane, the phase
center of each array element pattern is not at the ground screen, but much closer
to the element itself. These data are extremely important for conformal arrays used
in the design of lenses, where electrical path lengths must be accurately known for
optimum designs. This result is not due to curvature, but to interaction in the large
array. Tomasic and Hessel also show that, if spacing is maintained sufficiently
small, then both the cylindrical and planar arrays have nearly the same patterns.
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Figure 4.12 (a) Linear array of coaxial monopole elements in semi-infinite parallel plate waveguide;
(b) voltage element pattern amplitude for array with d/l0 = 0.6; (c) element pattern
phase for array with d/l0 = 0.6; (d) voltage element pattern amplitude for array with
d/l0 = 0.4; and (e) element pattern phase for array with d/l0 = 0.4. (Note: Backplane
spacing optimized for each d/l0.) (From: [40].  1988 IEEE. Reprinted with
permission.)

Taken together, these two basic references present significant conclusions about
conformal array design. Among the most important are:

• One can reliably predict impedance and grating lobe effects using the planar
equivalent array.

• The dipole phase center is located near the element and is not on the cylinder
surface.

• Mutual coupling effects are less severe for a cylindrical array than for a
planar array, provided the element spacing is kept small.
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Figure 4.12 (Continued.)
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• The element pattern ripple near broadside and the pattern slope in the
shadow region are both determined by creeping wave phenomena and are
prime determinants of array minimum sidelobe levels. These two effects
require element spacings to be reduced to or below half wavelength for low-
sidelobe arrays.

Array Pattern Comparison: Cylindrical Versus Planar Arrays

Figure 4.13(a) shows the pattern of uniformly illuminated sector cylindrical arrays
with various cylinder radii. The chosen element pattern has the cos(f − fn )
dependence in azimuth out to |f − fn | = 90° and is zero in the shadow region
( |f − fn | > 90°). The element spacing is 0.5l and the array has 36 elements. The
two chosen radii are 11.46l (solid) and 200l (dashed). On the smaller cylinder,
the array occupies a 90° sector of the cylinder. These patterns are to be compared
with Figure 4.13(b), a 30-element array with 0.6l spacing between elements, so
that the broadside beamwidths are approximately the same when the array is
mounted on a very large cylinder (and so is nearly planar). These figures reveal
several important characteristics of arrays on cylinders.

The beamwidth is narrowest for the nearly planar arrays, which have the
greatest projected length. As the cylinder radius is decreased, the array is wrapped
around the cylinder and the beamwidth broadens. Sidelobes rise because many of
the element patterns now have their peaks at angles other than f = 0. As the array
curvature increases, the array with 0.6l (Figure 4.13) spacing develops regions of
substantial radiation at wide angles. These broad peaks are grating lobes and result
from the fact that near the ends of the array there is a rapid phase variation in the
field applied to each element. Figure 4.9 shows that for elements at some angle F0
from broadside (f = 0), the local phase progression required to form a broadside
beam has to be such that a beam coheres at the angle −F0 from the local array
normal. Assuming that the array is nearly planar (locally), then this local array
section would form a grating lobe at the angle

FGL = F0 + sin−1(l /dx − sin F0) (4.27)

Since the array is curved, and the local F0 a variable, the grating lobe angle
varies, and instead of a replicated main beam at a well-defined angle, there is a
broad range of increased radiation. For the array with 0.6l element spacing, the
contribution begins at about 90° and ends at about 130°. This grating lobe effect
becomes more pronounced for larger spacing and greater curvature.

Normalized Gain of Cylindrical Sector Arrays

In addition to the obvious differences in array patterns indicated earlier, there are
significant differences in array gain. For a linear array, the antenna gain increases
with array length, but for an array wrapped around a given size cylinder there is
little advantage to increasing the sector size much beyond 90°. For a large array
with element patterns f (f − fn ), all elements matched, and uniform broadside
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Figure 4.13 Patterns of uniformly illuminated sector arrays on cylinders with radius 11.46l (90°
sector—solid curve) and 200l (dashed curve): (a) 36-element array with 0.5l spacing;
and (b) 30-element array with 0.6l spacing.

illumination, the array gain at f = 0 is roughly proportional to the integral of the
normalized element pattern

Gain ≈ 2a E
fmax

0

f (f ′ ) df ′ (4.28)
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Figure 4.14 shows this normalized gain for three element patterns cosn(f −
f ′ ) for n = 1, 2, 3, with all curves normalized to the circle diameter. Notice that
for n = 1 the integral is just 2a sin fmax, which is the projection of the array arc
onto the plane perpendicular to f = 0, so the uppermost curve is also the normalized
broadside gain of the equivalent planar array and represents the maximum achiev-
able gain. Thus, the projected planar array has the same gain as the cylindrical array,
even though in the cylindrical array many of the elements have their maximum gain
pointed away from the beam peak, while the planar array has all element peaks
at the broadside direction. However, with the cylindrical sector array, there is a
higher density of elements near the edges of the projected aperture that compensates
for the cosine element pattern. This is discussed again in the next section.

The figure shows that for included angles less than 60°, all element patterns
yield approximately the same relative gain (since all elements are within ±30° of
broadside). At 2fmax = 60°, the array with cosine element patterns has 3 dB less
gain than the array that spans the half-cylinder 2fmax = 180°. Between 2fmax =
90° and 120°, only about 1 dB is gained using the cosine element pattern.

An example, shown in Figure 4.15, is the data by Hessel [41] that indicate
that increasing the array size from a sector with included angle 60° to one with
an included angle of 120° and doubling the number of array elements only increases
the array gain by 1 dB, even though the array size is doubled. This result is similar

Figure 4.14 Normalized gain for various element patterns.
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Figure 4.15 Radiation characteristics of sector arrays. Maximum gain E-plane patterns for sector
array of ka = 86, b/l = 0.65. Arrays occupy sectors of 60°, 90°, and 120° [assumed
cos(f − fn ) element pattern]. (From: [41].  1972 Artech House, Inc. Reprinted with
permission.)

to what would be predicted by Figure 4.12, even though (4.28) is an approximation.
An additional disadvantage of the large sector is the large sidelobe near f = 100°.
These results are not equally limiting, since the chosen array spacing is 0.65l and
closer element spacing can relieve the grating lobe problem and broaden the element
pattern as described earlier; but Figure 4.14 shows that the gain restrictions are
fundamental limitations. Unless the cylinder diameter is restricted by mobility or
some other constraint, it is clearly advantageous to build a larger array on a larger
cylinder rather than cover a larger angular sector of a smaller cylinder.

In [24], directivity data are given for ring arrays with various sidelobe levels
and constant projection (a sin fmax constant) for different sector angles (2fmax =
90°, 118°) for assumed cos(f − fn ) element patterns. These results show that, for
a given taper, the directivity is nearly a constant, independent of the cylinder radius
a and dependent only on the projection length. This fact again is supported by
Figure 4.14, because for these large angular sectors the tapered region near the
array edges is compacted by the cylinder curvature.

Pattern Synthesis for Sector Arrays

One of the major problems with circular sector array synthesis is that all the
elements of the array have different element patterns according to their location.
This situation is depicted in Figure 4.16 and precludes use of all of the standard
synthesis methods. One can, however, control near sidelobes by projecting the
array element locations and element patterns onto a plane tangent to the cylinder,
as shown in Figure 4.16.

For example, Figure 4.16 depicts a circular sector array with elements located
equally spaced around the circumferential sector with angular separation Df .
Projected onto the array tangential plane, the element locations of an array of NT
elements are

yn = a sin fn (4.29)

= a sin(nDf )
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Figure 4.16 Array element patterns and projection to synthesize low-sidelobe pattern.

Defining the length of the projected array as

L = 2a sin[(NT /2)Df ] (4.30)

and sampling the aperture distribution at points yn automatically accounts for the
extra one-half element on each side of the array when sampling the Taylor or other
traditional distribution, as indicated in Chapter 3.

The projection tends to make the points yn closer together near the ends of
the array, but the element pattern tends to make up for that effect. For example,
for relatively large fn , the projected spacing between elements varies approximately
like cos fn , and so the density of elements has a 1/cos fn dependence. If the array
element patterns vary like cos fn , then near broadside the projected array weighting
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will be correct without altering the weights from those of a linear array with
omnidirectional element patterns. If the element pattern is very different from a
cosine, that fact must be included in choosing the weights.

Figure 4.17 shows a sequence of patterns that are synthesized by projecting a
−40-dB Taylor pattern with n = 8 onto cylinders with various radii and 36 elements.
The element pattern relative to the local cylinder normal at fn has the form

Figure 4.17 Synthesized patterns of circular sector array with projected Taylor distribution n = 8,
sidelobe level −40 dB: (a) a/l = 100 (solid), 20 (dashed); (b) a/l = 11.46 (90° sector)
(solid), 8.59 (120° sector) (dashed).
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f (u, f ) = sin u cos(f − fn ) (4.31)

which corresponds to cosine element patterns in both planes. The sequence of
curves shows a nearly perfect Taylor pattern at radius a = 100l , which degrades
little for a = 20l . The patterns at a = 11.46l and 8.59l correspond to arrays that
occupy 90° and 120° sectors of the cylinder, and these differ significantly from the
Taylor pattern on the large cylinder (100l ). Significant changes in these patterns
are beam broadening that results from shortening the array length and increased
sidelobe levels near the main beam, with the first sidelobe starting to merge with
the main beam for small cylinders.

The synthesis method first suggested by Sureau and Keeping [42], further
developed by Dufort [43] and Olen and Compton [44], and described in Chapter
3 is readily applicable to conformal arrays on generalized surfaces. The technique
uses adaptive optimization algorithms to form the array pattern in the presence of
closely spaced sources of interference that are tailored or iterated [44] to achieve
the desired pattern. Figure 4.18 shows results due to Sureau and Keeping [42] for
a circular sector array of 32 identical elements disposed over a 120° sector of a
cylinder and displaced 0.55l between elements. The geometry shown in Figure
4.18(a) shows the 23 excited elements of a 96-element circular array. A total of
372 sources of interference were uniformly distributed outside of the main beam
window to control sidelobes. The measured element pattern was used in the calcula-
tions. Figure 4.18(b) shows that increasing the window width produces a set of
patterns with progressively lower sidelobes, but decreasing aperture efficiency.
Sureau and Keeping also investigated varying the interference weights to control
sidelobe decay and the use of asymmetric weights for monopulse pattern control.
Chapter 3 gives other results due to Olen and Compton [44], who extended the
results of Sureau and Keeping to produce a convergent iterative solution for detailed
pattern control.

Unlike linear and planar arrays, when the pattern of a conformal array is
scanned, the relative contributions of element patterns on either side of the array
center are different, and the array pattern is distorted because of this asymmetry.
Hannon and Newmann [45] and later Antonucci and Franchi [46] addressed this
problem by superimposing an odd (monopulse) excitation along with the even
array power distribution to produce the appropriate asymmetry to cancel the
contribution from asymmetric element patterns.

Other developments in synthesis include the use of nonlinear optimization [47]
and least squares iterative procedures for optimizing over pattern parameters and
frequency [48].

Figure 4.19 shows results due to Bucci et al. [49]. It illustrates the synthesis
of a triangular-shaped pattern using an array of 21 × 15 elementary magnetic
dipoles on a cylinder of radius 5l . The 15 rows of elements are spaced l /2
apart in the axial direction, and the 21 columns are spaced 0.7l apart along the
circumference of the cylinder so that an outer semicircle is occupied by the array.
The technique employed in this synthesis is an iterative projection method, described
in Chapter 3, that uses a mask function to limit the upper and lower boundaries
of the pattern function. In this method, the projection takes place sequentially
between two vector spaces—one is the set of the squared amplitudes of all copolar
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Figure 4.18 The synthesis procedure of Sureau and Keeping: (a) cylindrical array and signal environ-
ment; and (b) optimum symmetric patterns. (From: [42].  1982 IEEE. Reprinted with
permission.)

and cross-polar components of all radiated patterns, and the other is the set of all
patterns within the mask limits. This approach has been used successfully in a
number of planar array studies, and it provides a convenient method with which
to synthesize radiation patterns subject to useful constraints (e.g., the dynamic
range of current amplitudes or reduced number of controls).
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Figure 4.19 Pattern of conformal array synthesized using method of alternating projection:
(a) conformal array geometry; and (b) synthesized pattern. (After: [49].)

The procedure synthesized a full triangular shape—Figure 4.19(b)—when pro-
jected onto u-v space. With all its generality, the procedure should find continued
application in the synthesis of conformal arrays.
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Comparison Between Cylindrical and Multiface Planar Arrays

Cylindrical arrays are usually not phase-scanned in the azimuth plane because of the
resulting pattern distortion, and so may rely entirely on the amplitude commutating
network for azimuth scan. In systems where there are phase shifters at every element
(perhaps for elevation scan or fine scanning), the requirements for the switching
matrix can be relieved by scanning over limited angular sectors between commu-
tated beam positions. One cannot scan more than a few degrees in this manner
without incurring significant pattern distortion, so the phase shift option is balanced
against cost for a particular system. In either case, one can assume that the circular
array gain is nearly constant with scan angle. In comparison, each face of a four-
faced array must scan to ±45° to cover the 360° of azimuth field. A rough estimate
of the relative number of elements in the cylindrical and four-faced planar arrays
is obtained using the proportionality argument above and assuming a cos(f −
fn ) element pattern for both arrays. From (4.28), the cylindrical array gain is
proportional at 2a sin fmax, where fmax again is one-half the sector array subtended
angle. The corresponding gain of one of the four-face planar faces of length L is
proportional to L cos 45, or 0.707L. If, for the cylindrical sector array, a 90°
sector angle is chosen (fmax = 45°), then the two gains are equal at 2a = L, when
the cylinder is tangent to the four faces of the square with sides L. In this case,
the cylindrical array is required to have approximately p /4 or 79% of the elements
of the four-faced array if the element spacing is taken as the same for both. However,
as pointed out earlier, if high-quality sidelobe control is required, it may be necessary
to space the cylinder elements near l /2, while the linear array spacing for a 45°
scan can be about 0.58l . This means that the cylindrical array would have about
92% of the elements of the four-faced array. If a 120° sector is used, the relative
size of the circular sector to four-faced array dimensions is given by setting the
projection 2a (0.866) of the circular array equal to that of the four-faced array at
45° or 0.707L. The ratio of the number of elements in the cylinder and the four
faces is (2pa /4L), or 64%, and so the cylindrical array can require substantially
fewer elements than the four-faced array if minimum gain is the chosen criterion.
This advantage is mostly lost if low sidelobes are required, since sector arrays that
occupy up to 120° of the cylinder can have significant distortion, even at broadside,
so elements need to be closely spaced.

Other practical concerns enter into the selection of cylinder or four-faced planar
arrays. The cylindrical array is often required to have phase shifters at each element
in order to provide elevation scanning, and these enable some simplification of the
required commutating feed structure. In this configuration, the cylindrical array
has nearly constant gain in azimuth. There is no need for a high-power switch to
select the transmit array face as there is for the four-faced planar array. Moreover,
if broadband radiation is required, then the cylindrical array has the advantage
that time-delay cables can be built into the commutating matrix and the array may
not require variable time-delay units. Alternatively, the cylindrical array commutat-
ing network is usually lossy and therefore substantially reduces gain or requires
the use of amplification to overcome the loss. In addition, because of the need for
commutation, the cylindrical array is usually organized into column subarrays,
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with the commutator switch exciting only one column input. This reduces the
number of degrees of freedom, and the phase errors between columns become very
significant and must be minimized if low sidelobes are important. This can lead
to a requirement for phase comparator networks and the active real time correction
of column phase.

The required scan sector also enters into the choice of cylindrical or multiface
planar array. If it is required that the array scan to angles near zenith, a multiface
array with faces tilted back or a truncated conical array must be chosen. References
[50–52] give some details of tilted multiface planar arrays for wide sector coverage.

4.3 Spherical and Hemispherical Arrays

Spherical arrays are most often fed by exciting elements in groups or subarrays.
The radiated pattern of an array of elements located at positions on the surface
of a sphere or hemisphere is given by (4.8), with

r′nk = x̂xnk + ŷynk + ẑznk

xnk = a sin uk cos fn = aunk (4.32)

ynk = a sin uk sin fn = avnk

and so

r′nk ? r̂ = a [uunk + vvnk + cos u cos uk ]

= a [sin uk sin u cos(f − fn ) + cos u cos uk ]

and

F (u, f ) = ∑
n

∑
k

Ink fnk (u, f )e jkr′ ? p̂ (4.33)

Spherical and hemispherical arrays have the same limitations as cylindrical
arrays [52] and must be fed by commutating an illuminated distribution to various
points on the surface of the body. These have been fed by switch matrices to excite
active sectors of the sphere. The largest hemispherical arrays have been lenses fed
by scanning arrays because this is an effective and low-cost means of RF power
commutation. In this configuration, called the DOME [53, 54] antenna concept
(Figure 4.20), the sphere is a passive lens with inserted phase shifters to collimate
the distributed signal received from the array feed. The required nonlinear phase
progression is selected to achieve a scan angle that is some fixed multiplier Ku
(K > 1) times the scan angle of the feed array. The primary purpose of the DOME
structure is to provide economical hemispherical coverage, and it can even provide
coverage somewhat below the horizon with proper tailoring of the fixed phase
shifts in the DOME geometry.
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Figure 4.20 Hemispherical dome array for scan to u = Kus.

4.4 Truncated Conical Arrays

Another important conformal array geometry is the truncated conical array. Shaped
to suit missile and aircraft nose cones, the truncated conical geometry is nearly
cylindrical if the cone angle is small and the array truncated far from the cone tip.
Like the cylindrical array, the truncated conical array is usually fed by moving an
illuminated region around the cone by means of switching matrices.

The field pattern of a truncated array is given below as the sum of patterns
from each constituent circular loop array using (4.8):

F (u, f ) = ∑Fk (u, f ) (4.34)

The various radii ak are given as

ak = a0 − zk sin d (4.35)

for cone half-angle d . The current phases are given to collimate the radiated beam:

Ink fnk = |Ink fnk | exp[−jk (ak sin u cos(f − nDfk ) + zk cos u )] (4.36)

for element patterns fnk . Mutual coupling and array element patterns are deter-
mined by asymptotic methods, by approximate methods, or by full-wave expan-
sions, as discussed in [1].
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C H A P T E R 5

Elements for Phased Arrays

5.1 Array Elements

Of the many different kinds of elements used in array systems, most can be consid-
ered either as wire antennas, or slots, or a combination of these. Most arrays are
designed with conducting ground screens, and so the potential functions introduced
in Chapter 2 can be used to evaluate near-field coupling effects as well as far-field
radiation. Many arrays have been built using printed circuit dipoles or microstrip
patch antennas, and the use of dielectric substrates above the metallic ground screen
requires a more complex analytical formulation than that of Chapter 2. Similarly,
arrays built of dielectric rods or other dielectric elements require a more generalized
formulation.

The intent of this chapter is to catalog a body of technology that constitutes
the hardware of phased arrays. Since the chapter deals with isolated elements, and
the behavior of these elements is not directly relevant to their behavior in the array,
the chapter presents only simple approximate equations for element impedance
and radiation patterns. Many of the equations are for the resonant cases, even
though there exists a vast body of technical literature for isolated elements of
various resonant and nonresonant dimensions. Resonant data are given here to
address the engineering problem of matching element impedance to the feed trans-
mission line. The detailed evaluation of element behavior in a scanned array and
the element patterns in an array environment will be discussed for some of these
elements in Chapter 6.

5.2 Polarization Characteristics of Infinitesimal Elements in Free
Space

The radiation pattern of any element is obtained from the integral over the currents
or aperture fields of the given element. In many cases, the element can be con-
sidered as composed of straight, infinitesimal current carrying wire elements or
filaments of tangential electric field in an aperture. The normalized element patterns
from such isolated infinitesimal elements, as shown in Figure 5.1(a, b), are given
next.

The radiation fields of electric current filaments in free space are readily derived
from the vector potential. In the far zone, the normalized electric field radiated
from an infinitesimal current source with components as shown in Figure 5.1(a)
are given next, as obtained from (2.1) and (2.2).

225
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Figure 5.1 Radiation of elementary field sources: (a) geometry of the radiating current source
element; (b) geometry of the radiating electric field (magnetic current) element;
(c) electric field radiated from a vertical dipole; (d) far-field of a dipole element with
current Iz : ____ infinitesimal element (cos2 u ), ? ? ? ? ? resonant half-wave dipole
[cos(p/2 cos u )/sin u ]2; and (e) alternate coordinate system for dipole with current Iz .

Source Normalized (Voltage) Normalized
Current Element Pattern Power Pattern

Ix (û cos u cos f − f̂ sin f )/21/2 1 − sin2 u cos2 f
Iy (û cos u sin f + f̂ cos f )/21/2 1 − sin2 u sin2 f (5.1)
Iz û sin u sin2 u
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Due to the choice of coordinate system, the z-directed current results in a
particularly simple form with a single component of polarization (û ). Figure 5.1(c)
shows a sketch of the electric fields radiated by an isolated infinitesimal vertical
monopole, and Figure 1.1(d) shows the elevation power pattern (sin2 u ) of the
infinistesimal monopole with current Iz . The dashed pattern is that of an isolated
resonant half-wave dipole and has the form [cos(p /2 cos u )/sin u ]2.

If the current is primarily in the x- or y-direction, it may be convenient to
define a different coordinate system to correspond to the axis of the wire. For a
dipole with its axis in the x-direction, redefining the coordinate system to that of
Figure 5.1(e) results in the electric field normalized element pattern

f (F) = F̂ sin F (5.2)

In the case of radiation from an aperture in a ground screen, one must specify
the plane of the ground screen in addition to the electric field component. Assuming
a ground screen in the plane z = 0, with an infinitesimal slot aperture and electric
field elements Ex , Ey as shown in Figure 5.1(b), the radiated far fields are given
from (2.17).

Normalized (Voltage) Normalized
Field Element Pattern Power Pattern

Ex (û cos f − f̂ cos u sin f )/21/2 1 − sin2 u sin2 f
Ey (û sin f + f̂ cos u cos f )/21/2 1 − sin2 u cos2 f (5.3)

Actual elements have more complex polarization than these filaments, but their
polarization can be considered as made up of contributions from the various
filamentary currents and aperture fields.

The radiated polarization of the element often changes when the array is
scanned, because the interaction of other elements may cause currents or aperture
fields to be excited which are not present in an isolated element.

Selection of coordinates to define primary polarization and crossed polarization
for a given antenna can be handled in several ways. Ludwig [1] discusses three
definitions of polarization and makes a convincing argument in the case of reflector
systems for defining polarization coordinates that correspond to the natural coordi-
nates for an azimuth/elevation measurement. This set of coordinates is also the
one that corresponds to the polar system used throughout this text, with u corre-
sponding to the elevation tilt.

5.3 Electric Current (Wire) Antenna Elements

Most wire antenna elements used in arrays are variations of the dipole or the
monopole. These elements are well understood when used separately or in the
array environment. Since their radiation in an array is very different than when
used as isolated elements, it is established practice to perform the full mutual
coupling analysis to evaluate array performance before completing the design (see
Chapter 6).
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5.3.1 Effective Radius of Wire Structures with Noncircular Cross Section

The actual wire cross section does not significantly alter the radiation properties
of the element. This is usually accounted for by defining an effective radius for the
wire with a noncircular cross section. This effective radius is given below for a
wire or group of wires of given cross sections.

Balanis [2, Table 9.3] lists most of the useful equivalent cross sections, and so
is reproduced here as Figure 5.2. In addition, Tai [3] gives a table (shown in Table
5.1) with equivalent radii aeq of regular polygons in terms of the radius a of the
outscribed circles.

5.3.2 The Dipole and the Monopole

Undoubtedly the most studied of any radiating structures, these basic wire antennas
have been thoroughly analyzed as elements alone or in arrays. Figure 5.3 shows
several orientations of dipoles and monopoles as commonly used in array antennas.
In this figure, the monopole height is shown as the dimension A or , interchangeably,
in accordance with the references used throughout the chapter. The fundamental

Figure 5.2 Conductor geometrical shapes and their equivalent circular cylinder radii. (From: [2].
 1997 Harper and Row, Inc. Reprinted with permission.)

Table 5.1
Equivalent Radii
of Regular
Polygons

n aeq /a

3 0.4214
4 0.5903
5 0.7563
6 0.9200

Note: n = the number of sides; aeq = the equivalent radius; a = radius of outscribed circle.
Source: [3].
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Figure 5.3 Basic wire radiating elements: (a) vertical monopole excited by coaxial feed; (b) vertical
dipole and its image; (c) horizontal dipole antenna; and (d) off-center excitation of the
dipole.
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work of King and others [4–6] has led to convenient approximate results, which
accurately describe not only the radiation patterns and radiation resistance, but
also near-field effects and mutual coupling. Even today, with accurate numerical
procedures and convenient computer codes available, these approximate formulas
still provide a valuable resource for handling large arrays. Chapter 6 briefly discusses
this and other (largely numerical) procedures for calculating the array performance
for a variety of elements.

A thin dipole at resonance [2] presents an input impedance of approximately

Rdipole = 73V (5.4)

This impedance is not difficult to match to 50V transmission lines, and a number
of convenient matching circuits have been designed to make the transition from
various coaxial and other transmission lines.

At resonance, the thin vertical monopole [Figure 5.3(a)], used with a conducting
screen, has half the input resistance of the dipole, or 36.5V. Figure 5.4(a) shows
the measured resistance, and Figure 5.4(b) the reactance of a monopole of various

Figure 5.4 Impedance characteristics of monopole antennas: (a) monopole resistance versus length
A, for diameter D; and (b) monopole reactance versus length A. (From: [7].  1952
RCA Review. Reprinted with permission.)
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Figure 5.4 (Continued.)

electrical lengths (A) as a function of the element diameter D. The figure shows
monopole reactance for elements with heights up to 240 electrical degrees (with
360° representing one wavelength).

This range of monopole lengths extends beyond the first resonance and antireso-
nance. This experimental data, due to Brown and Woodward [7], describe mono-
pole antennas over a large but finite ground screen and excited by a coaxial line,
so it includes the effect of the impedance change at the junction between the
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coaxial feed and monopole antenna. For monopoles near a half wavelength, there
is substantial difference in resistance with varying monopole thickness, but for
heights less than the first resonant length (around 90°), there is relatively little
dependence on monopole thickness.

The input impedance of an isolated dipole or monopole is found from an
approximate solution to Hallen’s or Pocklington’s equation [8], but for dipoles of
length 2, to about a half wavelength, this simplified formula [3] is useful.

Zi = R (k,) − j [120[ln(2,/a) − 1]cot(kh) − X (k,) (5.5)

where k = 2p /l .
The functions R and X are shown in Figure 5.5 [3] and are tabulated in the

reference for 0 ≤ 2, ≤ p /2. Elliott [9] has represented these functions with second-
degree polynomials and so gives the following form, valid over the range 1.3 ≤ k,
≤ 1.7 and 0.0016 ≤ a /l ≤ 0.0095.

Z = [122.65 − 204.1k, + 110(k, )2] (5.6)

− j [120(ln(2,/a) − 1)cot k, − 162.5 + 140k, − 40(k, )2]

As noted earlier, the resistance is not significantly dependent on the dipole
radius, and this is reflected in the form of the function R. Figure 5.5(b) shows the
computed dipole resistance and reactance of an isolated dipole as computed by
Elliott from (5.6). Values for the monopole are half those for the dipole.

The radiation pattern of a thin, vertical half-wave dipole in free space, or
quarter-wave monopole (with ground screen), is approximately given by the follow-
ing relationship. This expression is readily derived from (2.1), (2.2), and (2.15) by
assuming a sinusoidal current distribution:

f(u, f ) = ûHcos(p /2 cos u )
sin u J (5.7)

The relationship shows the characteristic doughnut-shaped pattern, invariant in f
and with a null at u = 0 and a maximum at u = p /2. The pattern, shown for
comparison (dashed) in Figure 5.1(d), is evidently much more like the sin u depen-
dence of the infinitesimal dipole, but somewhat more directive, as befits the longer
wire element.

The vertical dipole of Figure 5.3(b) has some application to arrays, but its use
is restricted to situations where very restricted elevation coverage is required. The
vertical dipole pattern is given by (5.7), modified by the contribution of the image
with center at z = −h, as in the figure.

f̂(u, f ) = ûHcos(p /2 cos u )
sin u J cos[(2ph /l ) cos u ] (5.8)

Elevation coverage is restricted because the array ground screen image creates
a zero in the elevation plane at
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Figure 5.5 Impedance functions and impedance of isolated dipole. (a) Impedance functions R(k,)
and X(k,). (From: [3].  1984 McGraw-Hill, Inc. Reprinted with permission.) (b) Dipole
resistance and reactance. (From: [9].  1951 Prentice Hall, Inc. Reprinted with
permission.)
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u = cos−1[l /(4h)] (5.9)

Techniques for exciting vertical dipoles are summarized later in the chapter.
The vertical monopole has found use in a number of high-frequency ground

radar systems, where low-angle coverage is at a premium and there is no coverage
requirement near the zenith (u = 0), where the pattern (5.1) has a natural zero. As
shown in Figure 5.3(b), the monopole is conveniently excited from a coaxial line
beneath the ground screen. A treatment of the monopole array is given by Fenn
[10].

The horizontal dipole [Figure 5.3(c)] is one of the most useful array elements.
At resonance, the horizontal dipole, suspended over a conducting ground screen
and with its axis oriented along the x-axis, has a pattern and input resistance that
is strongly dependent on the height h above the ground screen.

Figure 5.6(a) shows the input resistance and reactance of a l /2 dipole over a
conducting plane. For height ‘‘h’’ very small, the input resistance and reactance
both approach zero as the image and the direct radiation cancel. With increasing
height, the radiation resistance increases until it reaches a peak value of over 90V

at a height slightly greater than 0.3l , and thereafter oscillates about the value 73V

of the isolated resonant dipole.
The radiation pattern of an infinitesimal dipole with current Ix located a

distance h above an infinite ground screen is given by the formula below [using
the geometry of Figure 5.1(e)], showing the relationship in terms of both the
(u, f ) and (F, h ) systems:

f(u, f ) = F̂ sin F sin(kh sin F sin h ) (5.10)

= F̂(1 − sin2 u cos2 f )1/2 sin(kh cos u )

where here the unit vector F̂ and coordinate system (F, h ) is shown defined in
Figure 5.1(e).

Figure 5.6(b) illustrates the contribution of the elevation pattern of the image
in narrowing the elevation of an infinitesimal dipole over a ground screen. The
pattern is shown along the plane f = 0. In practice, the height h is usually kept
near a quarter wavelength in order that the elevation pattern not be narrowed by
the presence of the image currents. For heights beyond h ≈ 3l /8, the gain at the
zenith begins to decrease and becomes zero at h = l /2. For heights above 0.75l ,
the elevation pattern becomes multilobed and is not useful in general.

5.3.3 Special Feeds for Dipoles and Monopoles

A number of special feed arrangements have been developed for dipoles and mono-
poles intended to make the transition from various unbalanced lines and to match
impedances. Several good surveys of the literature on baluns are available in [11–
13], which describe some of the more important types. Figure 5.7(a) shows a dipole
fed by a coaxial line ‘‘split tube balun’’ [11, 13]. The impedance at the balanced
output arms of the dipole are matched at four times that of the coaxial input
(ZAB = 4Z0). The coaxial outer conductor split is nominally a quarter wavelength.
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Figure 5.6 Impedance and elevation pattern of horizontal dipole over ground screen. (a) Imped-
ance of horizontal l/2 dipole versus height h above ground. (From: [14].  1968
McGraw-Hill, Inc. Reprinted with permission.) (b) Elevation patterns of horizontal infi-
nistesimal dipole versus height h. (From: [15].  1997 Harper and Row, Inc. Reprinted
with permission.)
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Figure 5.7 Practical wire antennas and feeds. (a) Split tube balun feed for dipole antenna. (b)
Bowtie dipole excited by coplanar strips transmission line. (From: [16].  1974 IEEE.
Reprinted with permission.) (c) Microstrip-fed dipole and balun for radiation endfire
to substrate. (From: [17].  1987 Horizon House Publications, Inc. Reprinted with
permission.) (d) Bowtie dipole excited by microstrip, slot line, and coplanar strip transi-
tions. (From: [18].  1986 Microwaves and RF News. Reprinted with permission.)

Figure 5.7 also shows several printed circuit dipole configurations suitable for
low-cost arrays. Figure 5.7(b) shows a printed circuit dipole due to Wilkinson [16].
A printed circuit distribution network is fabricated by two photographic exposures
using a two-sided printed circuit board. The network and dipoles are configured
as a printed circuit two-wire line, with the intervening substrate serving to support
both printed conductors, as shown in the figure. This unconventional transmission
line medium was first analyzed by Wheeler [19] and is particularly appropriate for
unscanned ‘‘flat plate’’ arrays. The two conductors, with dipoles and substrate,
are mounted a quarter wavelength above the ground screen. The entire network
was fed by a special wideband split tube balun [20].

Figure 5.7(c) shows a printed circuit element, described by Edward and Rees
[17], but referenced earlier without description [21]. The element consists of a
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Figure 5.7 (Continued.)

dipole etched into the ground screen side of a printed circuit board and capacitively
coupled to a loop feed formed by the printed microstrip line. The element is very
compatible with monolithic fabrication techniques and makes effective use of the
substrate ground screen, which is mounted normal to the plane of the array. Details
of the design are given in the paper by Edward and Rees and in a later report by
Proudfoot [22]. The feed uses a printed circuit balun due to Roberts [23] and
adapted by Bawer and Wolfe [24] to a printed circuit configuration. The balun
matches a balanced coplanar microstrip dipole feed section to a microstrip line on
the opposite side of the substrate. This balun provides no impedance transformation
at center frequency, which must be accomplished separately if necessary. Since it
is built of microstrip, it is nearly ideal for monolithic printed circuit integration.
Since the dipole and balun combination can be ‘‘double tuned’’ to produce a
broadband impedance match, the antenna can operate over a 40% bandwidth with
a 2:1 voltage standing wave ratio (VSWR). One disadvantage of this element is
cross-polarized radiation [22], which appears to be caused by unbalanced orthogo-
nal currents in the feed region. The cross-polarized radiation can be as large as
−15 dB relative to the copolarized signal, and so can be a significant limitation to
performance for certain applications.

Another dipole feed configuration [18] provides a very wideband feed from
microstrip to slot line balun, and then makes a transition to a printed coplanar
strip transmission line feed for the bowtie dipole. This geometry is shown in Figure
5.7(d). The balun [25] is a printed circuit version of a Marchand [26] balun. The
balun alone has a 4:1 bandwidth for 11-dB return loss and octave bandwidth for
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15-dB return loss. The combination balun and dipole has better than a 10-dB
return loss over an octave. Although this dipole, like that of Edward and Rees,
has a balanced coplanar strip feed, the balun is quite different in that it makes a
transition from the microstrip line (shown solid) on the top surface of the substrate
to a slot line (shown dashed) of the other surface. The slot line then makes a
transition to a coplanar strip transmission line, which feeds the dipole. The dashed
horizontal line indicates the end of the metallized region (the slot line region) on
the bottom of the substrate. In addition, the balun transition as shown includes a
quarter-wave impedance transforming region.

One problem that can grow to be severe in dipole arrays is that the vertical
feed wires can themselves be the source of radiation. This is not a significant
problem with individual dipoles because the vertical wires contain balanced oppo-
site currents. However, when the array is scanned, the vertical pair is excited by
the coupled signal from other elements and radiates an unwanted vertical polariza-
tion. In addition, the coupling can even cause ‘‘array blindness’’ effects [27], as
described in Chapter 6.

5.3.4 Dipoles Fed Off-Center

The radiation pattern and the current distribution of a dipole of length less than
l /2 are relatively independent of the location of the driving source. The approximate
input impedance of an off-center-fed dipole [Figure 5.3(d)] is given in terms of its
input impedance at the center Zc by

Zin =
Zc

cos2(kDl)
(5.11)

where Dl is the displacement from the center. Assuming the displacement is small,
this relationship shows that the impedance increases with the displacement Dl. This
technique can be used for impedance matching without modifying the radiation
characteristics. A more detailed analysis, obtained by an approximate solution of
the integral equation, is given by King and Wu [28].

5.3.5 The Sleeve Dipole and Monopole

Sleeve antennas incorporate a tubular conductor (sleeve) such that the exterior of
the sleeve is a radiating element, while the sleeve interior is used as the outer
conductor of the coaxial transmission line that feeds the antenna. The monopole
or dipole protrudes out of the enclosing sleeve and is an extension of the center
conductor of the feed coaxial line, whose outer conductor is terminated at the
monopole feed point, a distance L from the ground screen. The coaxial line outer
conductor is shorted to the ground screen. The entire structure is enclosed by a
cylindrical shell, or a sleeve of length d, which is also shorted to the ground screen.
Other dimensions are indicated in Figure 5.8. The sleeve dipole, not shown, includes
the mirror image of the structure in Figure 5.8(a) and so has length 2H.
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Figure 5.8 Practical wire antennas and feeds. (a) Sleeve monopole antenna. (b) Biconical dipole.
(c) Bowtie dipole. (From: [30].  1984 IEEE. Reprinted with permission.)

Very High Frequency Techniques [29] devotes a chapter to an excellent and
comprehensive discussion of the variety of sleeve antennas. Figure 5.8(a) depicts
a very generalized version of the sleeve monopole.

Sleeve antennas have certain advantages in terms of ruggedized construction,
but they are primarily important because of their excellent broadband impedance
characteristics. Since the diameters of the sleeve and inner conductor, as well as
the lengths L, H, and d, can all be varied, this double tuned dipole (or monopole)
has been shown [31, 32] to have excellent broadband characteristics.

Poggio and Mayes [33] presented a method for optimizing the pattern band-
width of the sleeve monopole. They observed that neither the sleeve diameter nor
the monopole diameter has any significant effect on the radiation patterns, although
increasing the monopole diameter does lower the antenna Q and broaden the
bandwidth. The total height H is set to resonate at approximately one-quarter
wavelength at the lowest frequency. This done, only the length d remains to control
the pattern bandwidth through control of the current distribution at the higher
frequencies within the band.
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Figure 5.8 (Continued.)

Within the sleeve region, the feed sees two impedances in parallel. The imped-
ance seen looking vertically up from the feed point [see Figure 5.8(a)] is the antenna
impedance ZA seen at the top of the sleeve and transformed by a coaxial line
transformer of length L1 , inner diameter 2a, outer diameter (the sleeve diameter)
2b, and characteristic impedance Z01 . The second impedance is that looking down
from the feed point. The monopole impedance ZA can be obtained from (5.5) or
(5.6) from published curves or available software. From the figure, this is obviously
the impedance of a shorted section of transmission line of length L with characteris-
tic impedance Z02 , whose inner conductor is the feed transmission line (diameter
2a) and whose outer conductor is the sleeve. Note that the figure shows the same
transmission lines (Z01 = Z02), but in the general case this may not be so. For the
more general geometry, Poggio and Mayes give the feed point impedance as

Zin = Z01
ZA + jZ01 tan kL1
Z01 + jZA tan kL1

+ jZ02 tan kL (5.12)

Poggio and Mayes present data for a sleeve monopole operating over a 4:1 band-
width and demonstrate pattern optimization by proper choice of the ratio
(H − d )/d.

The paper by Wunsch [34] presents an accurate numerical model of the isolated
sleeve monopole. Wunsch’s results show the relatively complex current distribution
that must be properly modeled to predict behavior at the high end of the band. In
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addition, Wunsch shows excellent correlation between the measured data of Poggio
and Mayes and computed impedance over a 4:1 bandwidth for the isolated antenna.

Although the characteristics of isolated sleeve dipoles and monopoles are now
well known, there are relatively little data on scanned arrays. Certainly, the band-
width of sleeve antennas in arrays is far less than that of isolated antennas. Specific
design data for arrays are given in the article by Wong and King [32], showing
how bandwidth can be improved by the proper selection of dimensions. Typical
achievable bandwidth ratios are up to 1.8.

5.3.6 The Bowtie and Other Wideband Dipoles

Thin dipole and monopole elements have reasonable bandwidths for many phased
array applications. However, the dipole bandwidth can be increased substantially
by using fatter conductors. Balanis [35] quotes the narrow bandwidth of 3% for
a very thin dipole with , /a = 5,000, but with a fatter dipole (, /a = 260) the dipole
bandwidth is approximately 30%. It is common practice to use fatter dipoles and
specially shaped antennas to increase bandwidth. The biconical dipole [36] of
Figure 5.8(b), the conical monopole [37], and the bowtie [30] element shown in
Figure 5.8(c) are examples of wideband elements that are treated in some detail
in the literature and that offer significantly improved wideband operation when
used as isolated elements. A broadband version of monopole or dipole, the bowtie
element [Figure 5.8(c)] has a flat triangular shape and is lightweight compared to
the biconical structures, but still retains some of the wideband properties. The
bowtie element of Figure 5.8(c) described by Bailey [30] includes a balanced to
unbalanced (balun) impedance matching transformer, which is formed using the
cylindrical conductor (solid left vertical line), and the coaxial line outer conductor
to form a short-circuited transmission line. This element operates over a 37%
bandwidth with VSWR < 2.0 and has cross-polarized components of radiation
suppressed below −25 dB. Although the element bandwidth in a scanned array
will be significantly less than that of the isolated element, these numbers still serve
as guides to estimate the maximum that can be expected in the array environment.

5.3.7 The Folded Dipole

Figure 5.9(a, c) shows a folded dipole antenna excited by a two-wire line. The
folded dipole has an impedance transforming feature that multiplies the antenna
impedance by a number related to the diameter and spacing of the wires in the
folded dipole. The structure was first analyzed by Mushiake [38] as the combination
of symmetrically and antisymmetrically driven modes: a transmission line mode
and an antenna mode. A full-wave numerical solution [39] confirms the accuracy
of this method.

Design equations for selecting wire diameters and other dimensions are given
below for a folded dipole with different radii, as shown in the figure. The equations
are as cited by Tai [3] from the symmetric-antisymmetric solution of Mushiake.

The input impedance of the folded dipole is given by

Z =
2(1 + a)2ZrZF

(1 + a2)Zr + 2ZF
(5.13)
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Figure 5.9 Folded dipole antennas: (a) basic folded dipole antenna; (b) strip folded dipole geome-
try; and (c) strip folded dipole. (From: [40].  1985 IEEE. Reprinted with permission.)
(d) Folded dipole excited by microstrip balun. (After: [41].)

where the impedances Zr and ZF are the input impedances of symmetrically and
asymmetrically fed lines. The asymmetrically fed line with impedance Z0 has equal
and opposite currents in the two arms and has as input impedance the impedance
of a shorted transmission line of length L.

ZF = jZ0 tan(kL /2) (5.14)
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Figure 5.9 (Continued.)

The impedance Zr is that of a cylindrical dipole with equivalent radius aeq for
the case of two parallel conductors with radii r1 and r2 , as given in the figure.

The impedance step-up ratio (1 + a)2 is always greater than 1. The parameter
a is given by the equation

a =
cosh−1[(v2 − m2 + 1)/2v]

cosh−1[(v2 + m2 − 1)/2vm ]
(5.15)

where m = r2 /r1 and v = d /r1 .
Figure 5.10 shows the step-up ratio (1 + a)2, as computed by Hansen [42]. If both

wires have the same radius, then the step-up ratio is 4, and so dipole impedances of
approximately 73V are transformed to closely match the 300V transmission line.
However, a wide range of step-up ratios can be obtained through the proper
selection of the spacing and relative dimensions. Figure 5.10(b) shows the (r1 /r2)
ratio of conductor diameters versus the transformation ratio and spacing
parameter d.

A particularly convenient folded dipole circuit, shown in Figure 5.9(c), with
dimensions given in the paper by Herper et al. [40] is a printed strip line folded
dipole with a Schiffman balun. The dipole length was 0.42l and the top of the
dipole was located 0.24l above the ground screen at center frequency. This element
was fed by strip line, but could also be fed by a microstrip transmission line. One
major advantage of this element is that it can be printed in a single process all on
one side of a circuit board, and so is relatively inexpensive to produce. A paper
by Lampe [43] gives some design formulas for such a printed folded dipole designed
from the equations given above, using the transmission line parameters of an
asymmetrical coplanar strip transmission line with dimensions given in the figure.

Lampe obtained the characteristic impedance of the asymmetrical coplanar
strip transmission line from a Schwarz-Christoffel transformation:
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Figure 5.10 Folded dipole parameters: (a) step-up ratio (1 + a)2 versus r2/r1 and d/r1; and
(b) conductor ratio r2/r1 versus step-up ratio (1 + a) and d/r1. (From: [42].  1982
IEEE. Reprinted with permission.)

Z0 =
120p

e1/2
K(k)
K ′(k)

(5.16)

where e is the relative dielectric constant of the substrate, K is the complete elliptical
integral of the first kind, and

K ′ = K[(1 − k2)1/2] (5.17)

For coplanar strips, and using the notation of Figure 5.9(b), the parameter k is
given by Lampe as
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Figure 5.10 (Continued.)

k =
b /2[1 + e(b /2 + W1)]

b /2 + W1 + e(b /2)2 (5.18)

where

e =
W1W2 + (b /2)(W1 + W2) − [W1W2(b + W1)(b + W2)]1/2

(b /2)2(W1 − W2)

In the particular case of symmetrical strips (W1 = W2 = W ), the parameter k reduces
to

k =
b

b + 2W
(5.19)
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Efficient methods for evaluating the complete elliptical function K and its comple-
ment are available in the literature. For example, Lampe cites the simple formulas
of Hilberg [44]. The parameter a for the strip folded dipole is given by Lampe as

a =
ln{4c + 2[(2c)2 − (W1 /2)2]1/2} − ln(W1)

ln{4c + 2[(2c)2 − (W2 /2)2]1/2} − ln(W2)
(5.20)

The remaining parameter required for computing the input impedance of the folded
dipole is the impedance Zr for the dipole of the equivalent radius. Lampe gives a
relationship for this parameter in terms of integrals. In the case of equal-width
strips, the equivalent radius is given as

r e = {(W /4)(c + [c2 − (W /4)2]1/2)}1/2 (5.21)

If the strips are narrow relative to spacing 2c, then the equivalent radius becomes

r e = (We /2)1/2 (5.22)

Using these relationships, Proudfoot [41] constructed a balun-fed folded dipole
using the feed that he previously described in earlier studies [17, 22] [see Figure
5.9(d)], and demonstrates 36% bandwidth for the isolated element. Cross-polarized
radiation levels achieved were similar to those of the balun-fed dipole of [22], thus
confirming the likely cause of the cross polarization as the hook balun.

5.3.8 Microstrip Dipoles

Printed circuit dipoles are strips of printed conductor cut to resonant lengths and
excited by various means, including electromagnetic coupling to nearby transmis-
sion lines or direct coupling to feed lines or probes. Figure 5.11 shows several
resonant microstrip dipole elements excited by direct coupling and proximity cou-
pled to an open-circuited line in the same plane or below the dipole. Proximity-
coupled arrays developed by James and Wilson [45] [Figure 5.11(a, b)] and by
Mise [46] center each element at the voltage minimum of a reactively terminated
feed line. Mise shows the dependence of normalized line resistance on radiator
position for a single radiator, and indicates how various dimensional parameters
influence impedance and resonant frequency for a variety of element positions. A
similar radiator [Figure 5.11(c)] was developed independently by Oltman [47] and
places the resonant radiator about halfway beyond the end of the feed line. A
paper by Oltman and Huebner [48] is an application of Oltman’s element to a
corporate fed array.

Studies of printed microstrip dipoles have been conducted using full-wave
integral equation solutions and have considered a number of direct and proximity-
coupled configurations [49–52]. Single and dual parasitic elements [52] have been
shown to give bandwidths in excess of 11% for isolated elements. In comparison
with the microstrip patch antenna, the microstrip dipole is more narrowband unless
used with relatively thick substrates.
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Figure 5.11 Microstrip dipoles for radiation perpendicular to substrate: (a) electromagnetic coupled
microstrip dipole with coplanar feed; (b) microstrip dipole fed directly by microstrip
line; and (c) electromagnetic coupled microstrip dipole with feed below substrate.

5.3.9 Other Wire Antenna Structures

The wire elements listed above have been used in arrays and are clearly suited for
such use. However, they comprise only a very small subset of all of the wire
antennas developed, some of which may have unique qualities for arrays. Since
many of these were developed for use with coaxial or parallel wire transmission
lines, their application to a variety of printed transmission lines has not been
studied, and could prove a new and potentially fruitful area for future developments.
The remarkable variety of these creative endeavors is chronicled in Chapter 3 of
the text by King [4], a chapter that bears rereading from the perspective of modern
transmission circuits. There is one group of elements that has seen increasing use
in wireless communication and that may have application to more arrays in the
future. These elements, shown in Figure 5.12, are based on the inverted L antenna
(ILA), the inverted F antenna (IFA), and the planar inverted F antenna (PIFA).
These are all low-profile elements based on the center stub monopole; thus, they
behave like a lossy capacitance [53]. The inverted L in Figure 5.12(a) is basically
a top-loaded monopole that resonates at h + b about a quarter wavelength and is
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Figure 5.12 Low-profile wire elements: (a) ILA; (b) IFA; and (c) PIFA.

used mostly at HF and below. The top loading allows the current distribution to
become more uniform and increases the radiation impedance to about 5V for h /l
equal to about 0.05. This, and the other low-profile wire elements, are described
in [54] and in earlier seminal references [55, 56].

The IFA, shown in Figure 5.12(b), has a horizontal wire element attached to
the top of the vertical monopole and then shorted to the ground to act as a shorted
line tuning stub. This configuration has increased radiation resistance, and by
varying the length of the shorted line stub [53], it can be matched to 50V and
bandwidth can be on the order of 10%.

The polarization of both of these elements has both horizontal and vertical
components, which is often useful for wireless communication. They are both
narrowband, depending upon the height h. Some enhanced bandwidth is achieved
by replacing the horizontal element with a plate, as shown in Figure 5.12(c). This
PIFA has become extremely popular in its basic version, shown in Figure 5.12(c),
or in a multitude of variations, including the use of dual layers and incorporated
tuning circuits and parasitic elements. Bandwidths vary from a few percent to over
25% for isolated elements [57, 58]. Dual-band PIFAs and IFAs have been developed
for cellular phone handset antennas [59].

5.3.10 Broadband Flared-Notch, Vivaldi, and Cavity-Backed Antennas

Various flared transitions have been used as transmission line interconnects for
many years, and flared antennas [60] are described in a number of texts. Kerr [61]
developed a series of flared-ridge-loaded horn antennas that have found utility as
a wideband feed for reflectors and anechoic chambers.

Variations of these basic elements (Figure 5.13) have been developed and
several incorporated into full phased arrays. The early work reported by Lewis
[62] described the flared notch [Figure 5.13(a, b)], in which notches in the outer
strip line conductors are excited by an open-circuited orthogonal center conductor.
In an array environment, the element showed acceptable scan characteristics with
a linearly polarized radiation pattern. Broadside arrays of the same elements had
previously demonstrated greater than 4:1 bandwidth [63], but in the study of
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Figure 5.13 Notch type radiators: (a) flared-notch strip line-fed radiator; (b) two-dimensional
flared-notch array; and (c) Vivaldi slot line element. (After: [64].) (d) Cavity-backed
arrangement of four microstrip-fed flared slot lines. (After: [68].)

Lewis et al. [62], the scanned array bandwidth was limited to about one octave.
The flared notch, as it was first investigated, is a strip line element excited by
proximity coupling to the open-ended strip line center conductor.

A similar antenna, the Vivaldi element [Figure 5.13(c)] is actually a flared,
truncated slot line. The paper by Gibson [64] popularized the name Vivaldi for
the exponentially flared slot line antenna and expressed bandwidths of 6:1. A
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linearly tapered slot line antenna is described in the work of Prasad and Mahapatra
[65]. Studies by Yngvesson [66] have included design data for obtaining increased
bandwidth. Franz and Mayes [67] describe a microstrip-fed Vivaldi antenna using
several different feeds, which has demonstrated good impedance match over a 4:1
bandwidth, and good pattern bandwidth over an 11:1 bandwidth.

The Vivaldi flare is given in the following form by Franz and Mayes [67]:

Y(x) = (w0 /2) exp(ax) (5.23)

where Y is the half separation of the Vivaldi radiator conductor; x is the longitudinal
coordinate; a is the flare scaling factor; and w0 is the width of the uniform slot
line.

Franz and Mayes give data describing the radiation length and reflection coeffi-
cient, and show that the length LR should exceed 0.5l , with 0.9l being nearly
optimum. Similarly, the dimension Wmax must exceed about 0.5l .

Published developments have extended the practical implementation of these
elements. Povinelli [68] describes a scanned array of strip line flared notches that
maintained an average VSWR under 2:1 over the band 6 to 18 GHz for a 60° scan
in all planes. To achieve good performance over this scan range without grating
lobes, the elements were very closely spaced (0.19l ) at the lowest frequency. The
flare was designed using a modified Dolph-Chebyshev taper given by Klopfenstein
[69], and this resulted in an extremely short flared region (approximately 0.15l
long at the lowest frequency).

A wideband flared element due to Povinelli [70] is a microstrip-fed slot line
exciter for a cavity-backed slot. Figure 5.13(d) shows a circularly polarized crossed-
slot version of this element. In this case, the radiation is orthogonal to the array
slot aperture. The circularly polarized cavity-backed antenna had less than 2:1
(average) VSWR over most of the 4- to 18-GHz frequency band. Without dielectric
loading, the circularly polarized element required a cavity more than one wavelength
across, and so, at least in this form, the array applications are limited.

Recent developments in wideband arrays continue to explore the gradual transi-
tion properties of flared structures. An example of the current state of the art in
Vivaldi tapered slot antennas is included in the reference by Schaubert et al. [71].
A new wideband (5:1) array element was developed by Lee et al. [72], which has
the property of having lower cross polarization than the conventional tapered slots.
This element, shown in Figure 5.14(a), is a printed flared dipole, called a ‘‘bunny
ear.’’ The dipole height is about a half-wavelength at the highest frequency; thus,
it is less than one eighth of a wavelength at the lowest (for 4:1 bandwidth). As
such, the dipole is much shorter than the flared-notch element of Figure 5.14(a)
and so has smaller longitudinal current, which is the source of cross polarization
in the notch. The vertical currents in the feed of the bunny ears antenna are very
close together, so their radiation nearly cancels. The element is fed by a slot-line
impedance transition region to present 100V at the beginning of the flared dipole
wings, which then complete the transition to 377V in the filled ‘‘egg crate’’ two-
dimensional array. Another important feature is that the individual elements are
not mounted in a continuous metallic structure. This isolation improves the low-
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Figure 5.14 Wideband antennas: (a) flared notch; and (b) printed flared dipole ‘‘bunny ear.’’ (After:
[72].)

frequency behavior, which would otherwise provide a short-circuited path between
elements.

An electrically short crossed notch element [73] achieved good gain over a 9:1
bandwidth and operated over a 3:1 bandwidth with about 15-dB polarization
isolation within a 60° half angle conical scan region. A second study of two different
elements [74] demonstrated 10:1 bandwidth for both a flared-notch element and
a quad fin element that evolved from a TEM horn approach. The elements are
electrically equivalent but have different feed mechanisms.

5.4 Aperture Antenna Elements

The variety of aperture antennas is far less than that of wire antenna elements and
consists primarily of slot antennas, waveguide antennas, and horns.
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5.4.1 Slot Elements

Slot antenna elements are among the oldest radiators. They are the well-known
complement of the dipole, and the impedance of a slot in a ground screen in free
space [Figure 5.15(a, b)] is obtained from Babinet’s principle as [75]

ZS = Z 2
0 /(4Zc ) (5.24)

Here, Zc is the dipole impedance at the corresponding point on the complemen-
tary dipole, and Z0 is the free space impedance (Z0 = 120pV). The slot ‘‘equivalent
radius’’ is usually taken as one-fourth the slot thickness in accordance with the
analogy of the strip dipole of Figure 5.2.

Since the microstrip slot antenna is bidirectional, it is necessary to use a ground
screen or cavity behind each slot to restrict radiation to the front hemisphere.
Typically, the required back plate spacing is about 0.25l between slot and reflector.
In an array, it is usually necessary to have separate cavities [76] behind each element
instead of just a reflecting plate, because coupling into parallel plate modes in the
region below the slots can lead to serious pattern degradation in the array scan
behavior [77].

If the slot is instead in a cavity, as shown in Figure 5.15(c), the radiation
resistance is approximately double the free space resistance. This relationship is

Figure 5.15 Fundamental slot and dipole strip antennas: (a) strip dipole; (b) equivalent slot in
ground screen; and (c) cavity-backed slot antenna.
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not exact because of the presence of higher order modes in the cavity behind the
slot, which alter the element field distribution and change the radiating impedance.
The cavity-backed slot [76] is an excellent element for scanned or unscanned arrays
because of its polarization purity and its good scanning characteristics [77] and
relatively broadband radiation characteristics. The techniques for exciting the slot
using strip line are shown in Figure 5.16(a, b). In Figure 5.16(a), a strip line feed
is shorted to the slot ground plane after passing over the slot [78]. Figure 5.16(b)
shows the slot and a cavity formed by soldered pins or plated through holes in a
dielectric. For this line, the strip line center conductor is terminated in an open
circuit about a quarter wavelength beyond the slot [79]. The impedance of narrow
slot radiators is very high and may be on the order of 400V to 500V without a

Figure 5.16 Practical feeds for slot antennas: (a) strip line shorted beyond slot; (b) open-circuited
strip line beneath cavity-backed slot; and (c) T-bar feed from slot antenna. (From: [82].
 1975 IEEE. Reprinted with permission.)
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Figure 5.16 (Continued.)

cavity and double that with a cavity, and so there is some engineering necessary
to design slot feed networks. The use of a T-bar feed [Figure 5.16(c)] [80, 81]
compensates the impedance characteristics to provide a broadband impedance
match. Detailed design data for slot antennas coupled by T-bar feeds are given in
the paper by Newman and Thiele [82]. An application of a T-bar [Figure 5.16(c)]
feed located in the plane of the slot is readily adapted to printed circuit technology
[83]. This technology has proven successful at frequencies up to 45 GHz.

The input impedance of the slot is maximum at the slot center, and so it is
often convenient to excite the slot off center. As in the dipole case, this does not
change the pattern measurably. The approximate impedance of the off-center-fed
slot is given by the complementarity relationship (5.24), and so from (5.11) for
relatively small displacement Dl, one obtains

Zin = Zc cos2(kDl) (5.25)

where Zin is the input impedance and Zc is the impedance of the center-fed slot
(k = 2p /l ).

Bahl and Bhartia [84] summarize the literature of microstrip-fed slot antennas
and quote the analysis of Nakaoka et al. [85] for the slot resistance when excited
off center by a microstrip line shorted to the slot edge, as shown in Figure 5.16(a).

5.4.2 Waveguide Radiators

Still the most important element for high-power radar and communication arrays,
the rectangular or cylindrical waveguide radiating element [Figure 5.17(a, b)] has
been investigated in detail and optimized to develop excellent scanning properties.
Waveguide arrays, though heavy, tend to have low loss, bandwidth exceeding 50%,
and graceful scan degradation. Impedance matching at broadside is usually not
difficult because the impedance of an unloaded waveguide is close to the free-space
impedance.

Detailed considerations of rectangular and circular waveguide antennas as
elements and in arrays are given in a number of texts [86]. For waveguides radiating
as apertures in conducting screens [as in Figure 5.17(a, b)], the published numerical
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Figure 5.17 Waveguide radiating elements. (a) Rectangular waveguide. (b) Circular waveguide.
(c) Circularly polarized waveguide element for triangular grid array. (From: [87].
 1968 IEEE. Reprinted with permission.) (d) Doubly tuned waveguide element. (From:
[88].  1974 IEEE. Reprinted with permission.)
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results are quite accurate, since waveguides can usually be assumed to operate with
a single incident mode with all other modes cut off. This separates the feed and
radiation properties and results in well-defined boundary value problems.

Often the waveguide element is dielectrically loaded to make a transition to a
ferrite phase shift section. Examples of specific waveguide element design are the
studies of Wheeler [87], wherein matching networks were derived using waveguide
transmission circuits like that shown in Figure 5.17(c), consisting of dielectric slabs
mounted in and above the waveguide. The later studies of McGill and Wheeler
[89] introduced the use of a dielectric sheet, often called a wide-angle impedance
matching (WAIM) sheet, to produce a susceptance variation with a scan angle that
partially cancels the scan mismatch of the array face. Figure 5.17(d) shows an
example of a broadband waveguide element that has doubly tuned response charac-
teristics synthesized using dielectric loading and a section of waveguide beyond
cutoff as an impedance transformer.

References to the scan matching and performance of rectangular and circular
waveguides are given in Chapter 6.

In general, it is now possible to predict wideband waveguide scan characteristics
for large arrays with such accuracy that, using available transmission line software,
one can readily synthesize appropriate matching networks for wide-angle, wideband
performance.

5.4.3 Ridged Waveguide Elements

Ridged waveguides are broadband transmission lines that can be used as efficient,
high-power, broadband array elements. Single-, double-, and quad-ridged wave-
guides are shown in Figure 5.18. Quad-ridged waveguides [Figure 5.18(c)] extend
these features to circularly polarized arrays. They are, of course, more expensive
to build than conventional waveguides, and so have application only when the
specifications require these features.

The design of ridged-waveguide arrays involves a tradeoff between waveguide
bandwidth and scan matching of the array aperture. Figure 5.18(d, e) shows the
bandwidth of a single-ridged waveguide as a function of ridge and waveguide
dimensions. The plotted bandwidth is defined as the ratio of the cutoff wavelengths
of the TE10 mode and the next higher mode. Clearly, the highest bandwidth is
obtained for a heavily loaded waveguide, with ridges that extend most of the way
across the guide. Figure 5.18(e) shows that this case corresponds to low characteris-
tic impedance, and so is a poor match to free space (Y0 = 0.0027). Matching for
a scanned array is possible by varying the ridge parameters or through the use of
dielectric layers.

Other references to ridged waveguide characteristics are included in the texts
[90–92]. Scan parameters of ridge guide arrays are given by Chen and Tsandoulas
[93], Montgomery [94], Chen [95], and by Wang and Hessel [96] for double-
ridged elements. The results of this last detailed study of a two-dimensional scanning
array confirmed that by properly selecting ridge parameters, one can design elements
to scan a quarter hemisphere and have between 40% and 58% bandwidth. The
maximum VSWR of such elements without broadband matching circuits and for
any scan angle was about 7:1 for the 40% bandwidth case and 10:1 for the 58%
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Figure 5.18 Ridge waveguide radiating elements. (a) Single-ridge waveguide dual and quad-ridge
waveguide. (b) Dual single-ridge waveguide. (c) Impedance of single-ridge waveguide
with b/a = 0.45 and infinite frequency. (From: [80].  1947 McGraw-Hill, Inc. Reprinted
with permission.)

bandwidth case. An attempt to design a 75% bandwidth element led to maximum
mismatch of about 16:1 within the scan volume.

5.4.4 Horn Elements

In distinguishing horn from waveguide elements, we mean to restrict the consider-
ation of horns to apertures that are generally more than a wavelength or so on a
side, and often some number of wavelengths. These generally have little application
to scanning arrays, except those that scan only a few degrees. In general, horn
arrays can scan approximately to the horn 3-dB point, or roughly to

sin umax = 0.443l /D (5.26)

where D is the horn aperture length in the scan plane. Such a scan results in
potentially serious pattern distortion in the form of grating lobes. These and other
antennas for restricted sector scan coverage are discussed in Chapter 8.
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Figure 5.18 (Continued.)

5.5 Microstrip Patch Elements

5.5.1 Microstrip Patch

The microstrip patch has become one of the important elements for array applica-
tions, and in its most basic form, as shown in Figure 5.19(a), it was invented by
Munson [97, 98]. Some references credit an earlier reference by Deschamps and
Sichak [99], but that paper describes a microstrip horn antenna with very different
radiation characteristics and pattern [100]. Figure 5.19 shows the basic rectangular
patch first described by Munson [97, 98] and the circular disk radiator of Howell
[101]. The key to its utility has been that it can be fabricated with low-cost
lithographic techniques on printed circuit boards. It can also be produced by
monolithic integrated circuit techniques that fabricate controls, phase shifters,
amplifiers, and other necessary devices, all on the same substrate and all by auto-
mated processes. Several books and numerous technical papers present design data
for these elements [102–105]. Figure 5.19(a, b) also illustrates two of the most
common feed structures: the inline microstrip feed and the coaxial probe feed.

The microstrip patch was not included in the sections on generic wire elements
or aperture elements because its radiation, and in fact all of its properties, can be
formulated from either perspective. This is illustrated in Figure 5.20, which shows
microstrip patches above a ground screen. In this case, we show no dielectric under
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Figure 5.19 Microstrip patch elements: (a) rectangular patch with microstrip feed; (b) circular
patch with coaxial feed; (c) shorted quarter-wave patch; (d) slot coupled patch;
(e) electromagnetically coupled patch; and (f) coaxially fed patch with u-slot.

the patches in order to simplify the exposition. In Figure 5.20(a), the currents are
shown as solid lines on the patch. In the case of the patch current model [Figure
5.20(a)], the field for z > 0 can be rigorously expanded using (5.2) and (5.3) for
current sources over a ground screen, and including the image currents as directed
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Figure 5.20 Microstrip patch models: (a) electric current model; (b) aperture field model;
(c) microstrip patch radiator showing fringing field; (d) simplified two-slot radiator
model; and (e) equivalent circuit for transmission line approximation.

by (2.9) for the vector potential. This is an antenna current formulation, such as
was done for the wire antennas discussed earlier. The currents are not known and
remain the subject of a more complex analysis that includes the source excitation.
Alternatively, from the perspective of Figure 5.20(b, d), one could assume that the
ground screen, a perfect electric conductor, is at the plane of the patches [see dotted
line in Figure 5.20(b)], and this allows the fields to be expressed using the half-
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Figure 5.20 (Continued.)

space potential function. In this case, the integral in (2.9) is strictly taken over the
(unknown) tangential electric field all along the dotted surface. The tangential
aperture fields are obtained from the solution of a boundary value problem beneath
and at the edges of the patch, and in the array case includes coupling to other
patches, and the periodic array at z = 0, in addition to the exciting source conditions.
In practice, the most intense fields are usually confined very close to the patch
edges, and this is the basis for a convenient two-slot approximation to the patch
radiation patterns. In the two-slot approximation of Figure 5.20(d), the patch is
assumed to radiate like two slots of width equal to the substrate thickness. This
representation does not account for cross-polarized components of radiation,
although these can be included by integrating the antisymmetrical fringing fields
along the side edges of the patch.

Still, other formulations based on alternative combinations and locations of
electric and magnetic sources are equally valid, and a number of these are cataloged
in the text by Bahl and Bhartia [84].

Before leaving the subject of theoretical models to present specific engineering
results of the two-slot model, it is worthwhile noting that the above statements
are strictly true only for patches without a dielectric substrate. In general, for a
patch over a dielectric substrate, one cannot use the half-space Green’s function
rigorously, and the analytical problem is significantly complicated. If the substrate
is not air, the more complex Sommerfeld Green’s function (or the so-called spectral
form of the Green’s function) is required in the patch current formulation, and
(2.9) is no longer used. Nevertheless, the patch current formulation has proven to
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Figure 5.20 (Continued.)

be of great utility in computing the detailed mutual coupling analysis, as will be
discussed in Chapter 6.

The aperture field approach has proven especially useful and intuitive. From
this perspective, the element is viewed as two radiating slot apertures with electric
fields in the plane of the patches. The slots are spaced b apart and have thickness
h equal to the substrate thickness. Radiation from the edges that run parallel to
the currents is orthogonally polarized, but is often neglected for nonscanning
broadside arrays because the field is asymmetrical along the patch and its radiation
tends to cancel in the broadside direction. Early studies obtained resonant frequen-
cies by modeling the patch as a resonator made of a parallel plate transmission
line with susceptances to represent the discontinuity at each end. The success of
this transmission line model has been in producing convenient and reasonably
accurate formulas for rectangular patch resonant dimensions and pattern and
radiation resistance. These are presented below as given in the model presented in
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a number of texts and references [106–111] for a patch with an arbitrary feed
point, as used for the inset feed of Figure 5.21(b).

The transmission line model for the patch of Figure 5.20(d), with arbitrary
feed point, represents the rectangular patch as two slots separated by a distance
b, which is usually very nearly one-half wavelength in the dielectric, and width a
and thickness h. The slot thickness h is usually taken as the substrate thickness.
Assuming uniform fields across the patch, the normalized element pattern of this
combination is approximately

F(u, f ) =
sin(khu /2)

khu /2
sin(kav /2)

kav /2
cos(kbu /2) (5.27)

for direction cosines u and v. This pattern can be integrated to give the patch
directivity [84, 106].

An approximation of the radiation resistance is also found from the transmis-
sion line model by considering that the resonant element radiates as two slots of
length equal to the patch width a radiating in parallel [110].

Rin =
60/l

a
(5.28)

Width a is chosen to be about

a =
c

2f
{(er + 1)/2}−1/2 (5.29)

for c, the velocity of light. Since this width is usually about a half wavelength or
less, this input resistance is often from 100V to 200V. A match to nominal 50V

transmission lines can be accomplished either by a matching network in the feed
line or by modifying the patch. The most convenient solution to date has been to
utilize the transmission line model circuit to transform the impedance to a feed
point inside (or beneath) or along a nonradiating edge of the patch. In practice,
this is most often done using a probe feed from beneath the patch or an inset feed
using a coplanar waveguide within the patch, as shown in Figure 5.21.

The input impedance at an arbitrary feed point beneath the patch is obtained
using the transmission line model by assuming the patch is a transmission line
terminated in an open circuit at both ends. The patch is modeled as two slots
centered at the edges of the patch. Harrington [111] gives the admittance of a
narrow H-plane slot (for h /l < 0.1) as

YS = [pa /(lGh0)](1 − k2h2/24) + j [a /(lGh0)][3.135 − 2 ln(kh)] (5.30)

= GS + jBS

where h is the height above ground; a is the width of strip line; and h0 is the
impedance of free space, which equals 377V. In this expression, k = 2p /l for free
space wavelength l , and lG is the microstrip guide wavelength.
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Figure 5.21 Microstrip patch antenna with inset feed: (a) edge input impedance versus patch
length b; and (b) inset feed geometry (substrate thickness h not shown).
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The admittance of the microstrip line of width A is given by Schaubert et al.
in terms of the effective dielectric constant eE as [112]

YP = [(eE )1/2/h0][a /h + 1.393 + 0.667 ln(a /h + 1.444)] (5.31)

where

eE = (er + 1)/2 + (er − 1)/[2(1 + 10h /a)1/2] (5.32)

The input impedance is obtained using the equivalent circuit in Figure 5.20(e)
to sum the admittances Y0 (seen looking toward the far end of the patch) and YF
(looking toward the feed side), both referred to the feed point. In these expressions,
the dimensions l1 and l2 are electrical lengths, not actual lengths. They are used
in the transmission line formulas and must be related to physical dimensions later.
At the feed point, the admittance of the transmission line that terminates at the
far end of the patch is

Y0 = YP
e jkl2 + G1e −jkl2

e jkl2 − G1e −jkl2
(5.33)

where

G1 =
YS − YP
YS + YP

and YS is the admittance of the slot at the far end of the patch.
The admittance looking toward the feed side of the patch is denoted by YF

and is given by the expression above for Y0 but with l1 substituted for l2, since
the slot impedance is the same at the feed side. The total admittance is thus

Yin = Y0 + YF (5.34)

The electrical lengths l1 and l2 define the conditions of resonance and the input
patch resistance using the above ideal transmission line theory. They are related
to the physical lengths d and (b − d) by the following relations:

l1 = d(eE )1/2 + DL l2 = (b − d)(eE )1/2 + DL (5.35)

where it is shown that the physical lengths are multiplied by the square root of
the effective dielectric constant, but then increased by a correlation factor that
accounts for fringing fields. Since the fringing fields cause the radiating slots of
the patch to appear electrically some small distance beyond the patch edges, there
is a need to include a length extension to the electrical length. Hammerstadt [113]
gives an approximation of the length extension of an open-circuited microstrip
transmission line as
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DL = 0.412h
(eE + 0.3)(a /h + 0.262)

(eE − 0.258)(a /h + 0.813)
(5.36)

Equation (5.33) gives the input admittance of the patch with an arbitrary feed
point. The model of [109] proceeds by setting d = 0 (no inset) and making successive
guesses at the patch length b until the imaginary part of the admittance is zero.
Figure 5.21(a) shows a typical plot of the patch edge input impedance versus the
length b and shows resonant impedance peaks on the order of 200V, with the
imaginary part of the impedance zero at the peaks.

A good initial guess at the dimension b is

b = 0.49l0 /(eE )1/2 (5.37)

Once this resonant length is selected by iteration, the inset feed dimension d
is increased from zero to some number at which the real part of the patch impedance
equals the feed line impedance. An initial guess at d can be obtained using the
approximate expression of Carver and Mink [106] for the impedance R0 , a distance
d from the edge of a rectangular patch:

R0 = RE cos2(pd /b) (5.38)

This leads to an expression for d :

d ≈ (b /p ) cos−1[(R0 /RE )1/2] (5.39)

where R0 is the feedline impedance and RE is the patch impedance at the edge
[given by (5.33)]. Since the patch is at resonance, the input impedance remains
real as the feed point is moved from the edge. The resonant frequency remains
unchanged.

Solving (5.39) for a 50V feed point leads to a feed location some distance in
from the radiating edge of the patch. Locating a feed at this point is achieved by
the several means shown in Figures 5.19(b, c) and 5.21. Coaxial probe excitation
[Figure 5.17(b)] has proven very successful and practical, but the susceptance of
the coaxial probe can alter determination of the patch resonant frequency. The
inset feed of Figures 5.19(b) and 5.21 has been particularly successful, and since
the inset feed does not add an additional susceptance, one can get quite accurate
design dimensions from the transmission line theory. Recent work with inset feeds
has shown good correlation between theory and experiment. Typical dimensions
for the grounded coplanar feed region use the coplanar slot width equal to two
times the microstrip width.

Although a number of accurate numerical models are now available for thin
patches, the transmission line model is still very useful and has been extended to
give the resonant frequencies of even relatively complex shapes. Unfortunately,
neither this method nor most of the numerical methods are accurate for thick
patches (especially probe-fed patches) much beyond 0.05l unless special care is
taken to accurately include the electromagnetic characteristics of the feed. The
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primary limitation of the transmission line model is its inability to account for
coupling between patches in an array environment. In the past, the main disadvan-
tage of microstrip elements was that they were quite narrowband. The bandwidth
of an isolated element with a probe or inset feed and without a broadband matching
network can be modeled as a simple tuned R-L-C circuit, and is given below in
terms of the band edge standing wave ratio s [107]:

D f
f

=
s − 1

QT (s)1/2 (5.40)

where the total quality factor is given as a function of conductor and dielectric
loss and the loss associated with the radiation resistance. In the limit when the
radiation resistance dominates, for dielectric constants eE greater than 2 and equiva-
lent patch width l /2, the total quality factor is given by

QT =
3eE
8

l
h

for eE > 2 (5.41)

James et al. [107] give other relationships for a lower dielectric constant.
The fractional bandwidth is

D f
f

=
(s − 1)

eE (s)1/2
8h
3l

(5.42)

This formula shows the bandwidth as decreasing with the dielectric constant, but
is still somewhat deceptive because the microstrip thickness is ideally kept at some
fraction of the wavelength le in the dielectric line in order to avoid surface waves.
Since le = l /(eE )1/2, the resulting bandwidth for normalized patches that have a
substrate thickness h /lE constant is given by the expression below:

D f
f

=
(s − 1)

s1/2
8

3(eE )3/2 (h /le ) (5.43)

and portrays the bandwidth as proportional to the inverse of the relative dielectric
constant raised to the three-halves power.

More sophisticated than the transmission line model [114, 115] is the cavity
model [116]. The cavity model is again used in conjunction with the aperture field
integration method. This model assumes a perfect magnetic conductor around the
perimeter of the antenna and uses a modal description of the internal fields. Some
other cavity-type solutions assume impedance boundary conditions [106] at the
patch edges. Like the transmission line model, the cavity model is not one that is
ideally suited to solving the scanning array problem, but it has been used with
great success for single elements. Since this model can accurately account for probe
excitation, it has yielded excellent resonant frequency data for the coaxial probe-
fed patches in rectangular and circular geometries. A comprehensive description
of the range of geometries that have been investigated using the cavity model is
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included in [108]. Other results have extended the model to treat slot line and
coplanar line feeds [117].

Current modeling approaches are based on full-wave numerical solutions to
the microstrip patch or array geometry, either using the Sommerfeld Green’s func-
tion with a moment method solution in the spectral or spatial domain or using
finite element or time domain solutions. These numerical methods are now incorpo-
rated into many commercial software packages and allow complete characterization
of the variety of printed elements.

Variants of the conventional rectangular patch are shown in Figure 5.19 and
include shorted patches [Figure 5.19(c)] [118] that resonate when the element size
is approximately one-quarter wavelength long in the dielectric medium. Although
these elements do save space and have a broader radiation pattern because they
radiate like a single slot instead of a slot pair, they have not found extensive use
because the need to use plated-through holes or soldered pins is an expensive
and not always reliable fabrication procedure. This element has somewhat poorer
polarization characteristics than the conventional microstrip element because the
field along the nonradiating edge is not asymmetrical (as it is for the conventional
rectangular patch), and so contributes a significant cross-polarized component of
radiation [119]. Figure 5.17(d) shows the slot coupled patch configuration of Pozar
[120], which has become a very practical means of feeding patch arrays because
of its simplicity.

Other patch elements have been used because of (1) their polarization character-
istics, (2) their ability to sustain dual resonant frequencies, or (3) their enhanced
bandwidth properties. Special element configurations for exciting either dual or
circular polarization will be addressed in a later section. Among the dual-frequency
elements developed, the details of several vertically oriented elements and elements
using stubs or asymmetries to produce a second resonance have been published
[121–123].

Broadbanding of microstrip elements has met with some success, though not
without complicating the element design. Paschen [123] developed several networks
for double tuning elements and showed an increased bandwidth that exceeded 20%
for single elements. Pues and Van De Capelle [124] present a detailed discussion on
impedance matching techniques and compare these to the fundamental limit derived
by Fano [125]. Other authors [126, 127] have reported very wideband characteris-
tics of capacitively excited elements [such as that shown in Figure 5.20(e)]. Studies of
infinite arrays of various electromagnetically coupled patches [128], using idealized
feeds, indicate that one can indeed choose dimensions, subtrate thicknesses, and
dielectrics to provide bandwidth exceeding 15% without blindness. Figure 5.19(f)
shows a u-slot element that has extremely wide impedance bandwidth when used
as an isolated element [129]. The slot cut through the patch increased the bandwidth
by almost a factor of three (to 26%). However, recent results by Chatterjee [130]
for element patterns in an infinite array indicate some scanning limitations due to
pattern blindness. (Pattern blindness is discussed in Chapter 6.)

5.5.2 The Balanced Fed Radiator of Collings

A number of useful antenna designs have used patches fed with two probes excited
180° out of phase. These antennas are derived from the Collings radiator [131,
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132], which was invented about the same time as the microstrip patch. The Collings
radiator, as shown in Figure 5.22, consists of a disk radiator excited by the center
conductors of two coaxial lines with a 180° phase reversal.

Studies and developments of balanced fed microstrip patch antennas [133, 134]
show the advantage of this design for reducing cross-polarized radiation [133] and
for producing an improved axial ratio in circularly polarized arrays [134]. The
scan performance and bandwidth of infinite arrays of these elements has also been
studied [135, 136].

5.6 Elements for Alternative Transmission Lines

The microstrip transmission line is a very practical one for a number of applications,
but there are several other transmission lines that are also amenable to monolithic
fabrication. Figure 5.23 shows examples [137] of slot line and coplanar strip line
antennas that may have advantages for array use in a variety of applications.

5.7 Elements and Row (Column) Arrays for One-Dimensional Scan

If scanning in a single plane is adequate, the elements can be small individual
elements like dipoles, slots, or microstrip elements, while for higher gain arrays
the elements might be arrays of such simple elements. Such linear arrays are often
called line sources when used as elements for an array that scans in the plane
orthogonal to the elements. Figure 5.24 depicts column arrays excited by equal
path corporate power dividers and in series-fed configurations. Column arrays fed
by corporate power dividers, as shown in Figure 5.24(a), have far wider bandwidth

Figure 5.22 Circular disk excited by antiphase feed (Collings radiator).
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Figure 5.23 Other printed circuit radiators: (a) slot line antenna; and (b) coplanar strip line antenna.
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Figure 5.24 Column array configurations: (a) parallel (equal line length) corporate feed; (b) series-
fed array; and (c) series-fed microstrip patch array.

and better power handling capacity than series arrays [Figure 5.24(b)], but are
more bulky and expensive to construct. The series-fed geometry must be carefully
designed to provide well-collimated radiation from each element. In general, one
has a choice between waveguide and coaxial line corporate-fed power dividers or
lower cost strip line or microstrip power dividers, which are lossy at higher frequen-
cies and power-limited. The technology has become sufficiently advanced so that
close tolerance control and sidelobes at the −40- and −50-dB level is possible with
coaxial line, waveguide, or strip line power dividers. Microstrip power dividers,
on the other hand, provide limited sidelobe control because their open surface
allows radiation from bends and junctions and parasitic interactions between feed
paths. These effects limit the achievable sidelobe level with open microstrip power
dividers.

Variants of both the microstrip and the Collings radiator have been used as
elements for arrays that scan in one dimension [132]. The strip version of the
Collings radiator was scanned in one dimension and one version was excited with
multiple feeds and used plated-through holes to divide the strip into cavities.
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Although the demonstration model was not scanned, element patterns indicated
that scanning over a wide scan angle was possible.

5.7.1 Waveguide Slot Array Line Source Elements

Among the most important and well-understood line source elements are waveguide
slot arrays [138–140]. Waveguide series slot arrays are simpler to construct but
of narrower bandwidth than equal-path corporate-fed slot arrays, and can also
have several undesirable pattern characteristics that will be described later.

Figure 5.25 shows three useful slot configurations for waveguide: edge slots,
longitudinal displaced slots, and inclined series slots. Since the slot spacing must
be restricted to avoid grating lobes, slot angles or locations are alternated as shown
in the figure to introduce the extra 180° phase shifts to collimate radiation from
slots approximately one-half wavelength apart in the transmission line. The slot
arrays are designed as resonant (standing wave) or traveling wave arrays. Resonant
arrays are terminated in short circuits to establish a standing wave in the feed
waveguide, while traveling wave slot arrays are terminated by matched loads.
Traveling wave arrays usually operate over broader bandwidths than resonant
arrays, and the traveling wave array has an off-broadside (squinted) pointing angle
that is a function of frequency. Resonant arrays are designed to radiate an ‘‘inphase’’
broadside pattern.

For traveling wave arrays with waveguide propagation constant b = 2p /lg ,
slot spacing dy near half wavelength, and added phase shift p between each succes-
sive slot, the slots are excited by the exponential

exp[−j2pv0ndy /l ] = exp{−j [bndy − np ]} = exp[−jna ] (5.44)

where v0 is the usual direction cosine expression.
Using (5.44), the main beam occurs at the angle

v0 =
a

2p
(l /dy ) =

l
lg

−
l

2dy
(5.45)

or at

f = p /2 u = sin−1F l
lg

−
l

2dy
G (5.46)

Since the guide wavelength lg is greater than the free space wavelength l , the
spacing dy is usually chosen to be greater than l /2 to bring the beam angle u near
broadside. Traveling wave arrays are not designed for broadside radiation (u = 0)
because at that angle the various slot reflections add coherently and result in severe
mismatch at the input port.

With precision fabrication, waveguide arrays can provide excellent pattern
control, even at millimeter-wave frequencies. Rama Rao [141] used photolitho-
graphic technology to build waveguide longitudinal shunt slot and inclined series
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Figure 5.25 Waveguide slot array geometries: (a) edge slot array; (b) displaced longitudinal slot
array; and (c) inclined series slot array.

slot arrays at 94 GHz. The longitudinal shunt slot array was designed according
to the formulas of Yee [142], while the inclined series slot array was designed
following the analysis of Oliner [143].

One other important characteristic of traveling wave arrays is that each slot
radiates only a fraction of the power incident upon it, and it is necessary to dissipate
some of the power (often 5% to 10%) in matched loads in each waveguide. Unless
the loads can be well matched over the frequency band, some power will be reflected
by each array and radiated as an unwanted sidelobe at the angle −u. This limitation
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can be overcome by careful design, and traveling wave arrays have been incorpo-
rated into some of the lowest sidelobe antennas ever built.

In addition to these distinctions between resonant and traveling wave arrays,
there are major differences between the performances of arrays that use different
slot types. The displaced longitudinal slots of Figure 5.25 achieve the required 180°
phase change by virtue of their displacement on either side of the broad-wall center
line, while the various tilted slots (Figure 5.25) achieve the same phase change by
alternating tilt angles. Tilted slots, however, radiate cross-polarized fields in addi-
tion to the fields of the principal polarization, and this is usually undesirable.

Unless they are loaded with dielectric to reduce interslot dimensions, all slot
arrays produce unwanted lobes in the plane of the waveguide axis [144, 145]. The
lobes are of two types, and both result from either displacing or tilting alternate
slots in different directions to produce the required 180° phase increment for the
main beam. For tilted slots, the lobes with polarization orthogonal to the principal
polarization are not grating lobes of the main beam, but result from a more rapid
phase variation due to the added phase shifts. This added phase shift produces
two lobes displaced from the main beam by (p /kdy ) in v-space, or appear at angles
given by

v = v0 ± (l /2dy ) (5.47)

Since v0 is usually small and since the spacing of dy is larger than a half wavelength
for waveguides without dielectric loading, both of these lobes usually appear in
real space. The magnitude of the lobes is zero along the y-axis at x = 0 (u = 0).

A second type of unwanted lobe is actually a grating lobe caused by the fact
that the periodic cell of the line source array is two elements, not a single element.
For the longitudinal displaced slot array, this results in copolarized lobes, displaced
a distance (l /2dy ) from the main beam, but again the magnitude is zero along the
principal plane u = 0. For a displaced slot array with slot displacement D, Derneryd
[146] shows that the lobe magnitude varies like the product uD for small D, and
gives convenient curves for estimating the magnitude of the lobes for small slot
displacement. Tilted-slot arrays also have an asymmetry in the fields that radiate
their principal polarized component (fields in the slots tilted clockwise have a
different symmetry than those for slots tilted counterclockwise). Since this asymme-
try repeats every two elements, this higher order principal plane radiation contri-
butes to a set of grating lobes with the principal polarization and located at the
same points (l /2dy ) away from the main beam.

Since the lobe amplitudes are zero at u = 0, they do not radiate from two-
dimensional flat-plate arrays composed of waveguide line sources but not scanned
in the u-plane. However, these lobes can become very significant if the array is
scanned to large angles in the u-plane. In another development [147], Green and
Schnitkin presented a periodically ridge-loaded broad-wall waveguide low-sidelobe
line source array. The system used an asymmetrical periodic ridge loading to
introduce the required additional 180° phase shift every half wavelength along the
waveguide. This allowed all slots to be on the waveguide center line and so the
design radiates only principal plane radiation and does not suffer the first-order
effects of slot displacement.
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The edge slot arrays of Figure 5.25 are among the most commonly used elements
for arrays that scan in one plane because the element spacing dx can be made one-
half wavelength or as appropriate for wide-angle scanning. Each waveguide slot
array is excited by a different progressive phase for scan in the plane orthogonal
to the waveguide axis. Low-sidelobe aperture distributions in the plane including
the waveguide axis can be synthesized by varying the tilt angle of each slot, which
changes its conductance. In order to maintain the high degree of aperture control
necessary for low-sidelobe illuminations, mutual coupling effects must be included
in the array design. A detailed treatment of the synthesis procedure including
coupling is given in [148]. Edge slot arrays have several disadvantages. They are
narrowband and, like the inclined series broad-wall slots, they radiate cross-
polarized lobes. The primary radiated beam is due to the electric field Ey in each
slot, but the inclined slot produces a radiated component derived from the cross-
polarized Ex field. Since the array is scanned only a small angle from broadside
in the v-plane, these lobes are far from broadside and are suppressed by the cross-
polarized element pattern. It is common practice to partially suppress the cross-
polarized grating lobes by adjusting the depth S between the plane of the slots and
the ground screen (see Figure 5.25).

Waveguides with displaced longitudinal or inclined series slots in the broad
wall of the waveguides cannot be placed close enough to suppress the principal
plane grating lobes for wide-angle scan (in the u-plane), and so these arrays are
most commonly used unscanned. Dielectric loading the waveguide reduces this
dimension to one appropriate for scanning, but there remain grating lobes due to
the periodic displacement of the longitudinal slots or the periodic tilt of the inclined
slots. In addition, unless the dielectric is extremely homogeneous, the variation in
propagation constant along the waveguide can lead to high sidelobes.

5.7.2 Printed Circuit Series-Fed Arrays

Other narrowband series arrays for one-dimensional scan include the series-fed
microstrip patch arrays (Figure 5.24) and a variety of strip line and microstrip
dipole arrays. Since these elements are more symmetrical than the waveguide slot
arrays, they do not produce the second-order beams radiated by the slot configura-
tions. Microstrip transmission line is, however, more lossy and cannot handle as
much power as waveguide.

Comb line arrays use the half-wave section of microstrip transmission line as
a microstrip dipole [149], but in this case the line is open-circuited at only one
end, with the remaining end excited directly by the feed transmission circuit, as
shown in Figure 5.26(a). The input impedance of each half-wavelength line, prop-
erly trimmed to account for reactive contributions, is the radiation resistance of
the open-circuited stub element. The elements are placed a dielectric wavelength
apart, and so the array radiates broadside in a manner directly analogous to a
resonant waveguide slot array. Control of the radiation resistances is afforded by
tailoring the width of the lines.

A planar array of comb line arrays, as shown in Figure 5.26, could provide
the proper spacing for a scanned array, since the dielectric substrate allows spacing
between line sources to be reduced to less than a half wavelength.
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Figure 5.26 Comb line arrays: (a) series-fed comb line array; and (b) planar array of series-fed
comb line arrays. (From: [149].  1977 IEEE. Reprinted with permission.)

Figure 5.27 shows a radiating continuous transverse stub (CTS) array [150]
fed from a parallel plate waveguide. The basic CTS element is a line source that
spans the array width, and its input impedance is determined by the stub height
L, width H, and parallel plate feed width B. The parallel plate parameters, along
with additional shorted stubs of varying height, determine the phase presented to
each CTS line source and can accommodate frequency scanning the two-dimen-

Figure 5.27 CTS series array. (After: [150].)
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sional array. The CTS array used as a broadside or frequency scanned flat plate
can have excellent cross polarization characteristics, wide bandwidth, low loss,
and no copolarized or cross-polarized residual grating loges such as those for
waveguide slot arrays. A recent variant of the CTS array is the VICTS array [151],
which is an electromechanical scanning system for satellite communication.

5.8 Elements and Polarizers for Polarization Diversity

The elements described in previous sections are linearly polarized. However, in
many cases there is a need to radiate several orthogonal components of radiation. In
airborne and space communication systems, it is most common to radiate circularly
polarized waves in order that transmit and receive antennas can never be completely
orthogonal. Some radar systems have circular polarization (for removal of rain
clutter), but most are linearly polarized. There has been an increasing interest in
radar systems with variable polarization for target classification and the suppression
of jamming signals within the main beam region. The subject of polarization
synthesis is discussed in a number of technical papers and will not be treated here.
More detailed discussions are found in [152, 153].

Most of the elements described in previous sections can be paired with identical
elements positioned orthogonally to radiate two components of polarization. One
antenna configuration commonly used for polarization diversity is a pair of orthogo-
nal dipoles [Figure 5.28(a)] mounted over a ground screen. Arrays with waveguides
of square, circular, or quad-ridged cross section or crossed-slot arrays are also
commonly used. Microstrip patches can be excited with orthogonal feed lines
[Figure 5.28(b)], and even the Vivaldi and flared-notch antennas can be combined
in pairs to produce two orthogonal linear polarizations.

It is very expensive to excite an array to radiate arbitrary polarization. To do
this requires a power divider and an extra phase shifter behind each element, or
one must duplicate the entire array feed to excite two coincident, separate arrays
with orthogonally polarized elements. In addition to these added components, there
is usually not enough room within the array aperture to contain this extra circuitry.
In the case of microstrip arrays, with low dielectric substrates for example, there
is usually not enough room on one surface to provide power dividers and phasing
controls for a two-dimensional scanning array, so exciting arbitrary polarization
necessitates multilayer feed circuits. Nevertheless, the requirement to radiate inde-
pendent polarizations is sometimes justified, and so a number of special techniques
have been developed to provide this option.

If, however, one or both components of circular polarization are desired, the
array feed can be simplified and be only slightly more complex than the correspond-
ing linear (or dual linear) feed. This is accomplished using either circularly polarized
elements or linearly polarized elements and a wave polarizing panel in front of the
array. Figure 5.28(a) shows a pair of crossed dipoles. An added phase delay of 90°
in series with one of the dipoles will produce a right- or left-handed circularly
polarized radiated signal. This same antenna will receive a left- or right-handed
circularly polarized wave at its input port. If the power split is accomplished using
a four-port hybrid, an incident signal with the opposite circular polarization would
be delivered to the port terminated in the load.
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Figure 5.28 Elements for radiating circular polarization. (a) Crossed dipole element for radiating
both circular polarizations. (b) Circularly polarized microstrip patch, orthogonal feeds.
(c) Circularly polarized microstrip patch. (From: [106].  1981 IEEE. Reprinted with
permission.) (d) Circularly polarized microstrip patch. (After: [153].) (e) Circularly
polarized microstrip patch. (From: [154].  1975 IEEE. Reprinted with permission.)
(f) Dipole slot circularly polarized element. (After: [155].)

Figure 5.28(b) shows an accepted method for exciting patch antennas for
circular polarization. This straightforward configuration requires considerable
space on the patch array surface and so is not always the selected geometry. Sanford
and Klein [118] used a combination of four shorted quarter-wave patch antennas
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to form a crossed slot with circular polarization, but this geometry also requires
considerable space at the aperture. Figure 5.28(c–e) shows other means of exciting
patch antennas using a single feed and producing the circular polarization by
exciting asymmetrical current distributions. Figure 5.28(c) [106] shows a corner
feed point used to execute an asymmetrical patch. Varying the dimensions a and
b can produce equal orthogonal radiation components with the proper 90° phase
for circular polarization. The geometry of Figure 5.27(d) [153] uses a symmetrical
patch and a slot at a 45° angle centered in the patch, and 5.27(e) shows a pentagon-
shaped patch [154] due to Weinschel. Each of these geometries includes an asymme-
try, and by judiciously selecting dimensions can produce circularly polarized radia-
tion. Schaubert et al. [155] discuss the use of shorting posts and asymmetrical feed
locations to produce polarization diversity with single feed points.

Arrays of circular waveguides are usually excited for circular polarization
using waveguide circular polarizers. These operate by introducing an asymmetry
to produce orthogonal linear polarizations and then delaying or advancing one
component an extra 90°. These components are used after the phase shifter at each
element of the array and are discussed in many standard texts, so they will not be
considered further here.

Scanning arrays have special problems in regard to polarization, because they
require elements that have, for example, circular polarization not only on axis,
but throughout some given scanning sector. This problem is apparent when one
considers the principal E- and H-planes of a crossed dipole, as in Figure 5.28(a).
In the plane f = 0, the far field has a component in the u direction due to the
dipole with its axis along the x-axis, and an orthogonal component due to the
dipole that lines along the y-axis. The component with u polarization has a dough-
nut-shaped pattern with zeros at u = ±p /2. The orthogonal polarized field is due
to the dipole with axis along the y-axis, and is constant for all u in the plane
f = 0. Thus, even if the dipoles are excited for circularly polarized radiation on
axis u = 0, that polarization will be linear (horizontal) at u = ±p /2 and will vary
from circular at u = 0 to linear as u is increased from zero. To produce patterns
that are approximately circular over wide scan angles requires equalizing the constit-
uent E- and H-plane patterns.

The combination of complementary dipole and slot antennas can, with proper
phase excitation, produce circularly polarized radiation over a wide angular region.
An example is the work of Cox and Rupp [156], who developed the dipole-slot
element shown in Figure 5.28(f) for use in an array.

A very practical method of radiating circular polarization is to place a polarizing
grid in front of a linearly polarized array. A variety of grids have been developed
for that purpose, and the most commonly used are mentioned here. In Figure
5.28(a), the classic quarter-wave plate polarizer [157, 158] is shown as consisting
of a number of closely spaced plates aligned normal to the incident wave, but at
45° relative to the polarization of the incident electric field. This 45° orientation
is used for all the other polarizers discussed as well. Since the incident field can
be decomposed into components perpendicular and parallel to the plates, the
polarizer action is achieved because the component of incident field perpendicular
to the plates passes unaltered, but the component parallel to the plates propagates
through the structure by means of a parallel plate mode with phase velocity greater
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than light. By choosing the length W so that the parallel component is advanced
90° relative to the perpendicular component, the radiated field is made a circularly
polarized wave.

The Lerner polarizer [Figure 5.29(b)] is composed of resonant grids and
arranged in panels mounted normal to the array aperture at 45° from the plane

Figure 5.29 Polarizers and polarizing grids for arrays. (a) Quarter-wave polarizer. (From: [157].
 1950 IEEE. Reprinted with permission.) (b) Lerner polarizer, simple strips and rectan-
gle and wire grids. (From: [159].  1965 IEEE. Reprinted with permission.) (c) Meander
line polarizer. (From: [160].  1973 IEEE. Reprinted with permission.) (d) Element
rotation for circular polarized array. (After: [161].)
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Figure 5.29 (Continued.)

of the linearly polarized electric field. The net result of the polarizer is to delay
one component of polarization by 90 electrical degrees of phase relative to the
other polarization [159]. In the upper part of Figure 5.28(b) is shown a row of
metallic strips, which serves to explain the operation. The strips act as a shunt
inductance for the E-field along the strips and a shunt capacitance for the E-field
perpendicular to the strips. As the strip width is reduced, the inductance dominates,
so that in the limit the wire is invisible to orthogonal polarization and inductive
to parallel polarization. The Lerner polarizer uses combinations of wires and solid
metallic rectangles. The rectangles are capacitive to both polarized components,
with the amount of capacitance adjusted by varying the dimensions. The wires are
inductive to the parallel E-field. For E-fields along the wire, the wires and rectangles
combine to form a parallel resonant circuit. At higher and lower frequencies, the
sheet is capacitive and inductive, respectively. The polarizer is made up of two or
more such sheets, spaced so that their reflections cancel, while at the same time
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matching impedance and producing the required 90° phase shift at one or several
frequencies. Polarizers of this type have been shown to operate over 20% band-
width, with as little as 0.5 dB insertion loss and good axial ratios.

Meander line polarizers [161, 162], shown in Figure 5.29(c), employ printed
metallic meander line patterns on dielectric substrates to provide different reactive
loadings to orthogonal components of the electric field. The line pattern is again
oriented at 45° relative to the incident field polarization, and presents inductive
loading to the field component parallel to the pattern and capacitive loading to
that component normal to the pattern. Design details for such polarizers are given
in [161–163].

A new and interesting approach, presented in the work of Teshirogi et al. [160]
and Huang [164], is to produce circular polarization using groups of linearly
polarized elements. The arrangement produces wideband circular polarization using
a technique of sequential rotations and phase shifts to each element. The basic
property of this method is apparent even if the elements are linearly polarized. In
this case, by sequentially rotating the elements and therefore sequentially rotating
their radiated polarization, and advancing the element phase so that a polarization
tilt of F is associated with a phase advance of F, one produces a circularly polarized
wave on boresight. Depending on how the elements are combined, one can also
obtain a cancellation of reflected signals. The result is wideband, matched circular
polarization radiated from an array of elliptically or even linearly polarized ele-
ments. In an extension of this technique shown in Figure 5.26(d), Hall [165] feeds
sequentially rotated four-element subarrays with sequentially rotated feeds, so that
there are two scales of sequential rotation. This technique is shown to decrease
the sidelobes due to feed radiation.

Although the explanation above used a linearly polarized element as basis, the
use of subarrays with linearly polarized and phased elements, repeated throughout
the array, leads to grating lobe-like sidelobes and reduced gain. The technique
is more advantageous when applied to elliptically polarized or nearly circularly
polarized radiators. In this case, it improves circularity bandwidth and ellipticity
ratio without creating high sidelobes.
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C H A P T E R 6

Summary of Element Pattern and
Mutual Impedance Effects

6.1 Mutual Impedance Effects

Although a detailed consideration of array mutual coupling is beyond the scope
of this book, this chapter introduces the subject by presenting and describing simple
examples of the analysis, coupled with a number of figures that show the current
state of research in this important area.

Throughout this text, the equations for pattern analysis and synthesis are given
for arrays of radiators with known currents or aperture fields. Implicit in that
formulation are three assumptions: that the current or fields are porportional to
applied excitations, that the distribution of current or aperture field is the same
for each radiator, and that the distribution does not change as the array is scanned.
A primary challenge to modern array theory is that, in general, none of these
statements is true. In a finite array, all of the currents and fields differ from element
to element in magnitude, phase, and distribution, and these differences vary as a
function of frequency and array scan angle. This complex dependence on geometry,
frequency, and scan angle results from the mutual interaction among all of the
elements of the array. The full analysis of antennas and arrays, including element
coupling, is now discussed in a number of texts [1–3] and available in many
commercial microwave analysis programs, including variations of the numerical
electromagnetics code (NEC) [4]. Integral and integrodifferential equation formula-
tions have been used for many years for antennas structures and boundary condi-
tions for which Green’s functions could be found. More recently, time domain and
finite element approaches have become very useful for configurations with complex
metal and dielectric shapes. Treating this variety of methodologies is beyond the
scope of this text, but this chapter will illustrate the integral equation method with
an outline of the solution for simple elements over a perfectly conducting ground
screen. The analysis begins by writing the radiated field from all elements as
generalized integrals that include current and charge distributions over the surface
of the radiating antennas and nearby diffracting bodies, and using these to require
satisfaction of boundary conditions at each radiator and each diffracting body.
This procedure usually results in a multiplicity of simultaneous integral or integro-
differential equations, and has not been solved exactly except for infinite waveguide
arrays over an infinite ground screen and several other special (idealized) cases,
some of which are included in this chapter.

291
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Although the analysis of isolated elements remains useful for predicting the
gross parameters of an element (like polarization, general pattern shape, and reso-
nant frequency), the elements generally behave very differently in an array than
when isolated. The array behavior is dominated by the mutual coupling of the
various elements. Figure 6.1 shows the element pattern of an isolated dipole and
one in an array with several different spacings. The data are for a finite (7-by-9-
element) array over a ground plane [5, 6]. The curve for an isolated element is
dashed. The pattern is most like that of the isolated element for close element
spacing, a fact which results from the presence of grating lobes in the scan plane
for larger separations. For element spacing dx (0.5 ≤ dx /l ≤ 1.0), there are scan
angles u0 such that

|sin u0 | > (l /dx − 1) (6.1)

for which the grating lobe radiates into real space (sin u−1 > −1). As |u0 | is increased,
this lobe can take a growing share of the power. For larger dx , the grating lobe
onset occurs progressively closer to broadside, and the resulting element pattern
then falls off rapidly to accommodate power distributed to the grating lobe.

Because of the complexity of a mutual coupling phenomenon, it is not possible
to simply list tabular data or show generic curves that apply to all elements. There
are, however, similarities between arrays of different elements that reveal the array
grating dimensions and orientation to be far more important than the elements
themselves. Such grating-related phenomena have been the subject of several studies
[7, 8] dealing with the radiation of continuous current sheets. It sometimes happens
that subtle changes to an array element produce major changes to the radiation

Figure 6.1 H-plane element gain functions for a center element of a 7-by-9-element dipole array
(l/2 dipoles, l/4 above ground.) Element spacings denoted Dx and Dy . Note: dashed
curve is for isolated dipole over ground. (From: [6].  1966 Academic Press, Inc.
Reprinted with permission.)
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characteristics and can even introduce the catastrophic pattern ‘‘blindness’’ that
will be described later. For this reason, the examples in this chapter are intended
to be illustrative of the sort that one might expect; for any array design to be
complete, it is necessary to perform the detailed evaluation of its mutual coupling
(or element pattern) performance, or to measure these parameters in the actual
array.

Although they do not include mutual coupling, the synthesis and analysis
presented elsewhere in this text are still valid because the current or aperture
distributions remain very similar for all elements of the array, even though mutual
interaction may alter the relative amplitudes and phases between various elements.
This is true primarily because the elements are small and usually resonant. Thus,
in an array of dipoles, the first-order result of mutual coupling is to alter the
impedance of each of the array elements. The shape of the current distribution on
each element is nearly the same as that on any other element of the array. In this
case, the standard synthesis procedures specify the required currents. The mutual
coupling analysis is used to solve for the input voltages that produce these currents.

6.2 Integral Equation Formulation for Radiation and Coupling
in Finite and Infinite Arrays

6.2.1 Formulation and Results for Finite Arrays

Figure 6.2 shows a finite one- or two-dimensional array of wire elements. In the
simplest approximation of mutual coupling, one assumes that all dipoles have
exactly the same current distribution f (z) so that the current on the n th element
is

in (z) = In f (z) (6.2)

One can express the complete mutual coupling relationship as an impedance matrix
relating the wire currents to the applied voltages.

Vm = ∑ZmnIn (6.3)

where the Vm are the applied voltages and the In are the complex amplitudes of
the current distribution, as noted above. In this case, the behavior of the coupled
circuit is clear. If the Zmn matrix were diagonal, there would be no interdependence
(coupling) between the various array elements. In fact, however, each current In
is excited not only by its applied voltage Vn but also by coupling from all the other
currents Im , and the network is a generalized N-port impedance network. The
summation in this case is over each of the elements of the array.

Coefficients Zmn in the mutual impedance matrix have the form of integrals
over the free-space scalar Green’s function kernel

G(rn , rm ) = (1/4p ) {exp[−jk |rn − rm′ | ]/ |rn − rm′ |} (6.4)

where the distance
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Figure 6.2 Mutual coupling of dipole antennas: (a) Geometry of array of dipoles with centers at
rn = x̂xn + ŷyn ; and (b) mutual impedance Z12 between two dipoles. (From: [9].  1984
McGraw-Hill, Inc. Reprinted with permission.)

|rn − rm′ | = [(xn − xm′ )2 + (yn − ym′ )2 + (zn − zm′ )2]1/2

as indicated in Figure 6.2, with the primed coordinates indicating the domain of
integration and the unprimed indicating the observation point. When the elements
are close together, the integrals are quite complex and must be evaluated numeri-
cally. However, when the elements are far apart, the integrals can be approximated
using standard methods. Figure 6.2 also shows the mutual impedance parameters
Zmn for elements in a two-element array, as computed by Tai [9].

The example below is illustrative of the procedure used in formulating the
array interaction problem. In the general procedure, one obtains the fields radiated
by the unknown current (or aperture field) on each antenna by expanding the
unknown distribution in a series of basis functions. Next, one requires that the
appropriate boundary conditions are satisfied on all surfaces. The basic expressions
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for the radiated fields are usually obtained in terms of integrals over expressions
that involve some Green’s function operator acting on the unknown current or
field. In general, the Green’s function is a 9-term dyad.

Most of the published element and array studies are based on the use of the
free-space Green’s functions, although the emergence of microstrip patch and dipole
arrays has required solutions based on the method of moments using a spectral
(transform) Green’s function, and these analytical studies have yielded useful design
data for such arrays. Some of the examples cited later utilize the spectral formula-
tion.

A simple illustration of mutual coupling is the analysis of the interaction of
two dipole antennas with their axes both parallel to the z-axis and with centers
in the plane z = 0. The radiated field due to either dipole centered at location
(x1′, y1′ ) or (x2′, y2′ ) is given by the potential function

A(1,2)
z (x, y) =

m
4p E

h /2

h /2

i (1,2) (z ′ )
e−jkR(1,2)

R (1,2) dz ′ (6.5)

where

R (1,2) = [(x − x ′(1,2) )
2 + (y − y ′(1,2) )

2 + (z − z ′(1,2) )
2]1/2

This expression assumes that the current i (1,2) is centered at the axis of dipole 1
or 2 and not distributed across each dipole cross section. This filamentary current
approximation is commonly used and gives an accurate field representation, even
at the surface of the dipole. The radiated electric field is given by

Es = −jvAz −
j

vme
=(= ? Az ) (6.6)

Both dipoles have impressed sources (V1 and V2), which we will assume are
delta function sources, which means that the potential gradient or electric fields
of the sources is singular, and the potential is a step function of position. More
generalized sources are described in [10–13]. References [12, 13] by Fikioris and
colleagues detail many of the mathematical subtleties that play a role in determining
the accuracy and indeed the validity of these solutions.

Since the boundary condition at the surface of the dipoles is that the tangential
electric field be zero, the scattered tangential electric field at each dipole is therefore
required to be the negative of the incident field, or

E s
z = − E inc

z (6.7)

at −h /2 ≤ z ≤ h /2. At each element, from (6.6) above,

S d2

dz2 + k2DA2
z = −jveE inc

z (6.8)
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The incident field E inc
z consists of a delta function source V1, 2d (z ′ ) added to

the radiated field incident from the other dipole, and one can write both equations
in the following form:

S d2

dz2 + k2D {A1
z (xn , yn , z) + A2

z (xn , yn , z)} = −jved (z)Vn (6.9)

for x and y on each dipole surface (n = 1 or 2). This pair of integrodifferential
equations must be solved simultaneously for the currents I1(z) and I2(z). The
equations above are in the form known as Pocklington’s equation [14], but
a number of authors have chosen to solve the integrated form due to Hallén
[15, 16].

Simple and useful solutions have been obtained using a single basis function
for the currents [i1(z) = I1 f (z), i2(z) = I2 f (z)], which might be sinusoidal, or other
basis functions as in the previous example of an N-port coupled network. With
this substitution, the integrals can be performed (numerically) and the equations
satisfied at one point on each antenna (a procedure called point matching). The
resulting simultaneous algebraic equations are solved for I1 and I2 .

An alternative to point matching is to require that the equations be satisfied
to an average sense by multiplying the equations by a weighting function and
integrating this weighted average along each antenna element. If the weighting
function has the same form as the basis function, this procedure is known as
Galerkin’s method [17] and possesses stationary characteristics that improve its
accuracy.

The procedure outlined above is general and is extended to the case of any
array by including all of the elements of a large array in the simultaneous equations
and inverting the set to obtain the solution for all currents.

In the general case of an array of dipoles (oriented with axes in the z-direction)
and the locations (xn , yn , z), the same equation is written

S d2

dz2 + k2DH∑
m
E im (z ′ )G(rn , rm′ ) dz ′J = −jved (z)Vn 1 ≤ n ≤ N

(6.10)

where

G(rn , rm′ ) =
e−jk |rn − rm′ |

4p |rn − rm′ |

This integrodifferential equation can be solved approximately by the point matching
or Galerkin’s method and, if a single basis function is used to represent the current
on such element, results in N equations in the N unknown values of coefficients
In [using in (z) = In f (z)].

More accurate solutions than those obtained with a single basis function can
be obtained using higher order expansions of the current and some variation of
the method of moments to obtain a matrix solution. Thorough treatments of the



6.2 Integral Equation Formulation for Radiation and Coupling in Finite and Infinite Arrays 297

method of moments as applied to antenna and scattering problems are found in
the texts by Harrington [17], Balanis [10], and Stutzman and Thiele [11], and in
the seminal work of Rao, Wilton, and Glisson [18]. If the current is expanded
in p-basis functions for each antenna, the resulting matrix formulation will consist
of p × N simultaneous equations.

The texts [10, 11, 17] illustrate expanding the current in basis functions. On
any particular n th antenna, the current in (z) is written as the sum

in (z) = ∑
P

p =1
Ip , n fp (z) (6.11)

The proper choice of basis functions fp (z) depends on the kind and size of the
antenna element, but both entire domain basis functions (which span the entire
element) and subdomain basis functions (piecewise continuous over the element)
have been used successfully. The writings of King [16] are notable examples of
using only two or three selected entire domain current expansions and point-
matching techniques for wire elements. Similarly, entire domain Fourier series
expansions have been found very practical for a variety of waveguide problems,
where the waveguide modal functions serve as the basis functions [19, 20]. It is,
however, the use of various piecewise continuous subdomain basis functions that
have led to generalized flexible software for the solution of a wide variety of antenna
array and scattering problems. The disadvantage of subdomain basis functions is
that about 7 to 10 basis functions are required per wavelength, and that can lead
to large numbers of equations.

Figure 6.3 shows the results of Wu [21] who analyzed finite parallel plane
arrays. The figure shows element patterns of a 15-element array and clearly indicates
the asymmetry expected of edge elements. Infinite-array data are included for
comparison, and are noted here in one example that the element pattern is always
zero at the horizon for an infinite periodic array, but finite for the finite array.

Studies of wideband arrays, with elements very closely spaced to avoid grating
lobes, have shown that the effects are more pronounced in this sort of array [22–24].
This effect is discussed briefly in Section 6.4.

For large arrays, most of the central elements are very far from the array edges,
see the same embedded impedance, and behave very similarly to each other. In
such arrays, edge effects are less important than they are for small arrays, and it
is often convenient to analyze the associated infinite-array structure, in which all
elements have exactly the same impedance and all voltages and currents differ from
one another by only a complex constant. Certain details of infinite-array analysis
are outlined in the next section.

6.2.2 Formulation and Results for Infinite Arrays

The result of studies of the infinite array is to obtain accurate predictions of element
impedance as a function of scan and element patterns for an element embedded
in the infinite array. These results then serve as a good approximation for elements
away from the edge of the large finite array.
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Figure 6.3 Element patterns in a 12-element parallel plane array. Infinite array data included for
comparison. Element spacing, b/l = 0.5636, aperture a/l = 0.4. (From: [21].  1970
IEEE. Reprinted with permission.)

Infinite-array theory can be formulated from a mode-matching or integral
equation approach. The integral equation formulation is based on a Green’s func-
tion that can be derived from an infinite set of free-space Green’s functions by a
simple transformation, the Poisson summation formula [25], as described next.

Equation (6.6) gives the general expression for the field of a finite linear array
of any size. In this section, the Green’s function G is the free-space Green’s function,
and the currents are a direct response to the applied source. However, in the case
of an infinite array with periodic progressive sources, the currents are all related
by a complex constant, and it is convenient to incorporate that progressive phase
into the Green’s function itself. For a one-dimensional infinite dipole array with
elements centered at x = mdx as in Figure 6.4(a), one expresses the relationship
between the current at location (x, y, z) in the element at m = 0 and all others as

i(x + mdx , y, z) = i(x, y, z)e−jkmdx sin u 0 (6.12)

for a beam at u0 .
With this simplification, all the elements satisfy the same integral equation,

and the solution of the mutual coupling problem is much simplified. Equation
(6.10) for an infinite one-dimensional array, assuming the current centered along
the y-axis of each element and written at the n th element, now has the form

S d2

dy2 + k2D5 ∑
∞

m =−∞
E i(0, y ′, z ′ )e−jk (mdxu0 )G(rn , rm′ ) dy ′6 = −jved (y)e−jkndxu0

(6.13)
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Figure 6.4 Infinite array geometries: (a) one-dimensional array; (b) two-dimensional array on a
rectangular grid; and (c) two-dimensional array on a triangular grid.
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for −∞ ≤ n ≤ ∞, where

G(rn , rm′ ) =
e−jk |rn − rm′ |

4p |rn − rm′ |

and

|rn − rm′ | = [(x + ndx − x ′ − mdx )2 + (y − y ′ )2 + (z − z ′ )2]1/2

Since all equations differ only by the complex constant, only the equation at
n = 0 is needed.

For a two-dimensional array [Figure 6.4(b)] with elements centered at locations
(x, y) = (mdx , ndy ) scanning a beam to (u0 , v0), the expression is

i(x + mdx , y + ndy , z) = i(x, y, z)e−jk (mdxu0 + ndyv0 ) (6.14)

and the integrodifferential equation takes the form

S d2

dy2 + k2DH∑
n

∑
m
E i(x ′, y ′, z ′ )e−jk (mdxu0 + ndyv0 )G(rij , rm′ n ) dy ′J (6.15)

= −jved (y)e−jk (idxu0 + jdyv0 )

for −∞ ≤ i ≤ ∞ and −∞ ≤ j ≤ ∞, and where

|rij − rm′ n | = [(xi − xm′ )2 + (yj − yn′ )2 + (z − z ′ )2]1/2

and xm′ = mdx + x ′, and yn′ = ndy + y ′.
It is often convenient to change the form of the summations in the expressions

for mutual coupling. This is done using the Poisson summation formula [25], which
is stated

∑
∞

−∞
f (an) =

1
a ∑

∞

p =−∞
FS2pp

a D (6.16)

where

f (t) =
1

2p E
∞

−∞

e+jv tF(v ) dv

and the Fourier transform F(v ) is

F(v ) = E
∞

−∞

e−jv t f (t) dt (6.17)
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The advantage of this transformation is to transform a slowly convergent series in
f (t) into a new series in its transform F(v ), which can be much more rapidly
convergent.

The Poisson summation formula is useful for linear and two-dimensional arrays.
For a linear array, the two forms of the summation are written

∑
∞

m =−∞

e−jk [(x − xm′ )2 + (y − y ′ )2 + (z − z ′ )2]1/2

[(x − xm′ )2 + (y − y ′ )2 + (z − z ′ )2]1/2 e−jku0mdx (6.18)

= −
jp
dx

∑
∞

p =−∞
e−jkup (x −x ′ )H 2

0 {Kp [(y − y ′ )2 + (z − z ′ )2]1/2}

where xm′ = x ′ + mdx , and Kp = F1 − up
2G1/2, and up = u0 + pl /dx . H 2

0 is the
Hankel function of the second kind as associated with outward traveling waves in
y- and z-directions. The result of this manipulation is to transform the infinite
summation of free-space exp(−jkR)/R type Green’s functions into an infinite set
or discrete spectrum of waves, each with the Hankel function dependence in the
transverse direction.

With this form, the integral in (6.13) written at locations (xn = x + ndx , y, z)
is modified by replacing

∑
∞

m =−∞
4pG(rn , rm )e−jkmu0dx (6.19)

with the above, using x = xn .
In the two-dimensional array with currents given as in (6.14) above, the summa-

tions that appear in the mutual impedance expressions or in terms of the integral
equations are transformed as

∑
∞

m =−∞
∑
∞

n =−∞

e−jk [(x − xm′ )2 + (y − yn′ )2 + (z − z ′ )2]1/2
e−jk (u0mdx + v0ndy )

(x − xm′ )2 + (y − yn′ )2 + (z − z ′ )2]1/2 (6.20)

= −
j2p

dxdy
∑
∞

p =−∞
∑
∞

q =−∞

e−jk [up (x − x ′ ) + vq (y − y ′ )] − jKpq |z − z ′ |

Kpq

where Kpq = kF1 − up
2 − vq

2G1/2, and xm′ = mdx + x ′, yn′ = ndy + y ′, and again
up = u0 + pl /dx , vq = v0 + ql /dy .

In the integral equation (6.15), this expression replaces

∑
m

∑
n

4pG(rij , r ′mn )e−jk (mdxu0 + ndyv0 ) (6.21)

for the equation written at xi = x + idx , yj = y + jdy .
The up and vq are the grating lobe locations as indicated above, and so this

series is often referred to as the grating lobe series. We will also refer to it as the
spatial harmonic series or Floquet series, both terms from periodic structure theory.
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This expression illustrates some of the convenient properties of this most useful
transformation, since the complicated square root function is replaced by much
simpler exponential terms representing all the plane waves corresponding to points
(up , vq ) on the grating lobe lattice, some propagating and some evanescent. The
propagating grating lobes, those within the unit circle, are the only ones that
represent true radiation and are used to compute far-field radiated power.

Note that the transformations above bring the formulation from one that is
called an element-by-element formulation to a periodic structure wave-type formu-
lation. Although one can always formulate the analysis using the element-by-
element approach and then transform to the periodic form, as indicated in previous
paragraphs, it is often more convenient to formulate the entire set of boundary
conditions and even to derive the integral equations from the periodic structure
point of view at the outset. Alternatively, one can employ a mode-matching
approach that does not explicitly require the Green’s function or the solution of
an integral equation, but proceeds to solve the differential equations directly.

To employ either of these two alternative approaches that exploit the periodic
nature of the fields, one requires at the outset that all fields repeat periodically
across the array and that they have the form below for the two-dimensional case.

A(x, y, z) = B(x, y, z) exp{−jk (mdxu0 + ndyv0)} (6.22)

where, once the exponential dependence has been removed, B(x, y, z) is fully
periodic in x and y. Therefore, B(x, y, z) can be written

B(x, y, z) = ∑
∞

−∞
∑
∞

−∞
bpqg(z)e−j2p (px /dx + qy /dy ) (6.23)

and

A(x, y, z) = ∑
∞

−∞
∑
∞

−∞
bpqg(z)e−jk (upx + vqy ) (6.24)

The z dependence g(z) above must satisfy the Helmholtz equation in the region
above the array. If that region is free space, the dependence is

g(z) = exp[−jKpq |z | ] (6.25)

and one can clearly note the same dependence as obtained from the transformed
free-space element Green’s function. To obtain the Green’s function equivalent to
(6.5), one could require the periodic form A(x, y, z) to satisfy the inhomogeneous
Helmholtz equation for a periodic infinitesimal source, and follow the usual proce-
dure of integrating over the source discontinuity. The use of Green’s theorem allows
the potential function then to be cast in terms of this Green’s function [similar to
(6.5)]. Expressing the boundary conditions then results in an integral equation
equivalent to (6.10). Examples of the use of this type of infinite array formulation
abound, but some of the earliest uses of this formulation were for periodic grating
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structures and Yagi arrays [26]. Stark [27] presented a comprehensive study of
dipole elements in a two-dimensional infinite array.

As an alternative to solving an integral equation, one can use the periodic
structure perspective to solve the differential equations directly. One need only
satisfy the boundary conditions in one periodic cell of the array to automatically
satisfy all boundary conditions across the array. The mode-matching approach
does not explicitly require the solution for a Green’s function, but instead matches
boundary conditions that include the source field. Examples of this approach can
be found in the work of Diamond [28], Amitay et al. [29], and others, where the
technique has found much utility for solving infinite waveguide array boundary
problems.

With the fields written in the infinite-array form, one can write the most general
form using the TE and transverse magnetic (TM) modes for a periodic structure
for E and H (in free space) as

E = ∑
∞

p =−∞
∑
∞

q =−∞
E0 (p, q)e−jk (xup + yvq ) − jKpq |z | (6.26)

H = ∑
∞

p =−∞
∑
∞

q =−∞
H0 (p, q)e−jk (xup + yvq ) − jKpq |z |

where H0 (p, q) and E0 (p, q) are constants evaluated for the particular geometry,
and

E0 (p, q) = F Z0Hz

u2
p + v2

q
G [−x̂vq + ŷup ] + FEz cos upg

Xu2
p + v2

q C G [−x̂up − ŷvq ] + ẑEz (6.27)

H0 (p, q) = FHz cos upq

u2
p + v2

q
G [−x̂up − ŷvq ] + ẑHz + F Ez

Z0 Xu2
p + v2

q CG [x̂vq − ŷup ]

This field representation is used to match boundary conditions within one cell
of the periodic structure, and hence for the entire array.

Although this procedure has obvious similarities to the Green’s function
approach in the character of the fields, the procedure for solving the resulting
equations can be quite different. In the above, the bpq [(6.23) and (6.24)] are
the terms used in expanding the aperture fields (or dipole currents). Each term
corresponds to a term of the grating lobe series, and one solves for these term by
term. To include, for example, 200 grating lobe terms requires solution of a matrix
equation of 200 unknowns. Alternatively, with the use of the Green’s function
formulation, one uses as unknowns the aperture modal coefficients and evaluates
the sum over all grating lobes for each term of an n-term basis function expansion
of the current i(z). The size of the matrix is the number of terms N in the expansion
of i(z).

Another advantage of either infinite-array formulation is the immediate identifi-
cation of propagating and nonpropagating grating lobes that allows one to write
the normalized power transmitted through the network over the space of a single
periodic cell:
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P =
1
2

Re E S ? da (6.28)

where the periodic cell area da is normal to the array (for a rectangular lattice,
the total cell area is dxdy ).

When the Poynting vector S = E × H* is integrated over a unit cell, the
orthogonality of the various spatial harmonics makes the power integral a simple
two-dimensional summation over the individual spatial harmonic powers. For the
(p, q )th mode, the net radiated peak power density is

Spq = F 1

Xu2
p + v2

q C2GHZ0HzHz* +
EzEz*

Z0
J [x̂up + ŷvq + ẑ cos upq ] = S0

pq r̂pq

(6.29)

where

r̂pq = x̂up + ŷvq + ẑ cos upq

is a unit vector in the direction of propagation of the (p, q )th grating lobe and is
directly radially.

If all unwanted grating lobes are suppressed by restricting the element spacing,
then the entire radiated power is in the S00 mode. All higher order grating lobes
have imaginary Poynting vectors and so do not contribute real power. The real
power radiated through one cell normal to the array is given by the integral above
and is (for a rectangular lattice)

P = 1/2 ES00 ? ẑ dxdy =
dxdyS00

2
cos u0 = P0 cos u0 (6.30)

where the integration has been performed over the array lattice unit cell.
The term P0 is the total power radiated through the unit cell, although directed

at the angle (u0 , f ). This expression says that the net power radiating out
from the array surface is the product of the total power times the projection factor
cos u0 .

The input power to that cell is computed as the incident line power, so the
normalized power transmitted through the cell is equal to the incident power less
the reflected power, or

P0
Pin

= 1 − |G |2 (6.31)

Usually the reflection coefficient G is evaluated directly with the solution of
the integral equation, and the above expression from conversion of energy is
automatically satisfied. In fact, Amitay and Galindo [30] point out that one cannot
use conservation of energy to test the degree of convergence of method of moments
solutions, which are satisfied term by term. However, conservation of energy does
serve as a test of software errors and numerical accuracy.
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As indicated above, the projection of the array unit cell in the u direction
introduces the factor cos u, so that the effective element pattern radiated from a
two-dimensional infinite array at the scan angle u0 is given by

f (u, f ) = (1 − |G(u, f ) |2) cos u0 (6.32)

where G is the infinite array reflection coefficient when no grating lobe radiates.
G also depends on the scan angles u and f . The perfectly matched infinite array
thus has a cos u element pattern and the array gain must fall off at least as fast as
cos u if the array is matched at broadside [G(0, f ) = 0]. With careful array design,
one can approximate the cos u0 dependence out to 60° and beyond in one plane.
More typical gain falloff varies like cos u 3/2

0 or cos u 2
0 , depending on the plane of

scan and element design.
If the infinite array solution is based on the Floquet modes (periodic structure)

type of formulation, then there is a minimum number of terms of the infinite
series that need to be included before the series is truncated. Typically, for a two-
dimensional array it is customary to include in the spatial harmonic summations
all terms corresponding to ±m, ±n, each with magnitude of at least 10 (correspond-
ing to 21 × 21 = 441 terms). More terms are often required, depending on geometric
considerations.

Unless a very large number of terms are used, simply using more terms in the
spatial harmonic summations is sometimes not adequate to ensure convergence.
In some cases, the convergence is optimized when the ratio of spatial harmonic
terms to (modal) basis function terms is set to some fixed number dictated
by geometrical considerations. This phenomenon is called relative convergence
[31, 32]. Most often, however, the number of spatial harmonics is increased until
absolute convergence is ensured. This may take a very large number of terms, and
convergence acceleration techniques are often used to reduce computation time.
These techniques range from use of Kummer’s transformation [33], in which one
adds and subtracts an asymptotic approximation that can be summed in closed
form, or acceleration techniques based on the Poisson summation formula or other
transformations [34–37]. These methods significantly improve convergence, but at
the cost of added complexity that may also be significant.

Infinite-array theory gives an excellent approximation of the impedance behav-
ior of central elements in large arrays and is often more appropriate than dealing
with the severe difficulties of inverting large matrices in the element-by-element
analysis for these cases. Figure 6.5, from Steyskal [38], shows a comparison of
the infinite-array calculation with a finite-array calculation for E- and H-plane
scans of a triangular grid array of circular waveguides. The figure shows the
complex active reflection coefficient G (here written R) for the two calculations.
The magnitude of G is shown solid and the phase dashed. It is obvious that infinite-
array theory (long dashes) gives a good approximation of the average reflection
coefficient for this central element. Figure 6.5(b) also shows array parameters for
the scan angle u > 1, which indicates that the array is scanned ‘‘beyond endfire’’
or fed with a phase progression more rapid than that of endfire. The beam in this
case radiates like a trapped surface wave, which radiates at endfire, but can have
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Figure 6.5 Active reflection coefficient of central element of a 127-element array. Infinite array
data shown for comparison. Solid lines indicate magnitude, dashed lines indicate phase.
Measured values indicated by dots. (a) H-plane scan; and (b) E-plane scan. (From: [38].
 1974 IEEE. Reprinted with permission.)

tailored characteristics related to supergain. In the case of Figure 6.5, Steyskal was
attempting to move the radiated beam closer to endfire.

6.3 Array Blindness and Surface Waves

The phenomenon of array blindness is a condition that results from array mutual
coupling and can bring about essentially complete cancellation of the antenna-
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radiated beam at certain scan angles. This result is accompanied by near-unity
reflection coefficient [39] at most of the central elements of the array. From the
element pattern point of view, it is seen as a zero in the array element pattern.
Figures 6.6 and 6.7 show element pattern and data due to Farrell and Kuhn [20]
for an array of waveguides on a triangular grid. Figure 6.6 shows experimental
H-plane scan data (solid line) for a finite array of 95 waveguide elements compared
with modal expansion data (dashed line) and that computed with a single-mode

Figure 6.6 Array power pattern (H-plane scan of triangular grid array). (From: [20].  1968 IEEE.
Reprinted with permission.)
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Figure 6.7 Contour map (in decibels) of scanned peak of power pattern. (After: [20].)

theory (dotted line). The experiment and infinite-array theory show good correla-
tion, while the single-mode theory (called grating lobe series in the figure) does
not exhibit the blindness. Figure 6.7 shows a contour plot of power radiated in
all real space for the same array, indicating the observed blindness occurring in all
scan planes.

The blindness phenomenon is associated with a kind of surface wave on the
array and is often associated with higher order odd modes on the radiating element
or with some other mode of cancellation. In the data of Farrell and Kuhn, the
lowest order odd mode was shown to be responsible for the blindness. Blindness
can also be associated with a true surface wave that is supported by the structure
itself (like a dielectric slab loaded array). In addition, the existence of an array blind
spot will usually (but not always) occur at array spacings less than a wavelength, and
at a scan angle less than that at which a grating lobe enters real space. Each of
these relationships will be clarified in the following paragraphs.
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Before proceeding, the term surface wave should be defined. Certain dielectric
structures, like the slab shown in Figure 6.8(a) or the periodic corrugated surface
shown in Figure 6.8(c, d) support lossless wave propagation along their axes with
velocities of propagation less than light. For example, the dielectric slab over a
ground screen of Figure 6.8(a) supports TM waves and TE waves, with propagation
constant b given by the solution of the transcendental equations below for TE
wave:

k1 cos k1d + jk2 sin k1d = 0 (6.33a)

for TM wave:

erk2 cos k1d + jk1 sin k1d = 0 (6.33b)

where k1
2 = erk0

2 − b2, and k2
2 = k0

2 − b2, and b2 = kx
2 + ky

2 .
As shown in Figure 6.8(b) for a low permeability substrate (er = 2.55), these

waves are slower than light (b > k0). The TM0 wave exists for all dielectric
thicknesses and dielectric constants (does not cut off). This wave will later be
shown to be a significant detriment to the design of microstrip antennas. The wave
is a surface wave because the propagation constant in the z-direction is given by

kz = Fk 2
0 − b2G1/2 = −jFb2 − k 2

0 G1/2
(6.34)

and is purely imaginary, thus leading to the z-dependence

Figure 6.8 Structures supporting ‘‘surface waves’’: (a) Dielectric slab structure. (b) Normalized
propagation constants for TE and TM waves. (From: [40].  1984 IEEE. Reprinted with
permission.) (c) Monopole array supporting ‘‘surface wave (spectrum).’’ (d) Shorted
corrugated structure.
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Figure 6.8 (Continued.)

exp[−jkzz] = exp[−|kz |z] (6.35)

This real exponential decay means that there is no power propagated in the
z-direction, and the wave is bound closely to the dielectric layer surface as it travels
unattenuated down the slab in the x-direction. The term surface wave relates to
this behavior.

Periodic structures, like those in Figures 6.8(c, d), with spatial period less than
one-half wavelength, can also support slow traveling waves. The existence of such
lossless normal modes propagating on passive metallic gratings has been known
to be possible for many years. For such structures, the relevant phase velocities
correspond to slow wave propagation (phase velocity is less than C), or in the
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Figure 6.8 (Continued.)

language of array theory, imaginary space (u = sin u > 1). With this choice of
spacing (dx < l /2), none of the waves in the grating lobe spectrum has its direction
cosine in real space ( |u | ≤ 1) and there is no loss due to radiation. This type of
passive metal grating thus supports lossless transmission, and has been implemented
as corrugated structures, monopole arrays, and many other periodic structures.
This type of wave solution is often termed a surface wave because of its similarity
to that supported by the various dielectric structures described earlier. In fact, the
wavelike solution supported by these periodic structure open waveguides is actually
a spectrum of surface waves (or grating lobes), with one wave of the spectrum
having a propagation constant similar to that of the surface waveguide, and all
others very tightly bound to the structure (larger wave numbers and stronger
exponential dependence). This propagating nonradiating mode of operation is
utilized in Yagi-Uda arrays by terminating the array and letting the wave spectrum
radiate endfire.

Array blindness results when the array geometry with short-circuited input
ports would support a normal mode (lossless nonradiating propagation) along the
structure at some given scan angle. At the angle of array blindness with the array
excited at all input ports, the input impedance at all ports is identically zero, with
the structure supporting a nonradiating lossless mode. Mathematically, this is
analogous to a resonant L-C circuit. In the L-C circuit case, at resonance, the input
current is unbounded (I = V /Zin ) because of the zero in the impedance (Zin = 0)
or the pole in admittance (Yin = ∞). The resonance can be defined as the condition at
which a nonzero current is supported with no input signal. The resonant frequency is
the solution of the eigenvalue problem, and is that frequency of undamped oscilla-
tion of the circuit with input terminals shorted (by the zero resistance path of the
ideal voltage source).

The array, however, is more complex than the L-C circuit because it has a
distributed set of input ports, with signals applied to each port. In a manner entirely
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analogous to the resonant circuit, if there is a propagating nonradiating solution
that would satisfy the boundary conditions of the shorted array structure, then
applying a set of signals with that phase progression would result in zero input
impedance at all input ports. If the input impedance is zero, one can place short
circuits at the terminals without changing the solution.

Extension of the above logic to the array case for scan angles in real space and
with spacing greater than one-half wavelength is not obvious. For such spacings,
the inter-grating lobe separation is less than 2 in u-space, and there is always at
least one beam in real space. Thus, at least one array beam should radiate, and
the combined network should have loss. If one were to look at the equivalent
shorted array, one would argue that it cannot support a normal mode solution
because the radiation would preclude a lossless solution. Yet the blindness phenome-
non is caused by the existence of a normal mode solution that exists precisely
because it allows no radiation.

Part of the answer to this intuitive dilemma came from the study of Farrell
and Kuhn [19, 20], who provided an essential key to understanding blindness and
performed rigorous analysis of a waveguide array with a blind spot. They were
the first to observe that waveguide higher order modes play a dominant role in
achieving the cancellation necessary for a null. The null occurs when radiation
contributions from the lowest order symmetric and antisymmetric modes cancel
to produce the element pattern zero. They also showed that the null is accompanied
by a zero in input conductance, as distinguished from the infinite susceptance
obtained at the grating lobe point using a one-mode analysis. Diamond [41] and
later Borgiotti [42] confirmed all of these findings for waveguide arrays.

Oliner and Malech [6] suggested what is now generally accepted as true: the
blind spot is associated with the normal mode solution of an equivalent, reactively
loaded passive array, and the condition of a complete null on the real array occurs
when the elements are phased to satisfy the boundary conditions for the equivalent
passive array. Knittel et al. [43] developed this theory and showed that in the
vicinity of the null the solution corresponds to a leaky wave of the passive structure,
but that surface-wave-like fields exist immediately at the null. This is consistent
with the results of an analysis made earlier by Wu and Galindo [44], who demon-
strated that the only radiating (fast) wave of the periodic structure spatial harmonic
spectrum is identically zero at null (because of cancellation by the odd mode), and
that for this reason a normal mode can exist even for a structure with a period
greater than one-half wavelength. Mailloux [45] illustrated the similarities between
the electromagnetic properties of surface waves supported by an array with element
spacing less than half a wavelength and the blindness condition of an array with
spacing greater than half a wavelength.

Along with these contributions to the understanding of the physics of a phased
array blindness, other authors have shown that both waveguide aperture and lattice
dimensions are critical in determining the likelihood of a blind spot. Ehlenberger
et al. [39] proved that reducing either of these dimensions moves the position of
a null further out in u-space, and that certain higher order waveguide modes can
cause nulls in certain scan planes. Their analysis explains, for example, that for
pure H-plane scan with a rectangular grid, there is no null, but for a triangular
grid, the TE20 mode can cause a null in the same plane. Finally, to avoid nulls,
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Ehlenberger et al. list the choices of waveguide sizes for rectangular apertures on
several size grids. Figure 6.9 from Ehlenberger et al. [39] shows the displacement
of a null by reducing the waveguide dimension while maintaining constant lattice
spacing.

The critical role that array lattice dimensions play in the occurrence of blindness
has been exploited in order to predict its onset. Byron and Frank [46] described a
procedure for combining simulator measurements and an approximate mathemati-
cal model to predict array blind spots, and Knittel [47] used the k − b diagram to
reveal a direct relation between the blindness effect and the cutoff conditions of
the next higher waveguide mode and lattice mode (grating lobe).

Figures 6.10 and 6.11 from Knittel [47] show the locus on a k − b diagram
of the blind spot for the array with grating studied by Farrell and Kuhn, but with
frequency varied over a wide range. The locus of array blindness is shown solid
on both curves. It is significant that the locus never crosses any of these higher
order mode loci, because crossing the TE20 mode cutoff would allow energy to
leak back into the waveguides, and crossing the grating lobe cutoff line would
allow energy to radiate by means of a grating lobe. In neither case could the passive
equivalent array sustain an unattenuated normal mode. Figure 6.11 also shows
that if the waveguide size is reduced and no changes are made to the periodic grid
dimensions, then the blindness is moved to wider angles.

Figure 6.9 Blindness location versus waveguide aperture size with constant lattice spacing. (From:
[39].  1968 IEEE. Reprinted with permission.)
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Figure 6.10 k − b diagram showing array null locus for the triangular grid array of Farrell and
Kuhn, with B/A = 1; a/A = 0.898; b/A = 0.397. (From: [47].  1970 IEEE. Reprinted
with permission.)

These two figures were included to demonstrate the power of this graphical
technique for predicting the onset of blindness difficulties. In all cases shown by
Knittel, the blindness locus remained nearly asymptotic to the waveguide or grating
lobe loci, whichever occurred at lower frequency. The implication for design is
obviously that the null can be avoided by choosing dimensions sufficiently smaller
than those for the cutoff conditions.

Dipole arrays with thin wire elements do not appear to have blindness [48].
However, when they are driven by real feed lines, there may be a mode of feed
line radiation that can produce a cancellation effect that results in blindness. Exam-
ples are given in the published studies of Mayer and Hessel [49] and Schuman
et al. [50].

It appears that nearly any embellishment one might add to the array face can
also be the cause (at some frequency, at some angle) of blindness [45]. The author
investigated the use of metallic fences on the array surface in an attempt to reduce
or alter mutual coupling, and so to improve wide-angle element match. In fact,
fences did add another dimension to optimize match and so did improve wide-
angle impedance match. Figure 6.12 shows that some choices of dimensions do
produce the deep infinite-array element pattern nulls that indicate an array
blindness.
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Figure 6.11 k − b diagram showing array null locus of the triangular grid array of Farrell and Kuhn
(see Figure 6.10) but with dimension a/A reduced to 0.709. (From: [47].  1970 IEEE.
Reprinted with permission.)

Although dielectric layers have been used for many years to improve scan match
(see Section 6.5), they too can be the source of array blindness. This phenomenon is
not new and was observed in the early work of Wu and Galindo [44]. More recently,
blindness has been observed to occur in microstrip patch arrays or microstrip dipoles
when the combination of dielectric constant and substrate thickness is such as to
support a tightly bound surface wave, one with a phase velocity that is sufficiently
slow so that it couples to an array grating lobe. A particular case is illustrated by
arrays of microstrip printed dipoles etched on dielectric substrates. Pozar and
Schaubert [40] have correlated the TM surface wave propagation constant as given
by the previous transcendental equation (6.33) with the observed blindness angle.
The dielectric layer itself supports a surface wave, and although the boundary
conditions are perturbed by the array patch or dipole structure, the location of the
blindness is often predicted very accurately by the surface wave propagation con-
stant. The mechanism for coupling into the surface wave is depicted in Figure
6.13(a) [40], where several solid circles and dashed circles of larger radius are
shown. The central solid circle defines real space bounded by u2 + v2 = 1, and the
other solid circles define the corresponding regions that bound the array grating
lobes and so have centers at u = pl /dx , v = ql /dy . The spacings in both dimensions
are chosen to be equal to l /2, so the grating lobe circles touch the central circle.
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Figure 6.12 Radiating characteristics of parallel plane arrays with metallic fences. Note: power
transmission factor is 1 − |G |2. (a) Geometry; (b) array power transmission factor for
various fence heights; and (c) array power transmission factor for various fence heights.
(From: [45].  1972 IEEE. Reprinted with permission.)

The dashed circle, centered at the origin, is the locus of possible surface wave
normalized wave numbers ks /k0 for the TM01 surface wave, which is the only one
not cut off from very thin dielectrics. In this case, it is important to understand
that it is only the circle itself that is the locus of allowed surface waves, not the
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Figure 6.12 (Continued.)

whole region enclosed within the circle. The circle radius ks /k0 is greater than
unity, and so the locus of the grating lobe can intersect the surface wave circle.
When this happens, the impedance seen by the microstrip feed is a short circuit,
and again there is array blindness. This logic is therefore the same as had been
previously understood for arrays without dielectric layers that have blindness. The
locus of scan angles for which intersections with the surface wave circle [dashed
with center (0, 0)] occur are also circles. These circles (dashed) have centers at the
points (pl /dx , ql /dy ), and where these intersect the scan space is where the
interference can occur. A necessary logical extension to this argument is that the
‘‘perturbed’’ surface wave also has a spectrum of allowed grating lobes due to its
periodicity. Since these fall exactly at the same lattice points as the forced array
excitation, there is complete cancellation at the main lobe radiation angle in the
central circle.

Pozar and Schaubert [40] point out that polarization plays a major role in
whether the surface wave is excited. In the case of printed dipoles, the lowest order
TM surface wave is not excited for H-plane scan because of polarization mismatch.
Figure 6.13(b) shows the data of Pozar and Schaubert for a printed dipole array
in E- and H-plane scans. A clear blindness is evident in the E-plane, but none in
the H-plane. Figure 6.13(c) shows the computed reflection coefficient of the array,
with the locus of the surface wave circles indicated to confirm that the blindness
occurs at the angles predicted by the surface wave theory.
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Figure 6.13 Array radiation and grating lobe loci compared with slow ‘‘surface wave’’ loci:
(a) Surface wave circle diagram; (b) E, H, and diagonal plane scan data showing
blindness in E-plane; and (c) reflection coefficient contour plot showing loci of the
surface wave for unloaded dielectric surface. (From: [40].  1984 IEEE. Reprinted with
permission.)

Other types of printed circuit arrays can be subject to blindness due to coupling
with modes within the substrate. For example, Figures 6.14 and 6.15 [51] show
printed circuit slot arrays with and without conducting cavity walls. In this example,
the case without backing cavities is seen in Figure 6.14 to have very strong blindness
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Figure 6.13 (Continued.)

due to coupling with a wave spectrum that propagates in the parallel plane region
and has the same periodicity as the forced excitation. An array with cavity-backed
slots, shown in Figure 6.15, has no blindness for any scan angle if the spacing l /2
is maintained.

6.4 Impedance and Element Patterns in Well-Behaved Infinite
Scanning Arrays

By the proper choice of array element design and lattice, one can avoid the array
blindness phenomenon and obtain a satisfactory, ‘‘well-behaved’’ array aperture.
This section lists a number of the cases for which there are analytical/numerical
solutions for the infinite array radiation characteristics and describes the impedance
and element pattern behavior that is observed. Before proceeding further, it is
important to understand that the one most significant choice toward ensuring a
well-behaved array scan match is to keep element spacing small.

Arrays of slots or dipoles with element spacings of one-half wavelength or less
are free of blindness or grating lobes and have generally well-behaved scanning
characteristics. Infinite arrays of such elements exhibit particularly simple scan
behavior, which has been well documented. Two-dimensional infinite arrays of
infinitesimal slots in a ground screen have input conductance of the form [6]:

Ga =
N

dxdy
(e /m )1/2 (1 − u2)

cos u
(6.36)
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Figure 6.14 Geometry (top) and performance (bottom) of slot arrays without cavities. (From: [51].
 1987 IEEE. Reprinted with permission.)

In this expression, the factor N is a constant of proportionality, and dx and dy are
the interelement spacings. In the two principal planes f = 0 and p /2, the conductance
varies like cos u and (cos u )−1, respectively. Therefore, for a two-dimensional array,
there is no one scan angle u at which one can match the array for all azimuth
angles f , unless one introduces some kind of matching that also depends on the
scan angle.
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Figure 6.15 Geometry (top) and performance (bottom) of slot arrays with cavities. (From: [51].
 1987 IEEE. Reprinted with permission.)

The array susceptance is given by Oliner and Malech as

Ba = −
N

dxdy
(e /m )1/2 ∑

′

m
∑

′

n
Fmn (6.37)
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where

Fmn =
u2

m − 1

Xu2
m + v2

n − 1C1/2

and again

um = u0 +
ml
dx

vn = v0 +
nl
dy

In (6.37), the primes indicate that the sums exclude the propagating modes. This
simple expression, written in terms of the nonpropagating grating lobe direction
cosines, is an accurate representation of the scan behavior for arrays of short slots.
Oliner and Malech point out that for spacings that allow propagation of no grating
lobes, the term Fmn is always positive, so short-slot arrays are always inductive
for all scan angles.

The radiating patterns and scan characteristics of infinite arrays of short dipoles
with no ground screen are readily related to those of slots. In this case, the array
impedance is given by [6]

Za = 1/2S N
dxdy

D (Z0 + jX) (6.38)

where

Z0 = (m /e )1/2S1 − u2
0

cos u D
and

X = −1/2(m /e )1/2 ∑
′

m
∑

′

n
Fmn

Here it is seen that the impedance varies like cos u for f = 0 and like 1/cos u
for f = p /2, which is the inverse of the variation for the slot impedance case. In
fact, as pointed out by Oliner and Malech, if the factor N were the same, this
expression shows that both the active resistance and reactance of the short dipole
array are just half of the admittance and susceptance of the slot array. The factor
of two is introduced because the slot array radiates into only a half space, but the
dipole array radiates into a full space.

The addition of a ground plane implies that the dipoles are mounted over the
screen by some height h.

In this case, the input impedance is given by [6] as

Za = Ra + jXa (6.39)
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where

Ra = [N /(dxdy )]Z0 sin2(kh cos u )

and

Xa = [N /(dxdy )]X + 1/2[N /(dxdy )]Z0 sin(2kh cos u )

and X and Z0 are given as in the previous equations.
The expressions sin2(kh cos u ) and sin(2kh cos u ) account for the dipole height

above the ground screen. A typical choice of the height h is l /4, in which case the
signal is maximum at the zenith (u = 0).

The expressions above assume not only that the array elements are infinitesimal,
but that the spacings are small enough that no grating lobes alter the conductance.
At spacings greater than one-half wavelength, the presence of grating lobes at large
scan angles significantly alters the array impedance variation and element patterns.
These effects can be very complex, as compared to the behavior of closely spaced
arrays indicated above. Figures 6.16 and 6.17 show the impedance and reactance
of an infinite array of dipoles with spacing dx = dy = 0.6.

For an array with relatively large spacings, the E- and H-plane behavior of
dipole arrays are significantly different from each other, with the H-plane depen-
dence exhibiting a significant discontinuity in both impedance and reactance at the
scan angle of the grating lobe entrance. Figures 6.16 and 6.17 show these reactance
parameters as computed by Oliner and Malech [6] using infinite array theory. The
circles shown on these figures are from earlier results (circles) obtained by Diamond,
who used one-term representations of the dipole current in the element-by-element
formulation for a 65 × 149 element array. Solutions including higher order mode
representations of currents are available in the literature, but for l /2 dipoles a
single term is sufficient.

Infinite-array element patterns are also strongly dependent on the element
spacing. Figure 6.1 [6] shows the element pattern corresponding to various d /l ,
including the value 0.6, where the element pattern is exhibiting significant nar-
rowing. The patterns that use smaller element spacings are broader and follow a
cos u dependence more closely.

Rigorous infinite-array solutions, some of which are referenced in the previous
section, have been obtained for a large number of array types, including many
shaped wire or metal elements, waveguides [52–55], protruding dielectric wave-
guides [56], dielectric resonator elements [57], microstrip patch arrays, and arrays
of wideband notch and Vivaldi elements. The next few paragraphs illustrate some
early infinite array results for microstrip arrays and new work on arrays of wideband
notch elements.

Studies of finite and infinite microstrip arrays have included circular and rectan-
gular patch arrays excited by probe feeds, or electromagnetically coupled to aperture
feeds or microstrip patches beneath other substrates, and all of the above with
superstrate dielectric layers. Figure 6.18, due to Aberle and Pozar [58], shows the
scan characteristics of a probe-fed infinite array of circular microstrip patches. In
these data, the authors compare the results of using idealized feed modes with
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Figure 6.16 Dipole array scanning data for three different planes of scan. Dipoles are l/4 above
ground, array spacing 0.6l . (From: [6].  1966 Academic Press, Inc. Reprinted with
permission.)

those obtained by including the feed as part of the boundary value problem. In
the idealized feed model, the probe-feed is considered a short electric line source,
the moment method is used to solve for patch current, and the input impedance
is found as the reaction of the patch electric field and the probe current. This model
is accurate for patch arrays with substrate thickness up to about 0.02l . The
improved feed model represented in the figure treats the probe as part of the
boundary value problem, solving for the zero tangential electric field on both probe
and patch. Simulator measurements show significantly improved estimation of
array reflection coefficients using this more complex probe model. The data of
Figure 6.18 shows E-, H-, and diagonal-plane scans for infinite arrays of circular
patches fed by a single probe. The authors also treated arrays fed by balanced two-
probe feeds, with a 180° phase shift between the probes (Collings radiators).

Figure 6.19 shows several results published by Schuss [59] using an analytical
procedure that placed special emphasis on evaluating probe currents accurately
[60]. Figure 6.19(a) shows the balanced feed patch radiator geometry as fed by
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Figure 6.17 Variation in active reactance as a function of scan angle for three different planes of
scan and for array of l/2 dipoles mounted l/4 over a ground screen. Solid lines from
infinite array theory. Circles from element-by-element calculation for 65 × 149-element
array. (From: [6].  1966 Academic Press, Inc. Reprinted with permission.)

180° reactive baluns. The use of reactive baluns can lead to an element pattern
blindness at one frequency within the operating band, as shown in Figure 6.19(b).
This example shows the E-plane embedded element pattern of a patch radiator
with dx = 0.508l0 , dy = 0.5l0 , ax = ay = 0.363l0 , h = 0.057l0 , probe separation
0.531ax , and relative dielectric constant 2.2. This array element is excited by a
matching network to optimize impedance match throughout the scan sector over
all frequencies. The matching network, which consists of quarter-wave transmission
line matching sections and open-circuit stub transmission lines, produces a doubly
tuned frequency response that can be precisely designed because of the accuracy
of the analytical model. The data shown are taken at 1.05l0 and compare theory
(solid) versus element pattern data for two experimental arrays of different sizes.
The array element pattern follows a cos u dependence out to about 50°. Beyond
that point, one can observe a blindness due to a surface wave resonance. This
blindness was shown to be related to the use of a reactive power divider. The
blindness shown in the figure is absent if the same radiators were excited by a
four-port (Wilkinson) power divider. At lower frequencies, the array follows a cos u
pattern to much wider angles.
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Figure 6.18 Reflection coefficient of an infinite array of circular patch elements fed by single probes
as computed with idealized source and improved source models (er = 2.55, d = 0.06l0,
R = 0.166l0, xp = 0.083l0, r = 0.0004l0, a = 0.51l0). (a) Geometry; and (b) reflection
coefficient magnitude. (From: [58].  1990 IEEE. Reprinted with permission.)

Figure 6.20 shows the data of Herd [61, 62], who analyzed infinite arrays of
electromagnetically coupled patches. The electromagnetically coupled geometry is
of particular interest because the bandwidth of these antennas can be significantly
broader than that of conventional patch antennas.

Figure 6.20(a) shows three of the geometries investigated by Herd. The wide
variety of electromagnetically coupled geometries allows for control of additional
degrees of freedom to optimize scan performance throughout the array scan sector.
Figure 6.20(b) gives the geometric parameters and shows a Smith chart plot of the
element impedance for an infinite array at broadside. The element shown has over
18% bandwidth at broadside, due primarily to the double-tuned behavior, as
evidenced in the Smith chart looped characteristic. Other array designs provided
less bandwidth but better scan characteristics. An improved design provided 10%
bandwidth over a 50° half-angle cone of scan with less than 2:1 VSWR.

Wideband tapered slot arrays (TSAs) analyzed by infinite array models using
the MOM [63] by finite element methods [64, 65] and by the finite difference time
domain method [66] have demonstrated good scan impedance over wide scan
sectors and wide bandwidth. The basic element [65, 66] shown in Figure 6.21 is
an adaptation of the dual-polarized stripline-fed tapered slot of Lewis et al. [67].
The stripline feed is terminated in a stripline stub and located between the fins of
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Figure 6.18 (Continued.)

a bilateral slotline flared notch. The bilateral slotline is terminated at one end with
a circular slot cavity and at the other with an exponentially tapered flared notch
with equations for the flare given in [65]. A metallic ground plane is used to reduce
back radiation, and metal posts between elements are included to improve scanning
for the dual polarized array, but they are shown by Holter et al. [66] to be
unnecessary for the single polarized array version of this geometry.

The tapered slot element is difficult to design for wideband, wide-angle scanning
because of array resonance (blindness) that is especially severe in the H plane. The
work by Holter and Schaubert addresses the scan properties of this element and
shows that although the metal walls are not needed for the H plane of the single
polarized array, both metal walls and plated-through vias are important for sup-
pressing the resonances in the dual polarized array. Figure 6.22 shows the input
standing wave ratio (SWR) of the basic element in a dual polarized array at
broadside, E-plane, and H-plane scan. These figures demonstrate that all blind
spots, which are severe in the basic array of Figure 6.22(a), are eliminated or moved
to new frequencies by inserting vias around all edges of the slotline, slotline cavity,
stripline, and stripline stub [Figure 6.22(b)], so that the final array operates over
a 5:1 bandwidth and scan volume of ±45°.

6.5 Semi-Infinite and Finite Arrays

It has long been recognized that large finite arrays exhibit some of the behavior of
infinite arrays. Early references [26, 68] documented generalized periodic structure
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Figure 6.19 Characteristics of dual-probe fed microstrip arrays of rectangular patches: (a) balanced
fed patch radiator geometry; and (b) measured and predicted E-plane embedded
element pattern of radiator at 1.05f0. (From: [59].  1991 Electromagnetics Journal.
Reprinted with permission.)

theory in terms of floquet waves and applied this theory to Yagi arrays. Here it
must be pointed out that the solution often referred to as a surface wave does not
apply to periodic structures, as it would on a dielectric slab or other continuous
supporting structure, but instead periodic structures propagate a spectrum of bound
(surface) waves. Fel’d [69] applied Wiener-Hopf theory to solve the set of coupled
linear equations for a semi-infinite array of short metallic posts. Mailloux [70]
treated a finite Yagi array with one source element by assuming currents consisting
of forward and reflected sets of floquet waves combined with additional current
terms to account for edge corrections and match boundary conditions at all ele-
ments, including both array edges.

There has been an interest in using wave theory to solve for the properties of
semi-infinite and large finite arrays. Ishimaru et al. [71] used the Poisson summation
formula to transform the impedance matrix for a finite array into a form called
the finite periodic structure approach, which was then analyzed for elements with
identical current distributions. Carin and Felsen [72] investigated long finite arrays
using the Floquet assumption to represent a semi-infinite array minus the nonuni-
form edge currents. Skinner and Collins [73] derived a one-sided Poisson summation
formula and found the semi-infinite solution along with single element basis func-
tions near the edge of the array could be used essentially as basis functions for the
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Figure 6.19 (Continued.)

semi-infinite array. They showed that the resulting Green’s function possessed
enhanced convergence properties as compared to the element-by-element approach
for certain semi-infinite arrays. Janning and Munk [74] investigated large finite
arrays of dipoles and compared the solution of a finite array using finite array
software with a solution using surface wave excitation and reflection coefficients.

An alternate approach to the solution of large, finite arrays is to reduce the
number of basis functions on the elements themselves, while solving the matrix
equations for the complete array. This approach is demonstrated by the work of
Steyskal and Herd [75], who use custom modes based on the infinite array solution
for arbitrary patch elements in a large array. The use of these custom modes was
shown to reduce the total number of basis functions by a factor of 41 for the case
considered.

6.6 Impedance Matching for Wide Angle and Wideband Radiation

The preceding examples demonstrated techniques for impedance matching of a
scanned array and, in some instances, of a wideband scanned array. Most of these
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Figure 6.20 Impedance data for scanned electromagnetically coupled patch antennas: (a) geome-
tries investigated; and (b) electromagnetically coupled wideband microstrip array
(broadside data). (From: [62].  1992 Electromagnetics Journal. Reprinted with
permission.)
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Figure 6.21 A dual polarized TSA array. Elements are separated by metallic posts, and the array is
backed by a metallic ground plane at z = −d. (From: [65].  2000 IEEE. Reprinted with
permission.)

methods have involved varying dimensions and antenna parameters to optimize
scan or bandwidth operability. Much of this optimization is now accomplished
using commercial optimization codes. In addition, a number of techniques have
been developed that evolved from engineering practice. Many of these are listed
in the paper by Knittel [76], but several will be mentioned here.

Among these are the use of connecting circuits between the transmission lines
of specific array elements [77] and the use of baffles or pins between elements on
the aperture [45, 78] or impedance loaded ground planes [79]. Among the most
important techniques are the use of close element spacing [80] and fabrication
using dielectric sheets for wide-angle impedance matching (WAIM) [81].

6.6.1 Reduced Element Spacing

Reduced element spacing was first shown to produce significantly less impedance
variation with scan than more widely spaced elements. However, it was the Knittel
et al. studies [43, 47] that best illustrated the reduced impedance variation and
elimination of blindness difficulties. The results of these studies, shown in Section
6.3, have led to standard design guidelines that maintain element spacing at a few
percent less than that required to exclude grating lobes from real space at the
extreme scan angles. Although these guidelines are adequate for most waveguide
and dipole arrays, one must always obtain theoretical or experimental verification
of element scan properties before committing to a final design. Studies have shown
[80] that by using very close spacing and numerical optimization, one can develop
array apertures with very little impedance variation due to scan. The use of very
reduced spacing at the low frequencies of very wideband arrays has revealed the
significant and deleterious edge effects evident in arrays with spacing 0.1 wave-
length or less [22–24] (e.g., the low frequency of a 5:1 bandwidth array) with
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Figure 6.22 SWR for the dual polarized array-broadside (BS), E plane at 45° scan (E45), and H
plane at 45° scan (H45): (a) configuration without shorting pins; and (b) configuration
with shorting pins. (From: [66].  2000 IEEE. Reprinted with permission.)
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0.5 wavelength at the highest frequency. This necessitates the detailed evaluation
of element patterns and only cautious use of infinite array calculations for closely
spaced arrays.

6.6.2 Dielectric WAIM Sheets

One of the more practical means of scan matching waveguide arrays was proposed
by Magill and Wheeler [81]. The technique incorporates a dielectric sheet in front
of the array [Figure 6.23(a)] to remove some of the susceptance variation as the
array is scanned. This dielectric WAIM sheet is placed at a location in front of the
array where the referenced array reflection is most nearly a pure susceptance, and
at this point the susceptance of the WAIM sheet is used to reduce the overall
impedance variation. Figure 6.23 shows a section of waveguide array geometry
and its reflection coefficient portrayed on a Smith chart. Three scan points are
shown for reference. These are at 56° in the E- and H-planes, and 29° in the
intercardinal plane (this case to simulate a near broadside data point). Since the
thin dielectric layer presents a pure susceptance, the dielectric in this example is
placed a distance in front of the array where the scanned reflection coefficient lies
as close as possible to the unity conductance circle. Magill and Wheeler [81] point
out that this may not necessarily result in the best scan match, and so in some
cases it may be preferable to match near some other conductance circle, and match
the conductance using some means internal to the transmission line. For simplicity,
the example proceeds assuming a grouping near the unity conductance circle.

The susceptance of a thin dielectric layer at broadside B(0) is given approxi-
mately by:

B(0)
G0

= (eR − 1)
2p t
l0

(6.40)

where t is the dielectric thickness, B(0) is the broadside susceptance, G0 is the free-
space conductance, and eR is the relative dielectric constant.

The thin dielectric layer has the approximate scan dependence given for E-
and H-plane scan planes.

H-plane
B(u )
B(0)

=
1

cos u
(6.41)

E-plane
B(u )
B(0)

= cos u −
sin2 u

k cos u
(6.42)

Figure 6.24 illustrates the wide-angle impedance matching procedure. Figure
6.24(a) repeats the array Smith chart data of Figure 6.23(b). Figure 6.24(b) shows
that same data referenced forward (into space) in front of the array to an area
near the unity conductance circle. The relative position of the points is changed
because the propagation constant kz = k cos u (or the wavelength l z = l0 /cos u )
is used for the Smith chart manipulations, so the relative shift in reference plane
location is t /l z = t cos u /l0 and is greater for the broadside case than the wide-
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Figure 6.23 Dielectric WAIM sheets for scan matching: (a) array geometry; and (b) measured
reflection of array element before impedance matching. (From: [81].  1966 IEEE.
Reprinted with permission.)
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Figure 6.24 Calculation procedure for matching with thin high-k dielectric sheet. (a) Array at R1;
(b) array at R2; (c) dielectric WAIM sheet; and (d) array with sheet at R2. (From: [81].
 1966 IEEE. Reprinted with permission.)

angle cases. Since the dielectric slab reflection coefficient falls along the unit conduc-
tance curve [Figure 6.24(c)], the sum of its susceptance added to that of the array
combines to produce scan-matched behavior approximately like that of Figure
6.24(d).

Attempts at wide-angle impedance matching, especially for arrays of printed
circuit elements, have primarily been accomplished by using reduced spacing to
keep the grating lobe out of real space, and then by merely optimizing element
dimensions and matching at broadside or some other chosen scan angle. Dielectric
sheets are often used as a cover (radome) to protect the array face, and so the
sheet dimensions, spacing, and dielectric constant are parameters included in the
optimization. Electromagnetically coupled patches and multilayer patches are usu-
ally scan matched using the available degrees of freedom within the patch and
cover geometry.

6.7 Mutual Coupling Phenomena for Nonplanar Surfaces

The electromagnetics of array mutual coupling is complex, even for planar arrays,
but substantially more so for nonplanar arrays. In the planar case for an array
without a dielectric substate, the coupling is written in terms of the free-space
potential functions (Section 2.1.1). However, if the array is nonplanar, there are
relatively few configurations that can even be written in terms of closed form (or
series) Green’s functions. Arrays on cylinders can be rigorously formulated in terms
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of Bessel functions [82], and solutions are available for elements and arrays on
spheres [83] and cones [84]. In each of these cases, there are problems of convergence
that arise in obtaining far-field element patterns and describing element mutual
coupling. These are treated in some detail in the text [82] by Borgiotti. For elements
on a cylinder, the rigorous solutions offer exact analysis of array coupling, but the
Bessel function series is very slowly convergent for large cylinders and must be
transformed to asymptotic series for faster convergence. The resulting approximate
results are not uniformly valid, and are usually written as separate expressions for
the cylinder ‘‘lit’’ and ‘‘shadow’’ regions as seen from a far-field source.

Borgiotti applied the method of symmetrical components to obtain element
patterns on arrays that were infinite in the axial plane and extended entirely around
the cylinder. In this case, one can obtain exact element patterns in the circumferential
and axial planes. Figure 6.25 shows an example in which the array is matched at
the equiphase condition and at angles nearer the endfire direction. These data show
that one can obtain several decibels of increased gain near endfire by matching at
angles nearer to endfire.

Detailed investigations into the phenomenology of element patterns on curved
surfaces have revealed the role of creeping wave radiation in determining the
array azimuthal element patterns. Creeping waves are known to contribute to the
radiation of isolated apertures on conducting cylindrical surfaces. They propagate
with nearly the free-space velocity and radiate along the local tangent. On smooth
conducting surfaces, their radiation is significant only in the shadow region. On
periodic cylindrical arrays with azimuthal spacing greater than l /2, however, these
play a significant role in the forward direction. This occurs because the creeping
wave velocity is fast and radiates near the local tangent, but the waves also excite
grating lobes that radiate back into the forward region element pattern. Figure
6.26 [85] indicates this procedure for a cylinder with azimuthal element spacing
greater than a half wavelength, and shows the angular locations of these grating
lobes for the clockwise and counterclockwise creeping waves. The resulting element
power pattern dips are proportional to (kr0)2/3. Figure 6.27 [86] shows H-plane

Figure 6.25 Element gain pattern, circumferential plane, and circumferential polarization
(R = 11.61l ). Other dimensions shown. (From: [82].  1983 Peter Peregrinus, Ltd.
Reprinted with permission.)
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Figure 6.26 Wave contributions in forward (lit) region of element patterns of circular array on a
conducting cylinder. (From: [85].  1972 Artech House, Inc. Reprinted with permis-
sion.)

azimuthal element power patterns for an array of dipoles, as shown in Figure
6.27(a), completely covering a cylinder of various radii. Figure 6.27(b) compares
the cylindrical array element pattern with one from a planar array with the same
grid. The essential differences between the two curves are that the planar azimuth
pattern is zero for F > 90°, while the circular array pattern radiates into this
shadow region, and the circular array has a rippled element pattern while the
planar array element pattern is smooth. Both of these effects are caused by creeping
waves. Figure 6.27(d) shows a logarithmic plot of the element pattern of cylindrical
arrays with the same grid, but on cylinders with different radii. The slope of these
curves in the shadow region is steeper for larger radii and is in fact proportional
to (ka sin u )1/3 for u, the elevation angle. The ripple shown in these curves near
the 180° azimuth angle is due to the interaction of clockwise and counterclockwise
creeping waves.

The need for more general solutions that apply to arbitrary concave and convex
surfaces has been satisfied primarily by high-frequency asymptotic methods. Early
studies [87, 88] obtained approximate formulas for mutual impedance of slots
on cylinders and cones. Studies of radiation from cylinders using high-frequency
diffraction methods have led to excellent descriptions of element patterns and
arrays. Extensions of the UTD to doubly curved surfaces have been carried out by
Demirdag and Rojas [89], who developed Green’s functions using UTD and applied
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Figure 6.27 Periodic dipole array on a conducting circular cylinder. (a) Geometry; (b) H-plane
voltage element gain pattern for cylindrical and reference planar arrays (b/l = 0.6;
d/l = 0.7; ka = 120); (c) H-plane voltage element gain pattern (d/l = 0.7; ka = 120)
for azimuth spacing b/l = 0.5, 0.6, 0.7; and (d) H-plane element gain power pattern
(dB) (b/l = 0.6; d/l = 0.7) for cylinder radii ka = 30, 60, 120, 240. (From: [86].
 1985 IEEE. Reprinted with permission.)

these for evaluation of mutual coupling on perfectly conducting arbitrarily shaped
convex surfaces, and by Persson et al. [90], who have investigated the mutual
coupling of apertures and arrays of apertures in circular cylinders. The accuracy
of this approach was such as to demonstrate agreement with measured data down
to the −60- to −80-dB levels. Studies of concave arrays by Tomasic and Hessel [91]
have presented techniques for the analysis of arrays on generalized concave surfaces.
Concave surfaces are often used in array feeds, seldom as radiating arrays them-
selves. The analytical methods introduced in these mutual coupling analyses con-
sisted of assuming the array to be locally periodic and using ray tracing methods to
account for the mutual interaction of the elements. Several summaries of numerical
techniques for solving electromagnetic problems highlight combined geometrical
theory of diffraction and moment method solutions [92, 93] that have direct and
significant relevance to arrays on complex bodies.

Kildal and others [94] have developed software using the spectral domain
method of moments techniques for cylinders of arbitrary cross section, including
multiple dielectric layers. They have demonstrated their technique for spheres as
well.

Elements and arrays on generalized surfaces have also been analyzed using
FDTD [95, 96] and FEM [97, 98] methods. Both of these methods offer the
flexibility to treat elements on arbitrary three-dimensional surfaces, including
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Figure 6.27 (Continued.)

dielectric volumes, but have significant storage and computational overhead for
large arrays.

6.8 Small Arrays and Waveguide Simulators for the Evaluation
of Phased Array Scan Behavior

Because of the cost of building phased arrays, it is extremely important to obtain
reliable measurements of the designed array scan properties before committing to
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Figure 6.27 (Continued.)

a final design. The two primary methods of design verification are to build a small
array and/or to construct a waveguide simulator.

Tests on a small array usually involve the measurement of radiating element
patterns of all or at least certain of the array elements, one at a time, with all other
elements terminated in matched loads. This provides a measurement of [1 − |G |2]
cos u if the array is matched at broadside and so can provide an excellent indication
of the array scanning characteristics. Figures 6.3, 6.5, 6.16, 6.17, and 6.20 show
the relationship between element patterns in several small arrays and infinite array
data. One of the most important factors in the use of small test arrays is to make
sure that the array is large enough to indicate the occurrence of a blind spot, which
can appear as a small dip in the element pattern if the array is too small.

The waveguide simulator simulates the performance of an infinite array using
the natural imaging that takes place in a rectangular waveguide. By way of introduc-
tion, Figure 6.28(a) depicts a set of planar wavefronts for two waves with polariza-
tion in the plane perpendicular to the paper and traveling in directions ±u relative
to the z -axis. The points of intersection between these waves are chosen to represent
places where the electric fields of the two waves are equal and opposite. The locus
of these points is a set of vertical lines (shown dashed) along which the net electric
field is zero, and along this locus one could pass perfectly conducting metallic
sheets (perpendicular to the paper) without disturbing the field. The dashed lines
are shown ending at z = 0 to indicate that the array of sheets could be terminated
at any point or continued on to infinity without changing the field distribution.
The dashed lines represent an infinite set of finite-length, parallel-plate waveguides,
each supporting waves that travel in the positive z-direction. Within any one of
these waveguides, the field distribution is recognized as that corresponding to the
TE10 mode, while the whole set of waveguides comprises an infinite array receiving
waves from the ±u direction. Since the only electric field is in the y-direction, one
could also pass conducting sheets perpendicular to the y-axis without disturbing
the fields, and so instead of a parallel-plate simulator, it is more convenient to use
a rectangular waveguide geometry.
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Figure 6.28 Waveguide simulator geometries. (a) Basic TE10 mode simulator; (b) equivalent infinite
array represented by simulator; and (c) higher order TE10 mode simulator.

Useful array simulators are also based on the simple principle introduced above,
with the region representing free space modeled by a single (oversize) waveguide.
If the wall locations of that waveguide are chosen to correspond to zero field points
in the actual array, then the entire configuration can be simulated by the junction
of the two waveguides. Array simulators have evolved from the original work of
Brown and Carberry [99] and Hannon and Balfour [100].

The waveguide simulator gives one scan angle data point at each frequency,
so one simulator is not adequate to test the wide-scan behavior of a given feed
lattice. However, by comparing the results from a theoretical model of the infinite
array with the simulator data, one can confirm the scan angle performance as a
function of frequency and so uncover any frequency-dependent scan anomalies.
Equally important, with a confirmed theoretical model, one can confidently investi-
gate all scan angles. The simulator thus is often used as an adjunct to a theoretical
solution.

The simplest simulator is the one shown in Figure 6.28(b), which simulates
the H-plane scan of an infinite array of open ended waveguide elements with
spacings dx and dy . The simulator is fed by the larger waveguide, with inner
dimensions Dx and Dy , which propagates the incident fundamental TE10 mode
traveling in the z-direction. The field in the y-direction is constant, and so the
waveguides in Figure 6.28(b) are excited with constant phase and zero-thickness
walls. The figure shows the horizontal walls that pertain to both sets of waveguides.
For certain incident angles, the imaging of aperture fields by the waveguide wall
simulates the remainder of the array, indicated in Figure 6.28(b). The TE10 incident
fields as represented by the two waves are

E(x) = exp(−jkzz + jkx sin u ) + exp(−jkzz − jkx sin u ) (6.43)

= 2 exp[−jkzz] cos(kx sin u )

Only certain incident angles u satisfy the waveguide boundary conditions
E(x) = 0 at x = ±Dx /2, but for these angles the simulator exactly simulates the
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Figure 6.28 (Continued.)

infinite phased array, whether on transmit or receive. For the case chosen, this
angle occurs for 2(Dx /l ) sin u = ±1, or

sin u = ±
l

2Dx
= ±

l
3dx

(6.44)

since Dx = 1.5dx [Figure 6.28(b)].
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Depending on the element spacing dx /l , the angle of the main beam radiation
of the simulated infinite array can vary with frequency. A useful range is between
about u = 35° for dx = 0.575l to about 42° for half-wavelength element spacing.

For this type of simulator, the input impedance measured in the oversize feed
(simulator) waveguide is the infinite array impedance measured from the free-space
side, as seen from the angle u. The array elements are waveguides, and one is a
half-width guide, so the full waveguide element is terminated in a matched load
or the generator impedance, and the half-width waveguide is beyond cutoff, so
there is no need to terminate it if it is long enough. The simulator can also be used
for current-carrying elements (dipoles, patches, and so forth), provided proper care
is taken to include the image of the feed lines.

Operation of this most fundamental simulator gives the impedance measured
from free space. The impedance looking into the array element transmission lines
has the same reflection coefficient magnitude, but not necessarily the same phase.
For the present case, since there is only one full element in the simulator, one can
excite the array element directly and measure its input impedance. In the other
simulators discussed in the following paragraphs, which have several complete
array elements, one needs to excite all elements with the proper phase relationship
in order to measure the array impedance from the transmitter side. In all cases,
however, one can excite the simulator from the free-space side using only a single
incident mode (two waves) per polarization. Hannon and Balfour [100] give a
detailed description of how this impedance ‘‘looking in’’ to the array from free
space is then used to obtain the impedance ‘‘looking out’’ from an equivalent circuit
and measurements ‘‘looking in’’ with elements terminated in two impedance states:
a matched load and a short circuit. These two measurements allow the full determi-
nation of the array equivalent circuit.

The above is the widest angle single-mode simulator one can devise. Other
simulators can give results nearer broadside, but the broadside angle itself is
excluded, since it would require an infinite number of elements. In practice, one
must limit the simulator width in order to avoid generating higher order modes in
the feed guide.

The simulator of Figure 6.28(c) also uses TE10 excitation and again has one-
half period (Dx ) for the incident two-wave combination. In this case, 2Dx = 8dx ,
and so the associated angle u is given by

sin u =
l

2Dx
=

l
8dx

(6.45)

and is about 12.5° for dx = 0.575l or about 14.5° for dx = l /2. This angle is very
close to broadside, and since one cannot devise a simulator for broadside incidence,
this is normally considered adequate for predicting broadside behavior.

E-plane scanning simulators have been built, and again the work of Hannon
and Balfour [100] is cited. In order to simulate E-plane scanning, it is required
that the higher order TM11 mode be used. This mode again can be represented by
two plane waves, but in this case the waves are tilted with respect to the waveguide
walls.
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6.8.1 Several Useful Simulators

This section lists several other simulators, but many more are possible and some
are listed in the literature. The following definitions are given relative to Figure
6.29. Cardinal (solid) and intercardinal (dashed) planes of scan are shown on the
figure, which is given as a square grid. The planes shown are planes of symmetry
for the grid and do not refer to the array polarization.

Figure 6.29 Simulator geometries and scan plane definitions: (a) cardinal and intercardinal planes;
and (b) a collection of five simulators for arrays of circular waveguides. (From: [100].
 1965 IEEE. Reprinted with permission.)
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H-polarization and E-polarization refer here to the polarization in the plane
of scan, irrespective of the array symmetries. E-polarization is when the electric
field is parallel to the scan plane, and H-polarization is when the magnetic field
is parallel to the plane of scan. Here, ‘‘H-polarization and an intercardinal scan
plane’’ means that the array scans in an intercardinal plane relative to its square
grid, with the electric field normal to the scan plane and the magnetic field in the
scan plane.

Figure 6.29(b) shows five simulators designed for circular waveguide arrays.
The notation C and IC at the top of the figure indicate cardinal and intercardinal
planes of the scan simulated, while the notations H and E refer to the scan plane
as indicated above. Although these simulators operate over a range of angles, the
angles noted represent typical operating angles. The upper simulator simulates near
broadside scan angle for H-polarization and cardinal scan plane. This configura-
tion, like the two discussed earlier, is simulated by the simple TE10 mode in the
rectangular simulator waveguide.

The remaining four simulators represent relatively wide scan angles. The two
shown in the central row are the H-polarization, and are excited by the TE10 mode.
The one at the left was discussed earlier, while the one at the right represents a
scan in an intercardinal plane, with the electric field vertical (because the scan
plane is horizontal in the sketch). The E-polarization cases in the bottom row
require the TM11 mode incident in a square, oversize waveguide. The simulator
at the left of the bottom row simulates E-plane polarization for scanning in a
cardinal plane. The array sample is rotated 45° relative to the TE10 case, because
the incident TM wave is composed of two plane waves with their plane of propaga-
tion in the square waveguide at 45° to the walls of the waveguide. The simulator
at the right, bottom row simulates intercardinal plane scan for E-polarization, and
again the array sample is rotated 45° relative to the TE10-fed waveguide above.

A number of other authors have listed useful simulators. Balfour [101] presents
a list of one-port simulators for rectangular and triangular grid arrays, and Wheeler
[102] surveys a wide variety of simulators and their use in array element design.
Gustinsic [103] presented a fundamentally new simulator concept, called a multi-
element waveguide simulator, and showed that a single simulator containing
N × M elements can be used to measure the reflection coefficient for an infinite
array at N × M scan angles. The measurement involves the determination of the
N × M transmit coefficients between one element and each of the other elements
of the simulator, with the simulator waveguide itself terminated in a matched load.
The simulator procedure is too detailed to describe here, but relies on the fact that
any mode of the rectangular waveguide simulator can be considered to be composed
of four plane waves within the simulator. Like more traditional simulators, which
represent scan in only one plane, there is a single angle (u, F) in space that fully
describes the direction of the incident plane wave. In the simulators that only
represent one plane of scan, the two plane waves emanate from angles (u, F) and
(u, F + p ). In the present case for a two-dimensional array, there are planes of
symmetry that represent waves from (u, F) and three other directions: (u, F + p ),
(u, −f ), and (u, p − f ).

Not all u, f incident angles can be simulated. Gustinsic’s technique uses the
fact that in the simulator waveguide, only N × M modes can propagate for simulator
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size Ndx × Mdy , with dx and dy both equal to l /2. If the dimensions were larger,
there would be at least one angle at which an extra mode could form the given
mode excitation, and this would correspond to a grating one, which would then
satisfy the simulator conditions, as it does in space.

Assuming there are no grating lobes, one could then excite a given simulator
normal mode (m, n) by applying signals at the array ports that had the symmetry
of the (m, n) mode. In each case, a direct measurement of the input impedance
gives the infinite-array input impedance at that angle. Since this requires a very
complex array element, however, Gustinsic applies signals consecutively to each
input port while measuring the signals from all other ports. Superposition of the
data exactly simulates the array results at all N × M angles. Derneryd and Gustinsic
[104] further refined the procedure by developing an interpolation scheme to allow
computation of active array impedance from multielement simulators.
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C H A P T E R 7

Array Error Effects

7.1 Introduction

A variety of errors, both random and spatially correlated, are introduced across
the array of imperfect components and signal distribution networks, and these
reduce the precision of the array excitation. An array illumination, designed to
produce very low sidelobes without errors, may result in only modest sidelobes in
the presence of phase and amplitude errors. If the errors are due to tolerance limits
on the individual devices, it is usually possible to ensure that the errors have zero
mean, at least at the array center frequency of operation. For example, an error
in the power divider network that results in a progressively increasing phase error
across the array can often be compensated for by measuring the error and resetting
the phase shifters to correct for the power divider error. If, however, the power
divider error is due to transmission line length errors, then the phase shifter correc-
tion will only compensate at center frequency. More serious yet, if errors are
correlated from element to element or across large sections of the array, then the
resulting radiation pattern can have large, distinct sidelobes.

Usually, it is the intent of the designer to ensure that all correlated errors are
removed, so that all that remains are the residual, uncorrelated phase and amplitude
errors limited by the ultimate precision of the components. The remaining errors
are treated as random, and the residual (average) sidelobe errors, peak sidelobe
expectation, gain degradation, and beam pointing error are estimated by statistical
procedures. Results of this type are summarized in the next section.

In addition to random phase and amplitude errors, there are several types of
highly correlated errors that are vitally important in array design because they
result in high peak sidelobes. Examples treated here include the periodic phase or
amplitude errors caused by discrete phase shifters, quantized amplitude tapers
across the array, and the frequency-dependent phase errors due to contiguous
wideband subarrays with time delay at the subarray level.

7.2 Effects of Random Amplitude and Phase Errors in Periodic Arrays

The increased sidelobe level, pointing error, and directivity decrease due to random
array errors has been extensively documented in the literature. Early studies of
Ruze [1, 2], Elliott [3], Allen [4], and others [5, 6] obtained average values of these
parameters and statistical estimates of the peak sidelobe level at points within the
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pattern. In addition, work by Hsiao [7, 8] and Kaplan [9] have given convenient
curves of peak sidelobe probability as a function of array parameters.

In the results to follow, the array is assumed to have an amplitude error dn
and phase error Fn at the n th element. The meaning of the amplitude error dn is
that the signal at the n th element has amplitude (1 + dn )An , where An is the correct
amplitude. The meaning of the phase error Fn is that the correct phase to steer a
beam to the chosen angle is not the correct excitation, but exp( jFn ) times the
correct excitation. In addition, the array has a number of totally failed (zero
amplitude signal) elements randomly located throughout the array. The failed
elements are modeled by assuming a fixed probability P that any n th element is
operating properly except for amplitude and phase errors, so that the probability
of that element being completely failed (having zero amplitude) is (1 − P).

The occurrence of ‘‘failed’’ elements of the type included here is primarily
limited to active arrays, where a failed amplifier may have zero output, or to
thinned arrays where elements are removed from randomly chosen locations.
Thinned arrays are discussed in Chapter 3. The most common kind of discrete
failure for passive arrays is for a phase shifter to have a failed bit. This and
other kinds of discrete failure are not specifically modeled here, but if these occur
randomly they are included in the phase error variance.

The following treatment includes only the most common types of errors. Other
errors, such as element position errors and polarization errors, have been treated
in the literature [10, 11].

Including phase and amplitude errors as indicated above, the far-field array
factor is given by

F(u, f ) = ∑ p(n)An (1 + dn ) exp[ jk(r̂ ? r − r̂0 ? rn′ )] exp( jFn ) (7.1)

where

r̂ = x̂u + ŷv + ẑ cos u r̂0 = x̂u0 + ŷv0 + ẑ cos u0

and

r = x̂x + ŷy + ẑz rn′ = x̂xn + ŷyn

In this representation, the factor p(n) accounts for the failed elements by
randomly setting p(n) = 1 with probability P, and zero with probability (1 − P).
The summation S is written as one-dimensional for convenience. It can be taken
as two-dimensional with no change to the analysis or results, because all of the
averages taken are ensemble averages over a number of statistically equal arrays,
not spatial averages. The element pattern is removed from the above, since it is
assumed to be the same for all elements and plays no part in the statistical process.
It can be included to modify the results at a later stage if desired.

7.2.1 Average Pattern Characteristics

The following development is an outline only because the details are included in
the chapter by Skolnik of the book edited by Collin and Zucker [5] and elsewhere
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[6–8]. In all cases, it is assumed that all correlated errors have been removed and
only random errors remain. The average pattern characteristics that are the results
of the analysis do not pertain to any one antenna, but describe the observed results
averaged over a large number of arrays that have the same statistical phase and
amplitude errors.

In the treatment by Skolnik, it is assumed that the phase error Fn is described
by a Gaussian probability density function with zero mean and variance F2. The
amplitude errors dn have variance d2 and zero mean, and the failed elements are
randomly distributed as noted earlier. Under these conditions, Skolnik [5] shows
the average power pattern to be

|F(u, f ) |2 = P2 exp X−F2 C |F0(u, f ) |2 + FX1 + d2 CP − P2 exp X−F2 CG ∑A2
n
(7.2)

This expression shows that the effect of random errors produces a radiation pattern
consisting of the ideal pattern |F0(u, f ) |2 reduced by factors that account for failed
elements and phase error, plus another term that is a constant with no angular
dependence.

It is convenient to normalize the above to the peak of the resulting pattern,
which is P2 exp X−F2 C |F0(u, f ) |max. The result is

|FN (u, f ) |2 = |Fon(u, f ) |2 + F(1 − P ) + F2 + d2G 1
PgA

where

gA =
S∑AnD2
∑A2

n
= NeT (7.3)

is the directivity of the ideal pattern with isotropic element patterns, or N times
the array taper efficiency eT (defined in Chapter 2), and Fon is the F0 normalized
as noted above.

In this form, the normalized sidelobe level s2 is given by

s2 =
e2

PgA
(7.4)

with e2 the error variance given by

e2 = F(1 − P ) + F2 + d2G (7.5)

The average sidelobe level s2 is sometimes called the residual sidelobe level.
It is here normalized to the beam peak, but can be normalized to the isotropic
level by recognizing that the ideal or design array directivity is gA multiplied by
the element pattern directivity (see Chapter 2).
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DA = gegA (7.6)

Recall that for a two-dimensional array of l /2-spaced elements, the element
gain (directivity) is

ge = p (7.7)

Multiplying the residual sidelobe level by DA normalizes that level to the
isotropic radiation level. Figure 7.1 [11] shows this residual sidelobe level for an
array with no failed elements (P = 1). In that case, the sidelobe level relative to
the isotropic level is

s2
I = s2DA = gee 2 = ge XF2 + d2 C (7.8)

which is a circle. This result pertains to a one-dimensional array, where it describes
average sidelobes in the plane including the array axis, and to a two-dimensional
array, where it describes radiation in all space (and here ge = p for l /2 spacing).
It is often convenient to evaluate the total error variance and then apportion the
relative phase and amplitude error variances according to which is easier to control
in the design.

The symmetrical form in which errors enter the above equation suggests the
convenience of converting the amplitude error (expressed as a ratio) to an equivalent
phase error (in radians or degrees). This aid to perspective helps in the tradeoff
between amplitude and phase error to determine how much of the error variance

Figure 7.1 Array average (residual) sidelobes (relative to isotropic radiation) due to phase and
amplitude error. Element gain p assumed. (After: [11].)
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to allot between the two. Using an expansion of the logarithm valid for small d ,
the amplitude error (in decibels) is

ddB = 20 log10(1 + d ) ∼ 8.68d (7.9)

and the equivalent phase error (degrees) is

Fd (deg) = 6.6ddB (7.10)

As an example, a 0.5-dB average (or rms) error is thus roughly equivalent to a
3.3° rms phase error.

Since the residual sidelobe level, when normalized to the array factor gain, is
independent of array size, the foregoing equations point out that for any given
array variance, increasing the size lowers the actual value s2 of the residual
sidelobes.

Figure 7.2 shows the residual sidelobe level as a function of array directivity
normalized to the beam peak for arrays with phase error only. The solid lines
pertain to the residual sidelobes of a two-dimensional array of l /2-spaced elements.
For comparison, the dashed lines of Figure 7.2 are the residual sidelobes in the
principal plane of a linear array of columns, having the same square aperture as
the array represented by the solid lines. In the column array, it is assumed that
each column subarray has no phase error, but the lines and phase shifters behind
each column have randomly distributed errors. This arrangement reduces the num-
ber of degrees of freedom and makes the phase tolerance far more critical. For the
array of columns, the sidelobe level of the arrayed phase errors is that of a one-
dimensional array and given by (7.6) with ge the column directivity gc . If the array
is square and the spacing l /2 in each plane, the column array factor directivity is
given approximately below.

Figure 7.2 Average sidelobes due to phase error (relative to beam peak) for a square array. Element
gain p assumed. Solid line for two-dimensional array of independent phase shifters,
dashed line for array of columns. (After: [12].)
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gc = (DA /p )1/2 (7.11)

Relative to the beam peak, the average sidelobe level is

s2 =
(p )1/2e2

D1/2
A P

(7.12)

Figure 7.2 demonstrates the requirement for increased precision in the column
array case because of the loss of degrees of freedom. The figure also emphasizes
the tradeoff between array size and required tolerance in order to meet the desired
residual error. For example, residual errors of −50 dB are achievable with an array
of 30-dB directivity with about 0.7° rms phase errors for a column array, but for
a planar array the errors can be 3.5°. If the gain were 40 dB, these conditions can
be met with about 1.5° and 10° for the column and planar arrays.

7.2.2 Directivity

The reduction in directivity due to these residual errors is given by Skolnik [5] for
an array of omnidirectional elements as approximately

D
D0

=
P

1 + d2 + F2
(7.13)

where D is the directivity of the array with errors and D0 is the directivity of the
error-free array. The reduction in directivity is not a function of array size, only
of error variance.

Reduced directivity due to excitation errors is not often the driving concern
for most array systems because unless the array is quite large, sidelobe distortion
becomes severe before there is any major directivity reduction. For example, an
rms phase error of 15° leads to only a 0.3-dB loss in directivity, while (7.4) shows
that this results in an rms sidelobe level of only 11.6 dB below the array factor
isotropic level; that is, −31.6 dB below the beam peak for an array factor directivity
gA of 100 (20 dB), or −41.6 dB below beam peak for gA of 1,000 (30 dB).

7.2.3 Beam Pointing Error

Several authors [13, 14] have looked at the issue of beam pointing error due to
array phase and amplitude error. Steinberg [14] shows that for a symmetrical array
excitation, the variance of beam pointing deviation is given by

D2 = F2
∑I 2

i x 2
i

S∑Iix
2
i D2

(7.14)

where Ii is the amplitude of i th element excitation; xi is the element position divided
by interelement spacing d; and F2 is the phase error variance. For an array of N
elements with uniform amplitude (Ii = 1),



7.2 Effects of Random Amplitude and Phase Errors in Periodic Arrays 359

D2 =
12

N3 F2 (7.15)

7.2.4 Peak Sidelobes

It is often important to know the peak sidelobes associated with errored phase and
amplitude. Detailed considerations of the peak sidelobe behavior are based on the
statistics of the error sidelobes. It can be shown [1, 2, 4, 7, 8] that at any angle
the amplitude F(u, f ) of the far-field pattern of an ensemble of arrays with the
same statistics is given according to:

p(F ) = X2F /s2 CI0 X2FF0 /s2C expF−XF2 + F 2
0 C /s2G (7.16)

where

s2 = the variance of an ensemble of array sidelobes (sometimes called the residual
or average sidelobe level );

F = the value of the ensemble pattern, including the design (ideal) pattern and
the average or residual pattern;

F0 = the design (ideal) pattern level at some given angle;
I0 = the modified Bessel function.

In this expression, p(F ) is the probability that at any angle the field intensity will
be between F and F + dF. The pattern value F is composed of an ideal pattern
(design pattern) with value F0 (at that point in space) and an average or residual
pattern of rms value s . This type of distribution is often called a Ricean distribution
[15].

For small errors, or where the design pattern level is relatively large compared
to the statistical error pattern, as in the main beam or first sidelobe region of some
patterns, F 2

0 >> s2 and the distribution becomes the Gaussian probability function.
However, when the errors are large compared to the errorless pattern, as in a low-
sidelobe or nulled region, the design pattern contribution is neglected, and the
above becomes the Rayleigh density function.

p(F ) =
2F

s2
exp X−F2 /s2 C (7.17)

An important statistical parameter relating to peak sidelobes is the cumulative
probability, which expresses the likelihood that the field intensity F at any point
will be less than any given value S, or that the field intensity F will exceed the
value S. These parameters are

prob(F ≤ S ) = E
S

F =0

p(F /s ) dF prob(F ≥ S ) = E
∞

S

p(F /s ) dF (7.18)
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In the region of the pattern where the statistical contribution dominates, as in the
nulled areas described above, (7.17) can be used to readily compute the cumulative
probability that the field intensity exceeds the value S. This gives

p = prob(F ≥ S ) E
∞

S

p(F ) dF = exp X−S2 /s2 C (7.19)

which says, for example, that there is a 1% probability that the residual sidelobe
level will be exceeded by more than a factor of 4.6, or 0.01% that it will be
exceeded by more than the factor 9.2.

Rewriting (7.19) to solve for the error yields

e2 = −S2gA /ln(p) (7.20)

which is a convenient form because it again emphasizes the relationship between
the residual sidelobe level and the array factor isotropic directivity level 1/gA below
beam peak. If the array has phase error only, then to hold all sidelobes a factor
of 100 (20 dB) below the array factor isotropic level with probability 0.01 requires
an rms phase error of about 2.6°. Holding that sidelobe level to a probability of
0.0001 requires phase error of only 1.9°.

These numbers are optimistic. They give the probability of exceeding (or not
exceeding) a given sidelobe level at a particular point where the deterministic part
of the pattern (the design or ideal pattern) is very small or null. A more realistic
assessment of the likelihood of having a large sidelobe is obtained from the cumula-
tive probability of (7.16), which accounts for higher sidelobe areas of the determinis-
tic pattern.

Several papers [7–9] give peak sidelobe probability curves. Since we will use
Hsiao’s results, we introduce his terminology (although with a change of notation).
The designed sidelobe level is the term used previously, and is written F0 . The
desired sidelobe level Sd is that value not to be exceeded within a certain probability
(the S of the previous section). Hsiao’s results, shown in Figure 7.3, relate the value
of a parameter

Xd2 + F2 C/E (7.21)

where

E =
2SdS∑AmnD2

∑A2
mn

Hsiao shows that the parameter E can be written in terms of the array factor
gain as

E = 2SdgA (7.22)
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Figure 7.3 Normalized array error, or normalized residual sidelobe level, versus designed to desired
sidelobe level ratio. (After: [7, 8].)

Using (7.4), the ordinate of Figure 7.3 can therefore be written in a form that
explicitly includes the residual sidelobe level as (for p = 1)

Xd2 + F2 C/E =
1
2

s2

Sd
(7.23)

Figure 7.3 [8] gives the required average (residual) sidelobe level as a function
of the designed sidelobe level, with both values normalized to the desired (peak)
sidelobe level. The figure shows that at any point in space, by increasing the ratio
of desired sidelobe to designed sidelobe (moving to the right in the figure), one
can increase the ratio of allowed average sidelobes to desired sidelobe level. Thus,
for a given desired sidelobe level at one point in space and for some given probability
line, one can relax tolerance (and thus allow residual sidelobes to rise) by requiring
a larger ratio of desired-to-designed sidelobes. If an array were designed with
sidelobes within a decibel or so of the required level, the necessary residual level
and mean square error would need to be extremely small. However, by designing
the array for sidelobe levels 5 to 10 dB below the required levels, one can signifi-
cantly relax the required tolerance, while allowing the average (residual) sidelobes
to rise. This process of over-designing the array to relax tolerance is a well-known
procedure, and the figure gives the required data to facilitate this tradeoff.

The results cited above pertain to the probable peak sidelobe level at any point
in pattern space. Several authors have gone beyond this to estimate the number of
probable times the specification level is exceeded in all of the pattern space. Allen
[4] related this likelihood to the number N of pattern beamwidths within the region.
He argued that if the pattern had N sidelobes, then the likelihood of one exceeding
the threshold is N times that for a single point, so a 100-element array with 100
sidelobes would need 100 times lower probability p of exceeding the threshold
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(1 − p) at a particular point. Thus, for a 100-element array to have a 99% probability
of not exceeding the given threshold anywhere in the pattern, the probability p of
exceeding the threshold at a single point needs to be (1 − 0.99)/100 or 0.0001.
Using this number in (7.20) for the case of holding all pattern sidelobes −20 dB
below the isotropic array gain factor with probability 0.99 leads to the required
phase error edeg = 1.88°.

Kaplan [9] also estimated the likelihood of exceeding the threshold by estimat-
ing the number of likely ‘‘pop-ups’’ or points in pattern space where the threshold
(in this case, the specified-to-residual ratio) is exceeded. Again using the number
N as the number of beamwidths in some particular region of pattern space, and
under the assumption of some ideal pattern with nearly equal sidelobe levels within
the chosen region, Kaplan uses the following binomial expression for the probability
of exceeding the threshold a given number of times (k):

prob(lobes exceeding threshold ≤ k) = ∑
k

n =0
C N

n PN −n
0 (1 − P0)n (7.24)

where C N
n = N! /n!(N − n)!

For example, if the number of sidelobes (N) in some given region is 10, and
the probability P0 of exceeding the threshold at any point is 0.9, then the probability
of exceeding the threshold k times within the region is given from the above (see
Table 7.1).

7.3 Sidelobe Levels Due to Periodic Phase, Amplitude, and Time-
Delay Quantization

The practical issues of cost, volume, and manufacturability of array antennas lead
to choices that directly influence the array characteristics. These considerations
result in the production of phase shifters with three or four (or sometimes more)
discrete bits, instead of a continuum of available phase, in the construction of
power distribution networks that have fixed, quantized levels, and in the use of
time-delay units to feed wideband phase steered subarrays instead of using one
time-delay unit per element. Each of these choices results in periodic phase or
amplitude errors across the array as if the array were constructed of subarrays
with the quantized state defined for each subarray. Since the errors are highly
correlated, they result in large, well-defined sidelobe or grating-lobe-type pattern
errors. These peaks are called quantization lobes.

Table 7.1 Number and Probability of Peak Sidelobes
Exceeding Threshold k

Number of Lobes Probability of Having ≤ k
Exceeding Threshold k Lobes Exceeding Threshold

0 0.349
1 0.736
2 0.93
3 0.987



7.3 Sidelobe Levels Due to Periodic Phase, Amplitude, and Time-Delay Quantization 363

Figure 7.4(a–c) shows three types of subarrays representing the contiguous
levels. Figure 7.4(a) shows several patterns and the phase of an array with phase
shifters having discretely quantized phase shifter states. The array taper amplitude
is constant. The figure shows the array pattern as constrained by the (dashed)

Figure 7.4 Three types of contiguous subarrays and their radiation patterns. All data for 64-element
arrays with l/2 spacing between elements and 8 elements per subarray: (a) case 1:
discrete phase shifter states (equal amplitude weights); (b) case 2: taper at subarray
input ports (ideal phase progression); (c) case 3: time delay at subarray ports (equal
amplitude weights); and (d) array of contiguous subarrays. (From: [16].  1984 IEEE.
Reprinted with permission.)
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subarray pattern, which is fixed in space, and is the pattern of a uniformly illumi-
nated, constant phase aperture of length equal to the distance between adjacent
phase states. Figure 7.4(b) shows the very different characteristics of the pattern
due to an array that has a quantized amplitude taper. Figure 7.4(c) shows the
characteristic grating lobe structure of an array with time delay at the subarray
level, when the array is operated at a frequency away from the design center
frequency. The common features of each of these quantized illuminations allow
them to be analyzed by the same method, and this procedure [16] for obtaining
estimates of all resulting quantization lobe peaks will be outlined in the following
sections.

The peak sidelobe or grating lobe characteristics can often be reduced by
disrupting the total periodicity that leads to the large grating lobes. Thus, it is
common engineering practice to randomize the phase taper error in an array
steered by discrete bit phase shifters. This practice does not reduce the average
characteristics of the errored distribution, however, so the average sidelobe level
becomes the ultimate pattern limitation. Approximations of the average sidelobe
levels of arrays with discrete phase shifter states are also given in the following
section.

7.3.1 Characteristics of an Array of Uniformly Illuminated Contiguous
Subarrays

The common feature of each of the periodic quantization errors discussed above
is that, because of the quantization, the array can be considered as divided into
subarrays with one quantized state throughout each subarray. Figure 7.4(d) shows
this configuration and indicates that each of the quantized illuminations shown at
left of Figure 7.4(a–c) can be modeled by appropriately quantized phase, amplitude,
or time-delay weights applied to this array of contiguous subarrays.

For each of the configurations shown, the array pattern is written as the product
of an array factor and a subarray pattern. In the most general case treated here,
the pattern of an array of m subarrays of M elements, each is given below for an
array with subarrays steered to us by phase shifters, and with time delay between
the subarray ports to steer the beam to the desired scan angle u0 .

F(u) = A(Z) f (z) (7.25)

where

A(Z) =
1
m ∑

(m −1)/2

q =−(m −1)/2
wq exp[ jqMZ] f (z) = 3 1

M ∑
(M −1)/2

i =−(M −1)/2
exp( jiz)4

and where S |wq | = m (to normalize pattern) and z = (2pud )/l − DfS = 2pd(u /l
− uS /l0) and

Z =
2pd

l
(u − u0)
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At center frequency and when there is no phase quantization error, uS = u0 .
The indicated sums over i and q are over integers for M or m odd, and half integers
for M or m even.

Since all subarray ports are the same size, with constant illumination, the
subarray pattern f (z) is given as

f (z) =
sin(Mz /2)
M sin(z /2)

(7.26)

Since these subarrays are generally several wavelengths across, there will occur
grating lobes of the array factor A(Z) at the direction cosines

up = u0 +
pl
Md

p = (±1, ±2, . . . ) (7.27)

for all up in real space.
The value of the array pattern at or near each of these lobe peaks is just the

value of the subarray pattern, so it is convenient to define a local coordinate du
centered at the center of any p th quantization lobe at wavelength l .

u = u0 +
pl
Md

+ du (7.28)

The subarray pattern for this generalized case is given in terms of the localized
coordinate du, with D f = f − f0

fp (z) = (−1)p
sinFpMd

u0
l0

D f
f0

+
pd
l

Mdu +
pMd

l0
(u0 − uS )G

M sinFpu0d
l0

D f
f0

+
pp
M

+
pd
l

du +
pd
l0

(u0 − uS )G
(7.29)

This expression will be used to evaluate the quantization lobe power for arrays
with quantized distributions. It should be noted, however, that isotropic element
patterns have been assumed and that restriction can be removed by reducing all
sidelobes by the element power pattern.

7.3.2 Phase Quantization in a Uniformly Illuminated Array

Miller [17] published the first detailed analysis of the adverse effects of using phase
shifters with discrete phase states. Although the array is required to produce a
smooth phase taper, an N-bit phase shifter has phase states separated by the least
significant bit:

f0 =
2p

2N (7.30)
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Figure 7.5 shows that this discretization allows only a staircase approximation
of the continuous progressive shift required for the array. The staircase phase front
results in a periodic triangular phase error that produces the pattern with grating-
lobe-like sidelobes, shown in Figure 7.4(a). Miller evaluated the peak first grating
lobe level for this phase distribution by assuming that the array current distribution
was a continuous function (not a discrete set of elements). With this approximation,
the first quantization lobe level is given as

PQL =
1

22N (7.31a)

or

PQL (dB) = −6N (7.31b)

This result is shown in Figure 7.6.

Figure 7.5 Phase error due to phase quantization. (After: [17].)
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Figure 7.6 Peak sidelobes (decibels) due to N bits of quantization. (After: [17].)

Miller also evaluated the average sidelobe level due to this triangular phase
error. The mean square error F2 is obtained:

F2 =
1
3

p2

22N (7.32)

and the average sidelobe level due to quantization error alone is given as

s2 =
1

3gA

p2

22N (7.33)

Figure 7.7 shows this average sidelobe level due to phase quantization and its
dependence on the number of array elements. In deriving these results, Miller used
an expression equivalent to (7.33), with gA = N for uniform illumination, but
reduced the array factor directivity by 2 dB to account for scan and taper losses.
Figure 7.7 therefore shows Miller’s data with sidelobes approximately 2 dB higher
than those given by (7.33).

Miller also gives an expression for the beam deviation (pointing error) due to
periodic phase shifter quantization. For a uniformly illuminated array, the pointing
error normalized to the array beamwidth is
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Figure 7.7 RMS sidelobes due to phase quantization. (After: [17].)

D =
p
4

1

2N beamwidths (7.34)

This result does not follow from (7.15) because the phase errors here are periodic,
not random, and were obtained by evaluating the pattern slope of a uniformly
illuminated continuous aperture with periodic phase steps.

Miller’s approximation (7.31) underestimates the actual peak quantization lobe
level. This was first pointed out by Cheston and Frank [18] and is due to Miller’s
continuous array approximation. In fact, one can show that the error in Miller’s
estimate is small when the spatial period of the error is large (large M in our
subarray model) and can be quite large when the error period is short. This is as
expected because the continuous array approximation is primarily valid for large
subarrays.

More accurate descriptions of grating lobe levels due to phase quantization
are given by Hansen [19], Mailloux [16], and others. The presentation that follows
is from [16]. If the array is to form a beam at u0 , the phase difference between
elements should be (at l = l0)

Df0 =
2pd
l0

u0 (7.35)

Since the least significant phase bit is f0 , the phase across the array is necessarily
in error at many points. The resulting pattern error is most serious if the error is
entirely periodic. In Figure 7.5, Miller shows the phase as constant across some
section of the array between points where least significant phase bits are added.
In the more general but still periodic case, the required interelement phase shift
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Df0 usually exceeds the least significant bit and may exceed or be less than the
value of any other us by a value that is the smallest bit size divided by any integer
M. In such cases, some phase progression Df s corresponding to the direction cosine
us is created using the available phase shifter bits. The remaining error incremental
phase shift is (2pd /l0)(u0 − us ), and again the array is composed of subarrays,
each with its maximum pointing at us . In this case, the distance between subarrays
is equal to the phase of the least significant bit, or M |Df0 − Df s |. This leads to
an expression for (u0 − us ) as:

u0 − us = ±
1

2NM Sl
dD (7.36)

This expression gives the difference (in sine space) between the desired direction
cosine u0 and some other angle us at which the progressive phase leads or lags the
required number by some fraction of a bit, so that after M elements the phase is
again correct. In this case, the array will be composed of M-element subarrays
with the incorrect phase tilt. The size M of these unwanted subarrays can vary
from two to some relatively large number, but in practice random errors will limit
the length of these periodic errors.

Using these relationships in (7.29), one can solve for the peak value of the
array grating lobes as the subarray pattern amplitude. The normalized power of
these grating lobes is written approximately as

PQL = | f |2 =
sin(p /2N )2

[M sin(p′p /M)]2 (7.37)

where p′ = p + (1/2N ).
The factor [M sin(p′p /M)]−2 is the envelope of the subarray pattern peak

power sampled at the p′ th quantization lobe point. This factor also occurs in a
later expression and is therefore plotted in Figure 7.8 for the near quantization
lobes. The general expression for power at the peak of the pth quantization lobe
is written in terms of this envelope function as:

QLdB = 10 log PQL = envelope(dB) + 20 log(p /22N )

or for N ≥ 3 (7.38)

QLdB ≈ envelope(dB) + 9.94 − 6.02N

where envelope(dB) = 10 log{[M sin(p′p /M)]−2}.
Only data for integer values of p′ are shown in Figure 7.8, but p′ is not generally

an integer. For a 3-bit phase shifter, the relevant values of p′ are all at p + 0.125
for p = ±1, ±2, . . . , and for larger numbers of bits they come closer to the grating
lobe index values (p).

Figure 7.8 is used in the following way, taking the example of a 3-bit phase
shifter in a 64-element array with half-wave spacings and corresponding to the
pattern of Figure 7.4(a). The 3-bit phase shifter has least bit 45°; thus, there are
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Figure 7.8 Envelope function (decibels) versus number of elements M in subarray with p′ as
parameter. (From: [16].  1984 IEEE. Reprinted with permission.)

several angles at which the exact progression can be perfectly met with the available
bits. These progressions are u0 = ±0.25, ±0.5, and ±0.75. Equation (7.36) indicates
that at other nearby angles, there can be various size subarrays of length M = 2,
3, 4, and so on. For example, the array forms a perfectly collimated at us = u0 =
0.5 (u0 = 30°), using 90° phase shift between elements, but at 32.1° (u0 = 0.53125),
with phase shifters set to the least significant bit phase gradient, there is an excess
phase shift of 45° across each set of 8 elements. The pattern shows that grating
lobes at various levels between −16 and −23 dB result from this periodic phase
error. The figure also shows the subarray pattern of the 8-element subarray scanned
to us = 0.5, and indicates how the product of subarray and array factor limits the
grating lobe heights. The solid horizontal lines are the estimates of quantization
lobe height as evaluated from (7.37) or (7.38).

Depending on which scan angles are required, other size subarrays are formed
at different scan angles. For example, at u0 = 0.5156, u0 = 31.04, and the excess
of 45° phase shift spans 16-element subarrays. In each case, (7.36) is used to
evaluate the subarray size Md.

In the limiting case of M large (e.g., the 16-element subarray noted above), the
envelope curves tend to an asymptote and the quantization lobe power is

PQL ∼ [1/(p′2N )]2 (7.39)

of which a special case for p = 1 (the largest lobe). Here the envelope factor is
(1/p )2 or −9.94 dB, and (7.38) reduces to (7.31), which was obtained by Miller
using the continuous triangular error approximation.

It is significant to note, however, that Miller’s result underestimates the size
of this maximum quantization lobe for smaller values of M. In fact, one can obtain
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a bound on the quantization lobe level, since the upper bound of the envelope
function is (1/M)2. Thus,

QL < −20 log M + 9.94 − 6.02N for M ≥ 2 and N ≥ 3 (7.40)

For M = 2, and using a 3-bit phase shifter, one can show that the level is nearly
approached and exceeds Miller’s (−6.02N) number by about 4 dB.

7.3.3 Reduction of Sidelobes Due to Phase Quantization

As indicated in the previous section, phase quantization leads to unacceptable
sidelobe levels because it introduces a large periodic phase error. Although the
average error cannot be reduced, it is possible to break up the periodicity of the
quantization error and hence reduce the peak sidelobes.

Miller [17] recognized this and suggested that space feeding the array from a
common feed horn adds a quadratic phase offset at each element, as indicated in
Figure 7.9. When the phase shifters are programmed to correct for the phase offset
and scan the array, the resulting error due to quantization no longer possesses the
periodic characteristic that resulted in the well-defined grating lobes, but now the
sidelobes are distributed so that peaks are reduced to levels approaching that of
arrays with random errors.

Figure 7.9 Variable input phase slope obtained with space feed. (After: [17].)
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Smith and Guo [20] presented a detailed comparison of several methods that
have been used to reduce the peak level. Using the continuous distribution approxi-
mation like that of Miller, Smith and Guo compared a number of different tech-
niques in regard to sidelobe level and beam degradation.

As a baseline, Smith and Guo used the procedure described by Miller, and
which they refer to as rounding off, because the required phase is rounded to the
nearest bit. The peak sidelobes are −6N dB, and the average phase error variance
[as given in (7.32)] is

F2 = D2
F /3 (7.41)

where DF is one half of the least bit

DF = p /2N (7.42)

The other techniques evaluated by Smith and Guo include a procedure proposed
by Aranov [21] and called mean phase error to zero, another procedure called the
phase added method, and several procedures called the two and three probable
value methods. These techniques are compared in Table 7.2.

The rounding off technique, with triangular error described earlier, is summa-
rized in the first row of the table. The second row gives particulars for the mean
phase error equal to zero method and shows far lower peak sidelobes, at −12N,
but twice the average error. This procedure is carried out by rounding off the phase
or using the next state, depending on the fraction of phase that cannot be set up
by the digital phase shifters. This procedure also has a nonzero beam pointing
error.

One of the simpler and more successful procedures is the phase added method,
which is implemented by adding a random phase offset at each element. These
offset phases are included in the calculation of final phase shifter states. This
procedure eliminates the parasitic lobes and the beam pointing error without chang-
ing the average phase error level.

The two and the three probable value methods trade off increased average
sidelobe level for reduced peak sidelobes. Instead of rounding off the phase, the
two probable value method uses a statistical algorithm to select one or the other
of the nearest phase states while maintaining the mean error equal to zero. These
procedures eliminate beam pointing error and reduce the value of the peak sidelobe
to −12N dB. The three probable value method uses the three nearest phase states,
with probabilities judiciously chosen. Smith and Guo show that this procedure
eliminates the pointing error and the peak sidelobes, but has average sidelobes
(s2) about 4.8 dB higher than the phase added method.

Another practical method of randomizing the periodic errors is called phase
dithering [22]. This technique is a radar system solution rather than an antenna
solution in that it requires averaging over a series of radar pulses. Before each
pulse is received, a phase offset is added to each phase shifter command. The phase
shifter settings are then determined according to the roundoff method, and so the
array has a different triangular error distribution for each pulse and the average
suppresses the peak sidelobes.
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Table 7.2 Comparison of Five Methods Used to Reduce Parasitic Sidelobes

Mean Maximum
Parasitic Variance of

Mean Pointing Sidelobe Level Phase Error Additional Array
Method Deviation (dB) (large N) s2 Hardware Beam Steering Unit Functions

Rounding off Not zero −6N D2
F/3 Rounding off

Mean phase error equal Not zero −12N 2D2
F/3 Random number generation, test for

to zero rounding up or down
Phase added 0 Not present D2

F/3 Random (known) Memory of start phases, rounding off
start phases at each
element

Two probable value 0 −12N 2D2
F/3 Random number generation, test for

rounding up or down
Three probable value 0 Not present D2

F Random number generation, test to
choose one of three values
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7.3.4 Subarrays with Quantized Amplitude Taper

A phase-steered array, organized into equally spaced, uniformly illuminated subar-
rays with different amplitude weights at each subarray, has its grating lobes located
at the null points of the subarray pattern. If the whole array is uniformly excited,
its beamwidth is narrow and the subarray nulls completely remove the grating
lobes. When the excitation amplitude at the subarray input ports is weighted for
array factor sidelobe reduction, the beamwidth broadens, and at the grating lobe
angles, there occur split (monopulse-like) beams as shown in Figure 7.4(b). The
beams are split because of the subarray pattern null.

The height of these split beams is clearly only related to the width (and local
shape) of the array factor pattern. As the array factor sidelobes are lowered, the
beamwidth broadens and the subarray pattern nulls do not completely remove the
unwanted lobes.

To evaluate the power level of these split quantization lobes, it is convenient
to use a general expression for the array factor A(Z) in (7.25) in the vicinity of
each pth grating lobe. At center frequency, and with each subarray scanned to u0
(so that uS = u0), the array factor quantization lobe is centered on the subarray
pattern null. In the localized region from the beam peak to somewhat beyond the
−3-dB point, the shape of the pth quantization lobe of the array factor is approxi-
mated by

A(Z) =
Bb sin{[Mmpd /(Bbl0)]du}

Mm(pd /l0)du
(7.43)

which represents a broadened beam with beam broadening factor Bb , defined such
that the beamwidth is given as 0.886l0Bb /Mmd, with Bb the ratio of the beamwidth
of the tapered array to the uniform array, M the number of elements in a subarray,
and m the number of subarrays. By means of this approximation, it is possible to
obtain very general and almost universal applicability without having to specify
the taper and general pattern shape.

In the vicinity of the p th quantization lobe, at center frequency the product of
the subarray pattern and the array factor is given by

A(Z) f (z) =
(−1)pBb sin{[Mmp /Bb )(d /l0)du]

Mm sin(pp /M)
(7.44)

This expression has the proper zero at du = 0 to produce the characteristic split
lobe centered on the p th quantization lobe location.

The normalized power at these quantization lobes is evaluated at the peak
value of (7.44) (with Du = 0) as

PQL =
B2

b

M2m2 sin2(pp /M)
(7.45)

The quantization lobe level can be computed directly from (7.45), or by using the
envelope factor introduced earlier, but this time for the specific value of elements
M in the chosen subarray.
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QL = 10 log PQL = envelope(dB) + 20 log Bb − 20 log m (7.46)

or bounded as before in the limit of M large as

QL < −20 log M + 20 log Bb − 20 log m (7.47)

Figure 7.4(b) shows an example of a 64-element array with l /2 spacing grouped
into 8-element subarrays and illuminated at the subarray input ports with −30-
and −40-dB Chebyshev tapers. Based on beam broadening factors of 1.29 and 1.43
for the Chebyshev patterns, evaluation of the above expression shows that the
−40-dB pattern should have about 0.9 dB higher grating lobes than the −30-dB
pattern. The horizontal lines computed from the above are again an excellent
approximation of the quantization lobe, as seen by comparison with the actual
pattern in the figure.

7.3.5 Time Delay at the Subarray Ports

In the limit of a very small frequency excursion for a large array, it may be
advantageous to use time delay at the subarray ports. This economy is not achieved
without some penalty, however, since the periodic phase error introduced can cause
significant sidelobes at frequencies away from the center frequency. In this case,
the lobe peak is not split, and the peak quantization lobe values are given directly
by the subarray pattern envelope, as in the discrete phase shifter case.

Using a small angle expansion for the numerator of (7.29), the normalized
power in the pth lobe is

PQL =
p2X2

sin2 p (X + p /M)
(7.48)

where

X =
u0d
l0

D f
f0

Note that |X | < 1/M so that the main beam does not ‘‘squint’’ out to a quantization
lobe location. This ensures that PGL never becomes singular. Note also that in this
case M is the actual number of elements in the subarray and is directly dictated
by the geometry. A plot of quantization lobe level versus the variable X is given
in Figure 7.10 for various P /M ratios. Figure 7.4(c) shows an example of a uniformly
illuminated array with time-delay steering at the subarray level. The results of
(7.48) are plotted as horizontal lines and are clearly quite accurate representations
of the computed quantization lobe levels for various f /f0 levels.

7.3.6 Discrete Phase or Time-Delayed Subarrays with Quantized Subarray
Amplitudes

Figure 7.11 shows the quantization lobe structure of a 64-element array with
−40-dB Chebyshev illumination at the input ports of 8-element subarrays. The
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Figure 7.10 Quantization lobe power for array with time delay at subarray ports. (From: [16].
 1984 IEEE. Reprinted with permission.)

Figure 7.11 Power pattern for array with time delay at subarray ports and a 40-dB Chebyshev
taper f/f0 = 1.05. (From: [16].  1984 IEEE. Reprinted with permission.)

array is scanned using time delay at the subarray input ports and phase shifters
within the subarrays. The solid horizontal lines show the lobe levels computed
using (7.48) (or Figure 7.10), with f /f0 = 1.05. The figure clearly indicates that the
results for the time-delayed subarrays can be extended to include a situation in
which there is pattern distortion due to quantized amplitude taper in addition to
time delay. The reason for this more general result is that (7.47) was derived on
the basis of the subarray pattern envelope and since the subarray pattern null does
not fall at the quantization lobe angle, the lobes are not split and the beam broaden-
ing factor argument used in the quantized amplitude case does not apply. So, if
the grating lobes that result from phase shifter quantization or time-delay quantiza-
tion are large, then the grating lobes are sampling subarray patterns far from the
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nulls, and the quantization amplitude taper has little effect on the validity of the
approximations. The analysis of phase and time-delay quantization can be applied
in many situations, even when the amplitude taper is quantized.
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C H A P T E R 8

Special Array Feeds for Limited
Field-of-View and Wideband Arrays

Most phased array antennas discussed in this text are designed for wide-angle
scanning. This chapter, however, addresses a specialized group of array systems
that take advantage of restrictions in the scan coverage in order to produce a
very-high-gain scanning system with relatively few phase controls, or that provide
wideband, wide-angle scanning performance for large apertures without an accom-
panying large number of time-delay controls. Many of these systems are based on
the multiple-beam properties of reflectors and lens systems, and so obtain their
high gain from the collimation provided by these quasioptical systems. They achieve
some restricted scan coverage by means of a complex feed. Several of the techniques,
however, are strictly array systems, where again the scan tradeoffs are used to
reduce the number of array controls.

The chapter is introduced by a section on multiple-beam systems because these
fundamental beamformers are the basis of many limited scan and wideband systems.

8.1 Multiple-Beam Systems

While phased arrays have a single output port, multiple-beam systems have a
multiplicity of output ports, each corresponding to a beam with its peak at a
different angle in space. Typical systems needing simultaneous, independent beams
include multiple-access satellite systems and a variety of ground-based height-
finding radars. Figure 8.1 shows a schematic diagram of a multiple-beam antenna
with a number of input ports and a switching network that selects a single beam
or a group of beams as required for specific applications. Figure 8.2 illustrates the
use of generic lens or reflector apertures in a multiple-beam system.

Many antenna requirements emphasize high gain with low sidelobes. In addi-
tion, it is often important that the system have a high beam crossover level so that
nearly the full system gain is available within any point in the antenna field of
view. The beam crossover level is shown in Figure 8.1 as the relative gain of either
of two adjacent beams at the point of their intersection. Typical crossover levels
can range from about 4 dB (actually 3.9) below the beam peak for the beams used
in the Woodward-Lawson [1] synthesis procedure to much higher or lower levels,
depending on the desired sidelobes and system loss. Another critically important
feature of multiple-beam forming networks is that, for many applications, they

379
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Figure 8.1 Multiple-beam antenna systems: (a) basic multiple-beam antenna and switching tree
for eight-beam system; (b) combined shaped and pencil beam system; and (c) beam
crossover.

should be lossless, or have minimal loss, in order that the reduced gain not render
the system impractical.

Other applications for multiple-beam arrays include their use in the synthesis
of shaped patterns, where the beams are the constituent beams that combine to
make up the shaped pattern, as in the Woodward-Lawson procedure. In this case,
the sidelobes are often not so important, but it is necessary that the crossover levels
be relatively high in order to have a smooth approximation of the desired pattern,
and it is also necessary that the loss is minimized. A procedure for shaped pattern
synthesis with multiple beams is given by Ricardi [2]. Other papers [3–5] discuss
the design of shaped beam patterns using minimax gain optimization, and demon-
strate the synthesis of contoured patterns and low-sidelobe patterns using orthogo-
nal constituent beams.

In still other cases, multiple-beam arrays are used as one component of scanning
systems. An example is in the use of a multiple-beam array feed for a reflector or
lens system. Such systems are a special case, and their characteristics are discussed
in Section 8.2 on limited scan (or limited field-of-view) systems. The following
sections describe some of the principal characteristics of multiple-beam systems.
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Figure 8.2 (a) Generic lens and (b) reflector multiple-beam systems.

8.1.1 Beam Crossover Loss

The Woodward-Lawson synthesis technique makes use of beams radiated by a
uniformly illuminated linear array with uniquely related phase progressions:

am = exp(−jkdxuim) (8.1)

for ui = (l /Ndx )i and i = ±(1/2, 3/2, 5/2, . . . ) for N-even and i = ±(0, 1, 2, 3,
4, . . . ) for N-odd.

The set of beams formed by this excitation has the familiar

fi (u) =
sin[Np (udx /l − i /N)]
N sin[p (udx /l − i /N)]

(8.2)

angular dependence, with a broadside beam for N odd [Figure 8.3(a)] and with
symmetrically spaced beams displaced one half of the null beamwidth from broad-
side [Figure 8.3(b)] for N even. Note that these beam peaks move with frequency
to form a contiguous set of beams that cross at the 4-dB (actually 3.92-dB) point.
With increased frequency, the beams narrow and thus each moves toward broad-
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Figure 8.3 Woodward-Lawson beams: (a) odd number of elements (shown for N = 9); (b) even
number of elements (shown for N = 8); (c) beam configuration for square grid (circles
at −3.92 dB) (aperture length Nd in both planes); and (d) beam configuration for
isosceles triangular grid (circles at −3.92 dB) (aperture length Nd in both planes).

side. The Woodward-Lawson beams are thus ideally excited by a phase-shift net-
work, not a time-delay network.

Throughout the chapter, these beams will often be referred to as the sin x /x
beams, a liberty that alludes to the form of the pattern for a continuously illuminated
uniform aperture. The near equivalence is discussed in Chapter 2. These beams
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Figure 8.3 (Continued.)

are known to have the narrowest beamwidths and highest directivity of any but
superdirective illuminations, and, furthermore, they are orthogonal in space over
the region −l /2dx ≤ u ≤ l /2dx . The adjacent beams have relatively high crossover
levels and so provide good pattern coverage for all angles. Since these beams are
orthogonal, they can be excited by lossless networks [6, 7], as will be described in
the next section.

For some applications, the 4-dB crossover points of these adjacent beams might
be considered too much loss, but it is not possible to simply crowd the patterns
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close together with any passive feed network without suffering excessive orthogo-
nality loss. This characteristic is described in the next section.

It should be noted that, in principle, one can regain 3 dB of the crossover loss
by summing two adjacent beams at the crossover point, or use a variable power
divider network to properly weight contributions from two adjacent beams at
arbitrary points between the beam centers, should this increase in complexity be
warranted [2].

For a two-dimensional grid of beams, the problem is yet more severe. Arrays
with rectangular grids, typically formed by orthogonal beam matrices as described
later in the chapter, have sin x /x beams arrayed in two dimensions. If the beams
are located in a square grid [Figure 8.3(c)] and have equal beamwidths in both
planes, adjacent beams in each principal plane can have the 4-dB crossover points
(for the orthogonal sin x /x beams), but the locations on the diagonal between
beams have quite low crossovers. The circles in Figure 8.3(c) are plotted on the
coordinates u(d /l ) and v(d /l ), where d is the interelement spacing, so the peak-
to-null distance is unity.

In this case, the beams at locations (ui , vj ) have the form shown below:

sin[Np (ud /l − i /N)]
[Np (ud /l − i /N)]

sin[Mp (vd /l − j /M)]
[Mp (vd /l − j /M)]

(8.3)

This arrangement of beams, shown in Figure 8.3(c) for M = N, has very low
crossover levels (−8.8 dB) along the diagonal plane at u = v, and the crossover can
be improved by selecting a triangular grid of beams. When this is done, the beams
are no longer orthogonal and it becomes necessary to trade crossover level for
orthogonality loss.

Triangular grids of beams offer advantages. An isosceles triangular lattice
[Figure 8.3(d)] with adjacent beams spaced one unit apart in azimuth and 0.866
in elevation has its lowest crossover, not along the diagonal lines AC or CB where
the center is at D/2 from point A, but instead at point D, which is a distance (line
CD) 0.577 from the nearest beam center. Here the crossover level is at −5.4 dB
below the beam peak.

Beam crossover loss is thus seen to be an important factor in the design of
multiple-beam systems. Ideally, one would like to produce low-sidelobe beams and
stack them close together so that the crossover levels are only a decibel or two
below the beam peaks. When implemented with a passive, lossless beamformer,
this condition leads to excessive network loss because of the nonorthogonality of
the closely packed beams. This subject is addressed in the next section.

8.1.2 Orthogonality Loss and the Stein Limit

The sin x /x type beams unfortunately have high sidelobes (−13 dB), and so there
has been considerable interest in the synthesis of multiple beams with lower sidelobe
levels. Allen [8] showed that requiring a network to excite two or more independent
radiating beams without loss requires that the radiated beams in space be mutually
orthogonal over one period of the pattern from u = −l /(2dx ) to l /(2dx ). An
integral over any number of pattern periods would also exhibit orthogonality. This
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condition was a direct result of two well-known properties of the scattering matrix
of a lossless reciprocal network. Reciprocity dictates that the scattering matrix be
symmetrical, and the lossless character of the matrix dictates that the matrix be
unitary. Allen’s proof began with the assumption that a lossless reciprocal network
could exist that would form the required beams, and then the symmetric and
unitary conditions dictated the resulting aperture fields, which Allen showed were
orthogonal over each period. Kahn and Kurss [9] extended these conclusions and
showed that if the array is required to form N similar uncoupled beams with a
lossless network, then the angular spacing between the beams is fixed [and equal
to l /(Ndx )] in sine space, but that if the requirement for forming N beams were
removed, then one could combine beam input ports to obtain lower sidelobes.

White [10] derived extremely general relationships that extended Allen’s results
to arbitrary multiple-beam antenna systems, whether arrays or quasioptical beam-
formers. White showed that for reciprocal or nonreciprocal lossless networks radiat-
ing multiple beams from a common aperture, the beams must be orthogonal in
space, and so the radiation pattern and crossover levels cannot be specified indepen-
dently. White showed that by combining adjacent beam ports in phase, one can
obtain beams with a cosine amplitude distribution across the array, and hence
−23-dB sidelobes; but then the interbeam spacing for orthogonality is 2l /dx , and
this corresponds to crossover levels of −9.5 dB. Similarly, still lower sidelobes can
be formed by suitably combining the sin[ ]/N sin[ ] beams to obtain a cos2

amplitude illumination or a cos2 over a pedestal illumination across the array, but
this illumination is only orthogonal if the interbeam separation is 3l /dx . Moreover,
the crossover levels are still lower. Alternatively, White showed that if one forced
the beam spacings to be less than the orthogonal spacing, then the beams would
be necessarily coupled and the feed network lossy.

Formation of several beams can be shown simply. Consider input ports i and
j that form array excitations exp(−jnkdxui ) and exp(−jnkdxuj ) for

up = pl /(Ndx ) (8.4)

for integer p.
Superimposing the excitations of the two adjacent beams produces the excita-

tion below at the n th element (assume j = i + 1), and that uj = ui + d :

exp(−jnkdxui ) + exp(−jnkdxuj ) = 2 exp[−jnkdx (ui + d /2)] cos(nkdxd /2)
(8.5)

Note that the beam angle is at the point between the two constituent beams and
that the element amplitude has the cosine dependence.

Similarly, a judicious superposition of three adjacent beams with amplitudes
1/4, c + 1/2, and 1/4 and located at ui − d, ui , and ui + d gives

exp(−jnkdxui ){+1/4 exp[+jnkdxd ] + 1/4 exp[−jnkdxd ] + (c + 1/2)} (8.6)

= exp(−jnkdxui )[cos2(nkdxd /2) + c]
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This illumination is known as a cos2 on a pedestal function, and the pedestal height
can be varied to produce a low-sidelobe pattern. In the limit, the pattern sidelobes
can be −43 dB for a pedestal height of 0.08.

White presented these examples and illustrated several others showing how
low-sidelobe beams with high crossover levels can be decoupled using additional
apertures by resistive (lossy) decoupling networks or by introducing active amplifi-
ers to recover the signal-to-noise ratio on receive.

Other low-sidelobe patterns can also be synthesized using the orthogonal sin
x /x patterns. Thomas [5] illustrated the synthesis of Taylor patterns by proper
superposition of beams. However, the Thomas procedure was one of synthesis of
a single low-sidelobe beam with orthogonal beams, not the formulation of multiple
low-sidelobe beams. Consequently, the orthogonality condition has no meaning in
this case.

Stein [11] derived the conditions for maximum efficiency from multiple-beam
networks and obtained relations for evaluating this maximum efficiency in terms
of beam coupling factors. This maximum efficiency is often termed the Stein limit.
Consider the linear multiple-beam network of Figure 8.1(a) radiating M beams.
Using Stein’s notation, the signals yk reflected in each of the ports are related by
the linear relation

yk = ∑
M

m =1
Skmxm or y = Sx (8.7)

where Skm is the unspecified scattering matrix, and x and y are column matrices.
If the k th input port is excited with a signal of unity power, the antenna system

vector far field is given by

Ek (u, f ) = qkRk (u, f )
e j2pr /l

r
(8.8)

Here the Rk is called the beam pattern and normalized so that the integral of the
following dot product is unity:

1
2Z0

E
V

Rk*(u, f ) ? Rk (u, f ) dV = 1 (8.9)

where dV = sin u du df and Z0 is the free-space impedance. With this normalization,
the total radiated power for the k th beam in the far zone is

Pk = E
V

r2

2Z0
Ek*(u, f ) ? Ek (u, f ) dV = qk*qk = |qk |2 (8.10)

Since unit power is incident upon the junction |qk |2 is the radiation efficiency for
this beam, and 1 − |qk |2 represents losses in the network and the waves reflected
back into all the feed ports.
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For a lossless system, one can simply measure these efficiencies using the power
reflected into the entire set of feed lines:

|qk |2 = 1 − ∑
M

i =1
|Sik |2 (8.11)

Stein defines a parameter related to beam overlap as

bkj =
1

2Z0
ERk*(u, f ) ? Rj (u, f ) dV (8.12)

where, from the previous normalization,

bkk = 1

Note also that bkj = bjk* and that | bkj | ≤ 1. The term bkj defined above is called
the beam coupling factor, and the square matrix b is the beam coupling matrix.
The off-diagonal terms of this matrix imply coupling between the various beams
and, if zero, define an orthogonality relationship between the beams.

If all the input ports are excited, the total radiated power is given by

PRAD = E r2

2Z0
E* ? E dV (8.13)

= ∑xk*qk*bkj xj qj

which can be written in terms of a new matrix G as

PRAD = ∑
M

k , j =1
xk*Gkj xj = x†Gx (8.14)

where

Gkj = qk*bkj qj (8.15)

This new matrix has eigenvalues ak as given by the equation

Gx = ax (8.16)

or the characteristic equation det{G − a I} = 0 for I, the identity matrix.
Stein’s limit, based on the Hermitian and positive semidefinite properties of

this matrix, states that the largest of the eigenvalues of the G matrix cannot exceed
unity:

(ak )max ≤ 1 (8.17)
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A simple, but perhaps the most intuitively meaningful, example of the utility of
Stein’s limit occurs when all the beams have equal radiation efficiencies, qk = q
for all K.

Gkj = |q |2bkj (8.18)

It follows that the eigenvalue equation takes on the simplified form

|q |2bx = ax (8.19)

and the eigenvalues ak of G are clearly related to the set of eigenvalues bk of the
matrix b by the linear relation

ak = |q |2bk (8.20)

In this case, this Stein limit becomes

|q |2 ≤ 1/(bk )max (8.21)

This far-reaching conclusion states that the efficiency |q |2 is less than the
inverse of the maximum eigenvalue of the beam coupling matrix, and the limitation
pertains because of the overlap of the beams in space, without explicit reference to
the network that forms the beams. This form is particularly simple for computation,
because the coupling matrix b is readily obtained from (8.12) (most often by
transforming the pattern expressions into aperture fields and making use of convolu-
tion-type integrals) and the eigenvalues bk found by traditional methods.

A further result is that since all the diagonal elements bkk are unity, the sum
of the diagonal elements (the trace of b ) is M. However, for any Hermitian matrix,
the sum of all the eigenvalues equals the trace of the matrix, so the eigenvalue sum

∑
M

k =1
bk = M (8.22)

and the largest eigenvalue bk must be less than or equal to unity. Thus, |q |2 ≤ 1
with |q |2 = 1 possible only if all the eigenvalues bk are equal, which requires that
all off-diagonal elements of b vanish, and if the beams are all mutually orthogonal,
as had been previously pointed out by Allen and White.

Stein gives examples showing this coupling factor for several types of overlapped
beams. An important simple case is that of two identical beams. Here [see (8.19)],
the eigenvalues of concern are simply those of the b matrix

bx = bx (8.23)

where the matrix is in bold type and the eigenvalue in normal type. The eigenvalues
b are obtained as
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|1 − b b12

b12 1 − b | = 0 (8.24)

and are given by

b1 = 1 − b12 (8.25)

b2 = 1 + b12

From (8.21), the upper bound of the radiation efficiency is

|qmax |2 ≤
1

bk max
=

1
1 + | b12 | (8.26)

Figure 8.4 shows the efficiency |q |2 and beam coupling factor for two beams
of a uniformly illuminated aperture as the interbeam spacing is increased. The
beams chosen in this figure follow the example of White [10], who assumed for
simplicity a set of sin x /x-type patterns and a very narrow beam array so that the
integral bkj has the approximate form of the infinite integral below:

E
∞

−∞

sin x
x

sin(x + t)
x + t

dx = p
sin t

t
(8.27)

Figure 8.4 Orthogonality loss in two-beam system.
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Choosing the normalized form below, and assuming a one-dimensional aperture
distribution, the (scalar) form for the Rj is given as

Rk = (2Z0d /l )1/2 sin[(pd /l )uk ]
(pd /l )uk

(8.28)

Choosing uj displaced from the uk by some increment D in sine space so that

uk = uj + Du (8.29)

one obtains

bkj =
sin[(pd /l )Du]

(pd /l )Du
(8.30)

as the beam coupling factor. Equation (8.26) gives the upper bound of the radiation
efficiency for this case as

|q |2max =
1

1 + | bjk | (8.31)

The dashed curve of Figure 8.4 shows the coupling factor to be unity when
the beams are coincident (Du = 0) and decreasing as the spacing between beams
increases. The curve shows that the coupling factor is zero for spacings of any
nonzero multiple of l /d, which corresponds to the orthogonal spacings. The enve-
lope of the curve decreases with increasing spacing. The solid curve shows the
maximum efficiency (often called the Stein limit) as starting at 0.5 for coincident
beams. As the interbeam spacing is increased, the unity efficiency case repeats
periodically (at the orthogonal spacings), and the envelope of the efficiency curve
increases monotonically as the beam coupling decreases with spacing.

A second case of significant importance is that of a linear array of omnidirec-
tional elements with half-wave spacing. Here the array pattern is given in the usual
form (assumed scalar)

Rk (u) = ∑
(N −1)/2

−(N −1)/2
ane jkndx (u − uk ) (8.32)

and the coupling factor bkj by

bkj =
1

2Z0
E
1

−1

du3 ∑
(N −1)/2

−(N −1)/2
ane jkndx (u − uk )43 ∑

(N −1)/2

−(N −1)/2
am* e−jkmdx (u − uj )4 (8.33)

After changing the order of integration and summation, this can be written in
terms of the sinc function sin t /t as
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bkj =
1

Z0
∑
n

∑
m

anam* e−jk (nuk − muj )dx sinc[k(n − m)dx ] (8.34)

where the limits have been left off the summations for convenience.
For half-wave spacing, the sinc expression is zero unless k = j, and so the

summation reduces to the form

bkj =
1

Z0
∑

(N −1)/2

−(N −1)/2
anan*e−jkn (uk − uj )dx (8.35)

This fairly general expression can be used to evaluate the coupling for arbitrarily
tapered arrays and so is very convenient for evaluating the coupling of low-sidelobe
arrays.

In the limit of a uniformly illuminated array (an = 1), this summation is readily
accomplished and leads to the form

bkj =
sin[Np (uk − uj )dx /l ]
sin[p (uk − uj )dx /l ]

(8.36)

Comparing this result with (8.30) shows that the continuous and discrete apertures
have the expected similarity. The array patterns demonstrate orthogonality for
beam spacings

uk − uj =
Q

Ndx
(8.37)

for any integer Q, and so Figure 8.4 is also a good qualitative description of
coupling and orthogonality loss for linear array antennas.

Stein gives curves of efficiency for several beams and clusters of beams, choosing
the circularly symmetric forms of the uniform, Gaussian, and several tapered illumi-
nations. Johansson [12] presents a detailed catalog of efficiencies for multibeam
circular arrays with beams arranged in square or hexagonal (triangular) grids. In
all of these cases, the requirement for low-sidelobe beams leads to either low
radiation efficiency if high crossover levels are required or increased spacing and
low crossover levels with improved efficiency. The tradeoff of crossover level and
efficiency between these two extremes is a primary consideration in multiple-beam
system design.

In 1985 Dufort [13] considered the case of equal multiple-beam patterns from
a large array with beam separation in the characteristic Butler matrix (Hansen-
Woodward) directions, but with a tapered aperture illumination. Dufort obtained
the following reduced form for Stein’s limit in this case: ‘‘The maximum efficiency
possible is the ratio of the average to the peak value of the aperture power distribu-
tion.’’

This powerful and useful result allows the immediate conclusion that the maxi-
mum efficiency is unity for a uniform illumination, and is 1/2 for a cosine taper.
It also explains how, for most low-sidelobe distributions, a loss of 3 dB or more
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must be accepted. Dufort showed that for passive networks the use of attenuators
to control aperture taper can produce optimum results. Dufort also showed that
for lens-type low-sidelobe multiple-beam antennas, where the loss may be shared
between aperture and spillover, the Stein limit is achieved by a combination of
attenuation and feed distribution without overlapping the feed networks.

At this point it should also be remarked that the use of digital beam forming
on receive completely avoids the orthogonal spacing problem. Since the adjacent
beams are formed completely by digital processing, one can form arbitrarily low
sidelobe beams with any selected beam separation. Several references on digital
beam forming are given in Chapter 3.

8.1.3 Multiple-Beam Matrices and Optical Beamformers

Figure 8.5(a) shows a beam forming circuit due to Butler [6] that forms eight beams
using a combination of microwave power dividers and phase shifts. Other networks
have been devised by Butler and by Shelton and Kelleher [7]. Other variations and
circuits are shown in Chapter 3 of Microwave Scanning Antennas [14]. The Butler
matrix (as the network is popularly termed) is the analog implementation of the
fast Fourier transform, and as such requires N log N signal combinations (sums,
differences) to excite N beams of an N-element array from N input ports. Butler
matrices have been built with excellent phase tolerance for up to 64 beams. A
study of high-power waveguide Butler matrices and fabrication of an eight-element
matrix [15] achieved maximum phase error of 6° with rms error less than 3° and
power dissipation of 0.4 dB. Computer studies of a 32-element matrix indicated
that very similar performance can be obtained.

Section 8.2.3 gives a more detailed analysis of relationships between the input
and output signals of a Butler matrix. There are, however, several important features
of the beam forming network that contribute to the discussion at hand. The basic
Butler matrix produces ideal (symmetrical) orthogonal beams of the type used in
Woodward-Lawson synthesis (Chapter 3). The beam maxima ui are at

ui = (l /L)i = il /(Ndx ) (8.38)

for i = ±1/2, ±3/2, ±5/2, . . . , (N − 1)/2; and the phase progression between elements
is

d i = (2pdx /l )ui = 2p i /N (8.39)

Figure 8.3(a, b) shows the location of this set of beams plotted against the
normalized coordinate Ndx u /l . In Figure 8.3 the beams are shown only to their
first zeros, but Figure 8.5(b) shows the complete pattern for two beams of the set
of eight beams.

For an aperture of N elements and ‘‘length’’ L = Ndx , the N beams will fill a
sector of width N(l /Ndx ) = l /dx in u-space to the −4-dB point. The Butler matrix
is thus ideal for synthesizing a shaped pattern over such an extended region, since
N switches can clearly be used to create any realizable pattern over the given region
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Figure 8.5 Constrained circuits for forming multiple beams: (a) eight-beam, eight-element Butler
matrix; (b) two orthogonal beams (plotted for N = 8) with i = 1/2 and i = − 7/2;
(c) beam cluster motion as function of frequency; and (d) beam cluster geometry for
time-delayed beams.

by combining N pencil beams. The outermost beam of the set has its peak value
at

umax = (l /2dx )(N − 1)/N (8.40)

and the phase progression between elements for this beam is
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Figure 8.5 (Continued.)

dmax = p (1 − 1/N) (8.41)

There can be no beam with u larger than this, because the outermost beam is one-
half beamwidth from u = 0.5l /dx . If there were another beam at u = (l /2dx )(N
+ 1)/N, its phase progression would be

d =
2pdx

l
[l /(2dx )]

(N + 1)
N

= p (1 + 1/N) (8.42)

which is the same as

d = p (1 + 1/N) − 2p = −p (1 − 1/N) (8.43)

and so is the phasing for the beam at the left of the set.
In this case, the frequency dependence has been retained and signifies that the

beam angles ui vary with frequency, because the d i are independent of frequency.
The Butler matrix thus forms phase-steered beams which squint with frequency.
The fan of beams is narrowed at the highest frequency and broadened at the lowest
frequency, but the beams remain orthogonal [Figure 8.5(c)]. If the beams were
time-delay steered instead of phase steered, Figure 8.5(d) indicates that the beams
would overlap at low frequencies and have low crossover points at the higher
frequencies.
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The Blass matrix [14, 16] is an alternative constrained network used for beam-
forming. In Figure 8.6, it is shown incorporated into an array with added phase
shifters. This array configuration is used for wide band scanning and is discussed
in Section 8.3.1. The Blass matrix uses relative line lengths to provide steering
phases and power dividers (directional couplers) to excite the multiplicity of beams.
The circuit suffers loss from the coupling network, even for orthogonal beams. The
circuit [14] produces true time-delayed beams that do not squint with frequency.

Multiple-beam lenses and reflectors are true time-delay devices, designed to
scan on the basis of optical path lengths, and their radiated beams are essentially
fixed in space. The individual beams broaden at the low frequencies and narrow
at the high frequencies while remaining fixed in position, as indicated in Figure
8.5(d), so the interbeam spacing changes with frequency and the beams are not
orthogonal except at a single design frequency. Mathematically, one can write the
beams in the same format as (8.1), but with beam maximum locations fixed at
values ui that are fixed in location, independent of frequency. For an array or lens
or reflector with true time-delayed beams at some center frequency designated by
the wavelength l0 , at which the beams are chosen to be orthogonal, one selects

ui = (l0 /L)i (8.44)

Since the peaks of time-delayed beams are fixed in space at all frequencies,
and the width of the beams as measured to the 4-dB point is l /2Ndx , the beams
narrow with increasing frequency, and the extent of their overlap changes. At the
high frequencies, the crossover levels are very low (the beams overlap very little),
while at the low frequencies the beams cross at higher levels, and so suffer orthogo-
nality loss. The variation in crossover level is depicted in Figure 8.5(d).

Figure 8.7 shows several lens and reflector geometries used in wideband multi-
ple-beam systems. Lens and reflector multiple-beam antennas are true time-delay

Figure 8.6 Constrained Blass time-delayed multiple-beam forming circuit (shown here feeding a
phase-scanned array).
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Figure 8.7 Several multiple-beam lens and reflector systems: (a) generic bootlace lens; (b) Rotman
lens; and (c) reflector with displaced feed for multiple-beam radiation. (From: [18].
 1988 Artech House, Inc. Reprinted with permission.)

devices and so have good wideband properties. Lenses offer more flexible design
conditions than reflectors because the specular reflection from the reflector surface
determines the angle of local radiation (ray path), while with a lens this is a degree
of freedom that can be used in the design of the lens scanning characteristics. On
the other hand, lenses are bulkier and heavier than reflector multiple-beam systems.
The text by Sletten [17] lists a number of reflector and lens scanning systems.
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Figure 8.7 (Continued.)

Other book chapters by McGrath [18] and Lee [19] discuss constrained and opti-
cally designed lenses.

The term constrained lens refers to the way the electromagnetic energy passes
through the lens face. Unlike dielectric lens action, a constrained lens includes a
number of radiators to collect energy at the lens back face and to reradiate energy
from the front or radiating face. Within the lens, the energy is constrained by
transmission lines, and this allows design freedom to tailor the lens scanning
characteristics. The constrained lens of Figure 8.7(a) is called Bootlace and allows
the front- and back-face elements to be displaced to optimize performance. The
Rotman lens geometry [20] shown in Figure 8.7(b) is a variety of the more general
Gent bootlace lens. The Rotman lens is a two-dimensional lens with a flat front
face. Signals received from a radiating feed are picked up by radiators at the back
face of the lens and distributed by transmission lines to radiate at the lens front
face. The lens front-face radiator locations (yn ) are not the same as those on the
back face, and this adds an extra degree of freedom to the design. Rotman showed
that the lens has three points of perfect focus, one on axis and two symmetrically
displaced from the axis.

The Rotman lens is an excellent scanning system and has found use in a number
of military and civilian systems as a fundamental multiple-beam antenna and as a
feed for reflector and lens systems. A very practical implementation of the Rotman
lens in the microstrip transmission medium was proposed and developed by Archer
[21] and is often referred to as the Archer lens. Microstrip and stripline lenses
have since become the common practice. Other multiple-beam systems have found
extensive applications. The text by Ajioka and McFarland [22] gives a description
of a number of such systems.

Reflectors Scanned by Off-Axis Feeds

Reflector systems can be scanned by lateral displacement of the feed array from
the true focus. Unless special shaping techniques are used, only the on-axis focus
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is true, and the off-axis beams have a number of aberrations, including defocusing,
coma, astigmatism, and higher order aberrations. However, additional feed points
can provide adequate scanned beams if some sidelobe deterioration can be tolerated.
Reflector systems can therefore be used as multiple-beam systems and as shaped-
beam systems by combining clusters of these constituent beams [23].

The beams of a parabola with feed displaced as shown in Figure 8.7(c), though
imperfectly formed, are scanned to an angle uB related to the feed offset angle
(tan−1 d /f ) by a factor called the beam deviation factor (BDF).

BDF =
uB

tan−1(d /f )
(8.45)

The beam deviation factor is generally between 0.7 and 0.9 and increases with f /d.
Lo [24] gives typical values of the beam deviation factor as a function of f /d.

There have been many studies of the best surface on which to locate the off-
axis feed. Ruze [25], using geometrical optics, showed that when astigmatism is
neglected, the feed locus for shaped nulls is given by

z = −
y2

2f
(8.46)

a relationship that defines a parabola called the Petzval surface. For a feed on this
surface, the beam can be scanned a number of beamwidths u2 (with a −10.5-dB
coma lobe and 1-dB reduced gain) as given by

uB (max)
u3

= 0.44 + 22( f /d)2 (8.47)

For example, for f /d = 0.4, uB (max) is ±3.96 beamwidths off axis according to
this criterion. Other research studies have investigated large lateral feed displace-
ment [26] and the off-axis scanning of feeds on optimized surfaces derived using
physical optics, which are close to, but not identical to, the Petzval surface [27].

If a parabola is to be used to form a shaped beam, or multiple beams in one
plane, while maintaining an on-axis beam in the other, then other loci define the
best positions for a multiple-element feed. The equations for these lines are given
in [17], as well as in previous references by Sletten [28] and others. Since it is
beyond the scope of this text to detail these elements of off-axis reflector feed
design, the reader is referred to the previous references.

In summary, reflector feed displacement produces scanning, accompanied by
high sidelobes, and it is not possible to produce low-sidelobe scanned beams by
feed displacement alone. These higher sidelobe beams may be perfectly adequate
for shaped-beam synthesis, however, and more sophisticated techniques to be
described later do provide for high-quality scanning of reflectors.

8.2 Antenna Techniques for Limited Field-of-View Systems

A variety of techniques have been developed for special systems that need to scan
high-gain antenna patterns over a limited sector of space. These techniques are
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often discussed in general as beam forming feeds, and as such have application
not only for limited field-of-view systems, but also as wideband scanning systems.
The early survey by Tang [29] addressed the broadband aspects of many of the
approaches cited here and reviewed some of the early historical developments of
this technology. Later references include specific limited field-of-view applications
to precision approach radars [30] and surveys by Ajioka and McFarland [22] and
Rusch et al. [23].

These limited field-of-view systems range from arrays of horns or subarrays,
to a variety of single and dual reflectors, to single or multiple lens systems, and to
systems that combine lenses, reflectors, and arrays. Although this variety admits
to comparison on a number of different levels (sidelobes, efficiency, pattern control,
etc.), the most basic comparison that relates to system cost is the number of required
control elements.

8.2.1 Minimum Number of Controls

Several authors [31–33] have investigated the theoretical minimum number of
controls necessary to scan a given antenna pattern over a prescribed sector of space.
Perhaps the simplest way to understand the reason for the minimum is to realize
that the Woodward-Lawson beams form a complete orthogonal set, and that one
can synthesize the scanned beam if the entire set of beams is used. However, since
a scanned pattern can be approximated using only those beams that span the entire
scan sector, the minimum number of controls is that necessary to access that number
of beams. Consider a multiple-beam system with N beams and N input ports. That
system spans N beamwidths in space (with −4-dB coverage at the outer scan angle),
and the set of beams can be accessed by N − 1 switches, as shown in Figure 8.1
for the case N = 8 (or it covers N − 1 beamwidths to the peak of the outermost
beams).

Clearly, the rule is that one needs approximately as many controls as the
number of multiple beams required to fill the scan sector. Based on this argument,
Patton [33] introduced the term element use factor, which is the ratio of the actual
number of phase shifters in the control array to the minimum number based on
this criterion of beam filling. Patton’s expression for the minimum number of
controls for a one-dimensional array scanning to ±umax and with beamwidth u3
is

Nmin =
sin umax
sin(u3 /2)

(8.48)

and N /Nmin is the element use factor. For a rectangular array with a rectangular
scan sector, the minimum number is

Nmin = F sin u 1
max

sin Xu 1
3 /2CGF sin u 2

max

sin Xu 2
3 /2CG (8.49)

where u 1
max and u 2

max are the maximum scan angles in the two planes measured
to the peak of each beam, and u 1

3 and u 2
3 are the half-power beamwidths in these

planes.
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Several authors have given derivations of similar minimum criteria, notably
Stangel [34] and Borgiotti [35]. As stated by Stangel, the minimum number of
antenna elements to scan a solid angle V with G0(u, f ), the maximum achievable
gain in the u, f direction over the sector is

Nmin =
1

4p E
V

G0(u, f ) dV (8.50)

where the integral is taken over the solid angular surface dV = sin u du df .
Figure 8.8 shows the relative number of controls N /G0 for an array to scan

over a conical volume of space. The curve is based on a gain envelope G0(u, f )
= G0 cos u, where G0 = 4pA /l2 is the gain for a uniform aperture and so includes
a first-order beam broadening as a function of scan. The comparison is made
between the theoretical minimum number and a conventional planar array with
half-wave spacing. The figure shows that a significantly reduced number of elements
is required if the maximum scan angle is small.

Equation (8.50) has more general application than just the restricted scan case
and can be applied to wide-angle scan with tailored gain-scan contours. In the
limited scan case, however, and for uniform illumination with cos u scan loss and
a rectangular scan sector, one can show that this theorem reduces to the condition
given by Patton: for N equal to Nmin , the element use factor is unity.

Figure 8.8 Number of controls needed to scan a conical volume. (After: [34].)
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One can also relate the element use factor to the array size and maximum
scan. Equation (8.44) can be used for the rectangular array, assuming that the
approximate 3-dB points in the planes u 1 and u 2 are given by u 1

3 ∼ l /N1d1 and
u 2

3 ∼ l /N2d2 for element spacings d1 and d2 in the orthogonal planes, and ele-
ment numbers N1 and N2 in those planes. Since the total number of elements is
N = N1N2 and assuming that each element requires Q controls, one can write the
element use factor as

N /Nmin =
0.25Q

F(dx /l ) sin u 1
maxGF(dy /l ) sin u 2

maxG
(8.51)

Evaluating the array element use factor is thus simply related to how far the
array scans in (d /l ) sin u space. In this form, however, it is clear that if the array
could be made to scan to

(d /l ) sin umax = 0.5 (8.52)

in both planes with only one control per element, it would have an element use
factor of unity. This fact is explored further in the next section.

The next sections briefly discuss a number of array techniques for limited sector
coverage. In addition to element use factors, these techniques differ widely in their
peak and average sidelobe levels and relative complexity of implementation.

8.2.2 Periodic and Aperiodic Arrays for Limited Field of View

Since the coverage sector is limited, it seems reasonable that one could develop a
high-gain scanning array by using widely spaced, high-scan elements. The elements
would have narrowed patterns, as appropriate to the scan sector, and gain commen-
surate with their interelement spacing.

A periodic linear array, with element spacing dx more than one wavelength,
has grating lobes in real space, with locations given in Chapter 1. The linear array
is to scan over some sector u ≤ umax. For u = umax, the nearest grating lobe is in
real space at sin up for p = −1.

sin u−1 = sin umax − l /dx (8.53)

With still larger spacing, it may be that many such lobes radiate. Since the
array factor is multiplied by the element pattern, the grating lobes are suppressed
by the element pattern, but the grating lobe nearest broadside is suppressed very
little because it is within the element pattern main beam. Figure 8.9 shows three
curves and is intended to illustrate the action of the element pattern in altering the
radiated pattern. The upper sketch shows the shape of a typical element pattern
(an E-plane horn, or uniformly illuminated aperture) that occupies the entire inter-
element distance dx . The element pattern has its peak at sin u = 0 and its nulls at
nl /dx for all n. The array pattern, assuming dx is several wavelengths, has a main
beam and a spectrum of equal grating lobes spaced l /dx apart in sin u space. For
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Figure 8.9 Element pattern (top), array factor (middle), and array pattern (bottom) for E-plane
uniformly illuminated (horn) aperture.

the array at broadside, each of these lobes is suppressed by the element pattern
nulls, and only the main beam contributes to the product of element pattern and
array factor. The central sketch in the figure shows the grating lobe spectrum for
a main beam moved away from broadside. For this case, the lower sketch shows
that the product of element pattern (upper figure) and array factor (central figure)
produce a radiation pattern that has some grating lobe suppression for the far
grating lobes, but the nearest one to the main beam is within the main beam of
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the element pattern, and so is suppressed very little. If the array were scanned to
dx /l sin u = 0.5, the main beam and grating lobe would be equal.

It is possible, however, to specify an ideal element pattern that will suppress
the grating lobe and therefore use larger element spacings and fewer array elements.
Such an ideal pattern [36] (shown in Figure 8.10) would have a nearly constant
level out to the maximum scan angle umax and be zero outside to suppress the

Figure 8.10 Element or subarray aperture distribution for ideal limited field-of-view scanning
system: (a) oversize elements of subarrays for limited scan; (b) ideal element pat-
tern for limited scan system (cos u suppressed); (c) subarray distribution for scan to
(dx/l ) sin u = 0.5; and (d) overlapped feed distribution network.
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grating lobe. This pattern, with its steep edges, allows the maximum element spacing
and thus minimizes the number of elements and controls. For the ideal pattern,
and for a very large array, the grating lobe is suppressed if it is just outside of the
element pattern. This implies that the ideal pattern is constant out to

(dx /l ) sin umax = 0.5 (8.54)

and zero thereafter. This condition gives the largest spacing dx consistent with
grating lobe suppression, and is precisely the criterion that leads to an element use
factor of unity in (8.51). The above can thus be seen as an alternate way of
understanding the condition for the minimum number of controls.

Unfortunately, it is not possible to synthesize the ideal element pattern with a
single element of width dx . For example, if the aperture illumination is continuous,
one can compute the required illumination as an inverse transform of the ideal
pattern. The ideal pattern is

f (u) = 1 −umax ≤ u ≤ umax (8.55)

= 0 |u | > umax

for umax = 0.5/(dx /l ). The required illumination is

a(x) = E
∞

−∞

f (u)e−jux2p /l du (8.56)

= umax
sin[(2p /l )xumax]

(2p /l )xumax

This distribution is sketched in Figure 8.10(c). Its first zero is at x = l /2umax
= dx and the illumination oscillates with equally spaced zeros. Thus, to synthesize
the ideal element pattern requires an amplitude distribution that extends over a
large number of elements. Adjacent elements (or subarrays) would have the same
aperture illumination as the above, but with peaks at x = ndx for integer n.

One can synthesize an ideal element pattern only by building a network that
connects each port with a subarray of many elements. Since this is so for each
input port, the subarrays overlap and can approximate the complex distribution
of Figure 8.10(c). The most successful examples of such overlapped subarray synthe-
sis to date have been achieved using space-fed subarrays and will be described in
later sections, where they are referred to as dual transform systems. Other subarray
schemes are also described in later sections. A specific case shows that a conventional
filled array with 0.5l spacing in both planes and scanning over the entire hemisphere
(umax = 90°) has an element use factor of unity.

Periodic Horn Aperture Antennas

Waveguide-excited horn elements are efficient, high-power radiators and are partic-
ularly appropriate for limited field-of-view systems on high-altitude satellites. The
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array can be scanned within the limits allowed by the grating lobe lattice and the
element pattern falloff. The horns are particularly appropriate for that application
if the element spacing can be chosen such that grating lobes do not touch the Earth.
For other applications, it can be shown that an idealized horn array will have
E-plane grating lobes suppressed at broadside by the E-plane element pattern null,
but that the grating lobes increase rapidly with scan, with the nearest one moving
up the side of the horn main beam pattern and becoming quite large (−10 dB or
larger). Mailloux and colleagues [36–38] showed that by controlling the higher
order asymmetric mode in the aperture, it is possible to cancel this most severe
grating lobe. Other grating lobes remain approximately at the levels of the horn
element pattern sidelobes. The H plane is more difficult because the pattern is
wider and the grating lobes are present even at broadside. Some improvement of
the H-plane pattern can be obtained by dielectric loading of the horns [39] to
narrow the H-plane pattern and obtain grating lobe suppression at broadside.

Multimode horn apertures [37, 38] provide a degree of grating lobe control
by producing a null in the horn element pattern to suppress the dominant (first)
grating lobe. This is depicted in Figure 8.11(a). The technique combines the symmet-
rical horn mode with the asymmetrical (odd) mode (in each plane), and, as shown
in Figure 8.11(a), results in a shift of the element pattern peak in the direction of
the scan. This control can produce scan to quite large values of the (d /l sin u )
variable in the E-plane. Typically, the horn scans to

Figure 8.11 Multimode horn apertures for limited field of view: (a) control of element pattern null
for grating lobe suppression; (b) circuit for nulling; (c) E-plane horn and lens with
odd-mode amplitude control; and (d) locus of grating lobe power levels and main
beam scan.
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Figure 8.11 (Continued.)

dE /l sin u E
max = 0.6 (8.57)

for an E-plane horn. This control can be achieved using two phase shifters per
horn instead of one and using passive circuits like that shown in Figure 8.11(b).

Although the primary E-plane grating lobe is effectively reduced by this proce-
dure, other grating lobes increase with scan, and the end-of-scan condition is
accompanied by other grating lobes at levels from −20 to −13 dB below the beam
peak. A collimating lens is also required to suppress unwanted grating lobe radiation
for the array at broadside. Figure 8.11(c) shows a sketch of an E-plane horn
aperture with the collimating dielectric lens and phase shifter combination to excite
even and odd modes with the proper ±90° phase relationship at the horn aperture.
Figure 8.11(d) shows a computed pattern for an ideal horn aperture at broadside
(solid) and scanned (dashed) by application of the appropriate level of odd-mode
excitation. Motion of the beam peak reduces scan loss, while motion of the first
null to the left of broadside ensures good suppression of the first grating lobe. The
locus (dashed) of grating lobe levels is shown as the element (and array) are scanned,
with the n = −1 lobe nulled at all angles.

In the H-plane the element pattern is much broader than in the E-plane, and
something must be done to suppress the broadside grating lobes, which are at
about −9.5 dB below the main beam. The technique of loading the horn edges [39]
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eliminates this broadside grating lobe, but does not substantially improve the end-
of-scan grating lobes, which can be as large as −7 dB relative to the main beam at

(dH /l ) sin u H
max = 0.6 (8.58)

Using (8.51) with Q = 4 (4 phase controls per element), the element use
factor is about 2.8. If a conventional array were to scan over a ±10° sector using
conventional 0.5l spacing, the element use factor would be 8.3, or about 3 times
as many controls as for this structure. For ±5°, the element use factor is 33 or
nearly 12 times as many as for this array approach. There is a major advantage
to these techniques if the scan sector is small and as long as sidelobes are not a
consideration.

The problem with all of the horn aperture limited scan techniques is in main-
taining sidelobes below a tolerable level. At the scan limit, the primarly remaining
lobes are at −12 to −14 dB in the E-plane and −7 to −9 dB in the H-plane. The
use of random row displacements as described in Chapter 2 is shown to reduce
all of the set of lobes (up , vq ) for p not equal to zero by the factor given in Chapter
2 (2.54), which can be as large as 1/Ny for a uniformly illuminated array, where
Ny is the number of rows. For a large array, this can be a 10- to 20-dB reduction
in these grating lobes. The set of grating lobes (u0 , vq ) lies along the ridge u = u0
and is unaltered by the row displacement. If the array has a limited field of view
in one plane and wide-angle scan in the other, then by using the row displacement
and smaller spacings in the wide-scan plane, one can suppress all the radiating
grating lobes. When limited scan is required in both planes, one must use some
other technique to further suppress the (u0 , vq ) grating lobes if they are intolerable.

Angular Filters for Grating Lobe Suppression

One technique that provides sidelobe or grating lobe suppression is the use of
angular filters that use dielectric layers [40] or metallic screens [41] in cascade to
produce an angular passband-stopband selectivity. Figure 8.12 shows the geometry
and characteristics of a dielectric layer angular filter. A full electromagnetic model
was used in the design of the filter and in these calculations. In order to achieve
a steep angular passband with modest dielectric constants, the grid spacing of
one wavelength was used between filter elements. While this did result in good
suppression of near grating lobes, it created a second passband beyond about 60°
in all planes, and this allowed radiation for larger angles to pass unattenuated.
Figure 8.13 shows a metal grid angular filter (radome), and its approximate trans-
mission line equivalent circuit, where

kx =
2p
l

(1 − v2 − u2)1/2 (8.59)

and the angular passband characteristics of a particular filter with dimensions
given in the reference. The calculation leading to Figure 8.13(c) was a full-wave
electromagnetic analysis and shows the (u, v) filter passband in u, v space (with
reflection loss in decibels) to be almost perfectly circular, as would be expected
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Figure 8.12 Dielectric layer angular filter geometry and performance: (a) dielectric layer filter; and
(b) filter angular transmission characteristics.
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Figure 8.13 Metallic grid angular filter geometry: (a) metal grid filter; (b) equivalent circuit of
metal grid filter; and (c) passband characteristics of metal grid filter (numbers are in
decibels).
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using kx , a constant in (8.59), for the simplified equivalent circuit. Figure 8.14
shows the scan performance of an eight-element array with and without the use
of an early dielectric angular filter [40]. As mentioned earlier, this filter provides
extremely good suppression of the near grating lobes, but has a second passband
that allows significant radiation at larger angles.

Figure 8.14 Limited field-of-view array: (a) test array with dielectric angular filter; and (b) scanned
array pattern with and without dielectric filter (element spacing 2.9l ).
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Constrained Overlapped Networks for Limited Field-of-View Arrays

The ‘‘ideal’’ element pattern of Figure 8.10 would enable an array to scan to (d /l )
sin umax = 0.5, and so achieve an element use factor of unity. The pattern is clearly
very narrow compared to a uniformly illuminated aperture of dimension d, which
would have nulls at (d /l ) sin u = ±1, ±2, ±3, . . . . Thus, it is apparent that no
single element can produce the ideal pattern; the required coverage needs an element
that is actually larger than the available interelement space and must overlap with
adjacent elements.

This need has led to the development of a number of innovative concepts for
array feeds and indeed for special array elements for scanning over a limited field
of view. That technology is discussed in this chapter and in the references, as well
as in a comprehensive review paper by Skobelev [42].

Perhaps the simplest network to achieve a degree of overlap consists of a power
divider combination shown in Figure 8.15(a). Originally called a phase interpolation
network, this circuit has the advantage of being lossless at broadside and very
simple to build because it requires conventional sum and difference power dividers,
which are inexpensive to produce. For a uniformly illuminated array, the sum
hybrids ‘‘interpolate’’ the phase between adjacent signals to produce a signal with
phase angle halfway between those of the adjacent signals. Since this is done by
direct addition when the phase difference is less than 180°, there is an amplitude
modulation imposed on the array that constitutes an error signal. There is no phase
error if the array is uniformly illuminated, but for a tapered array there is a
symmetrical phase error that leads to increased sidelobe levels. The signal amplitude
at the interpolated ports is shown in Figure 8.15(a) and given by

S =
sin d

2 sin(d /2)
(8.60)

corresponding to the phase difference between the two signals of d .
This phase shift d corresponds to the scan angle umax, where

d = 2p (d /l ) sin umax (8.61)

and d is the distance between each subarray of two elements, or between each
active control. The amplitude error produces sidelobes at u = u0 + l /d that have
amplitude that grows with increased scan angle. At d = p /2, the value of S is about
0.707 and

(d /l ) sin umax = 0.25 (8.62)

corresponding to an element use factor of 2 for a one-dimensional array or 4 for
a two-dimensional array.

Figure 8.15(b) shows a typical pattern, in this case for a 21-element array at
the scan limit and assuming cosine element patterns. With d equal to 0.75 wave-
lengths, the maximum scan angle is u0 = 0.166 (about 9.6°) and the undesirable
lobes are at about −15 dB. Depending on the element pattern, this can be reduced
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Figure 8.15 Phase interpolation networks for limited field of view. (a) Basic network and signal
amplitude at interpolated port. (b) End-of-scan pattern for 21-element array (u0 = 0.166
and 1.5l between subarrays). (From: [43].  1970 IEEE. Reprinted with permission.)

by a few decibels, but since the illumination is uniform, this level corresponds to
a reasonable end-of-scan limit.

In addition to the limit given above, to suppress the grating lobe due to the
spacing d /2 between each element, one must require that

(d /l ) < 2.0 (8.63)
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Some improvements can be gained by choosing the power division so that the
interpolated signal is larger at broadside, but this introduces added complexity
that must be weighed against the improved scan.

The use of higher order modes in horn apertures is suggested in Figure 8.10,
which shows that the ideal illumination is in phase at the central element (or
subarray) and dominantly asymmetrical over the adjacent subarrays. Mailloux [36]
devised a network to approximate such an illumination using only nearest-neighbor
overlap, and showed that a flat-topped subarray pattern could be synthesized in
this manner to allow scanning to about

(d /l ) sin umax = 0.33 (8.64)

The basic circuit, shown in Figure 8.16(a, b), uses sum/difference hybrids to
couple into dual-mode horns. An extra 90° phase shift, though not shown, is
applied to the difference signal. The difference signal amplitude is zero when the
array is at broadside, but grows as the array is scanned. This, in effect, automatically
tilts the element pattern of each horn to provide improved scan coverage for small
angles.

An alternative perspective is gained by considering only one input signal divider
into sum/difference components of three elements, with the difference term not
present at the central element. The adjacent elements get both the sum and difference
contributions, and this nearest-neighbor coupling is used to approximate the
required overlapped sin x /x illumination. Figure 8.16(c) shows the theoretical
subarray patterns for a typical subarray for several values of the coupling coefficient
C. With the main beam scanned throughout the shaded region (n = 0), grating
lobes scan through the other shaded regions (n = ±1, ±2, . . . ). The grating lobes
can be approximated by the subarray pattern height. The ‘‘element’’ of subarray
pattern has the proper flat top form and can be optimized to give good suppression
of the nearest grating lobes and some suppression of the second, which ultimately
reaches the −15-dB level at the scan limit.

Skobelev and colleagues [44, 45] developed methods to excite the higher order
mode of dual-mode waveguides for scan in either the E- or H-planes using slot
couplers between adjacent waveguides (as shown in Figure 8.17). These networks
offer a practical manufacturable technique for overlapping adjacent dual-mode
elements without the need for power dividers. Both networks consist of single-
mode waveguides attached to dual-mode waveguides via stepwise transitions. The
H-plane configuration shown at the right includes symmetrical branches at the
upper part of the figure to avoid the aperture efficiency loss that would take place
because of the naturally wider H-plane pattern.

Although the dual-mode waveguide techniques provide good overlapped subar-
ray patterns, there has been an interest in developing networks that would provide
external overlap of single-mode elements and in addition provide multiple element
overlap with sharper cutoff outside of the angular passband region. An early version
of these is the simple network of Figure 8.15. There have also been a number of
other network approaches to the synthesis of flat-topped subarray patterns. These
are catalogued in [42] and are too numerous to be detailed here. They include
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Figure 8.16 Overlapped subarray with higher order mode overlap: (a) circuit for overlapped array
excitation; (b) waveguide network for overlapped array of horns; and (c) subarray
pattern of overlapped elements. (From: [36].  1974 IEEE. Reprinted with permission.)
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Figure 8.17 Arrays of dual-mode waveguides for scanning in the E-plane (left) and H-plane (right).
(From: [42].  1998 IEEE. Reprinted with permission.)

networks by Wheeler [46] and Lopez [47], which describe extremely wide (many
element) overlap that are built using directional coupler networks.

The most generalized constrained networks for forming overlapped subarrays
were devised by Dufort [48], who synthesized lossless constrained modular coupled
networks that achieve varying degrees of overlap and allow grating lobe suppression
with limited angular scanning. A microstrip realization of Dufort’s network has
been published [49].

Skobelev [50] presented a cascaded network that offers a degree of simplicity
compared to the networks referenced earlier. In this design, shown in Figure 8.18(a),
the directional couplers are arranged as in a chessboard, hence the name chess

Figure 8.18 Subarray factors for various cascaded chess networks: (a) the N-cascaded chess net-
work; and (b) subarray factor for the case of 1, 2, 3, and 4 optimized cascades. (After:
[42].)
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network. The network itself is a modular structure with each module (cell) compris-
ing two radiating elements. The circuitry comprises N cascades, with each cascade
being composed of a row of directional couplers arranged between the cells and
a second row of couplers that connects between adjacent cells shown in the figure.
These 2N layers of directional couplers are used to synthesize the optimum subarray
pattern subject to finding maximum power radiated subject to a given desired
pattern. The use of N cascades (2N layers) allows formation of a wide subarray
that extends over an arbitrary number (2N + 1) of cells; thus, with increasing N,
the subarray pattern becomes more defined. In practice this network has been built
for N = 1 and 2. Figure 8.18(b) shows that adding more cascades and reoptimizing
the network narrows and sharpens the resulting subarray patterns, a feature that
needs to be traded against increasing complexity.

A recent study of synthesized overlapped subarrays used for inserting time
delay into an array aperture has demonstrated the formation of high-quality flat-
topped subarray patterns in two dimensions [51] using multiple-layer fabrication
and proximity-coupled microstrip elements.

It has long been known that the electromagnetic coupling between elements
can be used to shape element patterns, and several works have exploited this
phenomenon to produce the overlap necessary to form flat-topped patterns. These
studies include several examples of endfire elements, including Yagi elements,
dielectric rods, dielectric disks, and corrugated array surfaces [42]. One study
investigated the pattern shaping available using an array of protruding dielectric
elements. That element was first analyzed by Lewis et al. [52] in the study of wide-
angle scanning, but it has significant potential for shaping narrower patterns [53,
54]. Figure 8.19 shows the parallel plate geometry recently investigated by Skobelev
with protruding dielectric rods. Figure 8.19(a) shows the construction of the rods
and matching network, and Figure 8.19(b, c) shows the resulting E- and H-plane
element patterns in addition to an ideal pattern that represents the goal of the
shaping.

Aperiodic Arrays

All of the above schemes are used with fully periodic arrays and so ultimately
require the suppression of well-defined grating lobes. However, all of the methods
that synthesize an overlap pattern using the simpler networks or element coupling
only reduce quantization lobes to levels on the order of −20 dB or slightly below.
For large arrays, it is sometimes possible to reduce all sidelobes well below this
level using periodic array geometries of various types. A number of investigators
have developed arrays for limited field of view using aperiodic array lattices.
Circular array lattices have been particularly convenient in breaking up the periodic-
ity and thus reducing the peak grating lobes. In principle, if one could achieve
complete randomization, as with the random arrays of Chapter 2, one could reduce
the average sidelobe level to 1/N for an array of N elements. In most cases, the
degree of randomization available with the tightly packed arrays that have been
used for limited field-of-view systems is such that sidelobes remain above this level.
An example is the structure shown schematically in Figure 8.20(a), which consists
of a number of elements with roughly equal area, arranged in a circular grid. This
geometry was investigated by Patton [33], who built a 10-ft diameter array at
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Figure 8.19 (a) Geometry of a parallel plate array with protruding dielectric elements; (b) element
pattern and reflection coefficient of array with ai = 0.4l , at = 0.45l , ht = 0.25l ,
e i = et = 1, a = 0.57l , h′ = 0.3l , b = 0.96l , ea = e = 2, t = 0.5l , and h = 1.2l ; element
pattern of an empty waveguide array with no protrusions, ai = 0.4l , at = 0.65l , ht
= 0.25l , a = 0.9l , h′ = 0.7l , b = 0.96l , eI = et = ea = 1; and (c) element pattern of
the array with protrusions at frequencies f0 (reference frequency), 0.975f0, and
1.025f0. (After: [54].)

C-band and conducted a theoretical study of a 30-ft array. The circular array
consists of dipole subarrays arranged in an aperiodic fashion and excited by an
optical power divider feeding a spherical array back face. The subarrays have equal
areas, and their size ultimately determines the maximum scan angle of the antenna
at the subarray half point, or approximately

(d /l ) sin umax = 0.44 (8.65)

corresponding to an element use factor of 0.25/(0.44)2 or 1.3. The 30-ft array
consisted of 1,000 subarrays, and scanned a 0.36° beamwidth throughout approxi-
mately a 5° cone to obtain the element use factor of 1.3. Peak sidelobes were
−15 dB for the 10-foot antenna and predicted to be −20.9 for the 30-ft array.
Average sidelobes were high, consistent with a 3-dB loss in gain at the scan limit.

A similar antenna, but using unequal size elements, was developed by Manwar-
ren and Minuti [55]. This antenna was designed to scan a 1° pencil beam over an
8° half-angle cone, with −20-dB grating lobes. The antenna consisted of 412 ele-
ments and used elements of three different sizes that were arranged in concentric
rings to produce the pseudorandom grid. The element use factor was approximately
1.6.
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Figure 8.20 Aperiodic arrays for limited field of view. (a) Aperiodic array. (From: [33].  1972
Artech House, Inc. Reprinted with permission.) (b) Interlaced subarray antenna: square
grid represents element lattice, different shading represents common subarray ele-
ments. (From: [56].  1972 IEEE. Reprinted with permission.) (c) Maximum phase
shifter reduction to achieve a given scan coverage. (After: [56].)
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Figure 8.20 (Continued.)

Stangel and Ponturieri [56] studied randomized interlaced subarray configura-
tions that produce low sidelobes because of the aperiodic grid, yet have good
aperture efficiency because of the complete filling of the aperture. Figure 8.20(b)
illustrates the meaning of the term interlaced in this context. The square grid is
filled with elements, and elements of common shadings are connected together and
fed in phase as a subarray. The intersubarray distance is chosen to give a regular
lattice of subarray centers, but the actual subarray configuration is chosen by a
random number generating technique. Figure 8.20(c) shows the maximum phase
shifter reduction using this technique, as compared with elements on a regular grid
with half-wave separation.

A recent study [57] of the use of irregular subarrays that are rotated by multiples
of 90° or flipped has been shown to introduce enough randomness to eliminate
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quantization lobes for a time-delayed subarray while keeping the average sidelobe
levels within tolerable limits. The subarrays are placed to entirely fill (tile) the
aperture, so that at the center frequency f0 , the pattern is identical to that of the
ideal pattern of the filled tapered aperture. This study looked at arrays of up to
256 L-shaped subarrays with four or eight elements each and indicated suppression
of all lobes below −30 dB at f = 1.03 f0 . In addition, the peak sidelobes were shown
to decrease with array size (unlike quantization lobes), so that even lower sidelobes
seem available for larger arrays. Figure 8.21 illustrates the rotation of an eight-
element L-shaped subarray and shows contour plots of two arrays of 256 eight-
element subarrays. In Figure 8.21(a), the subarrays are rectangular and consist of
two rows of four elements each, and the array consists of 16 rows of 16 subarrays.
This periodic array has distinct quantization lobes at the −20-dB level but otherwise
extremely low sidelobes consistent with the Taylor −40-dB aperture taper. In Figure
8.21(b), the same grid is filled with the rotated irregular subarrays, and then the
resulting sidelobe structure has all sidelobes at the −40-dB level, except for one at
−30 dB. Numerical studies have shown that the peak sidelobe level continues to
decrease as more subarrays are added.

In the examples studied thus far, the subarrays are chosen to contain four or
eight elements so that they could be fed by lossless power dividers. They were
chosen for practicality to use only one shape of eight-element subarray, although
there are many possible interlocking shapes from which to choose.

8.2.3 Constrained Network for Completely Overlapped Subarrays

The network shown in Figure 8.22(a) consists of cascaded multiple-beam matrices
and is the most fundamental form of a completely overlapped subarray beam
forming network. It is often called a dual transform network, since each of the
multiple-beam matrices performs a discrete Fourier transform on its set of input
signals. The network is shown as a constrained circuit, a combination of Butler or
other multiple-beam networks, but the Fourier transform operations could be
achieved with multiple-beam lenses or reflectors, since they are in several of the
limited field-of-view systems presented later. The cascaded matrix implementation
was proposed by Shelton [58] as a feed for multiple-beam optics, while the matrix-
to-lens implementation is the basis of an early development of the transform-fed
high-performance subarraying array feed (HIPSAF) [59] lens, referenced in later
sections. The overlap is ‘‘complete’’ in that each subarray port excites all of the
array elements, and so all of the subarrays overlap.

The sketch of Figure 8.22(a) shows two cascaded multiple-beam systems. At
the output, N array elements are fed from the M × N matrix (M ≤ N). This network
is a conventional Butler or other phase shift multiple-beam matrix, with only the
circuitry for the (central) M beams included. Excited alone, a signal at an input
port of this matrix would provide the phasing for one of the N multiple beams.
A key to understanding the operation of this system is to realize that only these
central beams are accessible at the input ports. In the ideal system, there is no way
to put any energy into the remaining (N − M) beams, which represent more rapid
phase progression across the array aperture.
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Figure 8.21 Arrays of regular and irregular subarrays: (a) contour pattern of array with 256 periodic
rectangular subarrays at f = 1.03f0; and (b) contour pattern of array with 256 irregular
subarrays at f = 1.03f0.

The input (network A) beamformer is an M × M Butler matrix, and its M
input ports are called subarray ports. The subarray input ports are then excited
by a set of signals with amplitude-weighted progressive phases.

Before presenting an analysis of the operation of this network, there are several
conclusions one can draw from a knowledge of the multiple-beam circuits. First,
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Figure 8.22 Cascaded multiple-beam networks of completely overlapped subarray formation: (a)
constrained network of cascaded multiple-beam networks; and (b) space-fed network.
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any one input port (say, the m th) of the final M × N matrix (network B) excites
one of the output beams (the m th) of the cluster of M beams. Therefore, if the
input M × M matrix (network A) were excited in such a way as to provide a
nonzero signal at only this m th port, then that excitation of network A would
radiate only the one beam. The required input to produce this output is a uniformly
illuminated progressive phase because network A is a multiple-beam network now
used in reverse as a focusing beamformer. Similarly, one can find progressive phases
to excite any other of the set of M beams. The progressive phase input to the
subarray ports can access any of the beams within the limited field-of-view cluster
of M beams. This description does not explain what happens when a weighted or
errored illumination is applied at the subarray input ports, or any further details
that result from the detailed analysis to follow.

A signal Ii applied to the i th input port of the upper matrix (the M × N
network) produces a progressive set of phases

An = Ii
exp[−ji (n /N)2p ]

(N)1/2 (8.66)

at the N array elements spaced dL apart at the array, and radiates with the pattern
below:

gi (u) =
Ii

(N)1/2 Nf e(u)
sin[(NpdL /l )(u − ui )]
N sin[(pdL /l )(u − ui )]

(8.67)

where f e(u) is the array element pattern (assumed equal for all elements), and

ui = il /(NdL ) (8.68)

This i th beam gi (u) is one of the Woodward-Lawson beams, and its location is
thus frequency dependent, as required to maintain orthogonality at all frequencies.

When the matrix (A) below is used to provide the signals at the input to the
M × N matrix (B), each input Jm excites a set of signals Iim at the output of network
A and the input of network B. These can be written as

Iim =
Jm

M1/2 e −j2p (m /M)i (8.69)

for −(M − 1)/2 ≤ i ≤ (M − 1)/2.
This illumination is applied to the output network (B) and results in the aperture

illumination corresponding to the m th subarray. At the output of network B, the
signal at each n th element of the N-element array is

Anm =
1

N1/2 ∑
(M −1)/2

i =−(M −1)/2
Iime+j2p (n /N)i (8.70)

=
MJm

(MN)1/2
sin Mp [(nM − mN)/MN]
M sin p [(nM − mN)/MN]
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This m th subarray illumination has its maximum at the element with index
n = m(N /M), and overlaps all the elements of the array. An example of one such
subarray illumination is the dashed curve of Figure 8.23(a) for the subarray
(m = 1/2) of the array of 64 elements with l /2 separation. The array has eight
subarrays (M = 8). Each subarray illumination spans the whole N-element array,
and so this kind of system is termed a completely overlapped subarray system.

Radiated subarray patterns are given in terms of the constituent beams by

Figure 8.23 (a) Characteristics of completely overlapped subarray amplitude illumination for low-
sidelobe (−30-dB Chebyshev) pattern, showing one subarray (dashed) for m = 1/2,
and composite illumination. (b) Overlapped subarray patterns for 64-element
array with eight subarrays: central subarray (dashed) m = 1/2; edge subarray (solid)
m = −7/2. (From: [60].  1988 Van Nostrand Reinhold, Inc. Reprinted with permission.)
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fm (u) =
1
Jm

∑
i

gi (u) (8.71)

= N
f e(u)

(MN)1/2 ∑
(M −1)/2

i =−(M −1)/2
e j2p (m /M)i sin[(NpdL /l )(u − ui )]

N sin[(pdL /l )(u − ui )]

This expression is the sum of M orthogonal pencil beams arranged to fill the sector
to form a flat-topped pattern for the m th subarray. The subarray patterns are
similar to each other but not identical. Figure 8.23(b) shows two subarray patterns
for the same 64-element array. The selected subarrays are an edge (m = −7/2) and
one of the two central subarrays (m = 1/2). The edge subarray has higher sidelobes
and a highly rippled pass region because its illumination is truncated.

Since a total of M constituent beams are used to form the subarray pattern,
the peak of the two beams furthest from broadside are at i = ±(M − 1)/2, so |umax |
= (l /2dx )[(M − 1)/N] and the 4-dB points at (M /N)(l /2dL ). The width of the
subarray pattern is given by

e = (M /N)(l /dL ) (8.72)

Note that the subarray pattern and its constituent beams move as a function of
frequency, and that the subarray width is also a function of frequency.

The array excitation with all subarrays excited is

An = ∑
(M −1)/2

−(M −1)/2
Anm (8.73)

where the Anm are given in (8.70). If a low-sidelobe illumination is applied at the
subarray input ports, that illumination is approximately replicated at the array
face. An example of such a composite excitation is shown in the solid curve of
Figure 8.23(a).

The radiated array pattern is given in terms of the constituent beams by

F(u) = ∑
(N −1)/2

−(N −1)/2
Anme jkudLn (8.74)

or equivalently in terms of the output array aperture illumination as

F(u) = ∑
(M −1)/2

−(M −1)/2
Jm fm (u) (8.75)

Application of a steering signal Jm at the subarray input ports selects a combina-
tion of the constituent beams both within the subarray pattern and in the array
space factor. For example, applying the steering signal vector

Jm = | Jm | exp(−j2pmD) (8.76)
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can lead to only one constituent beam selected if the | Jm | are all equal and the
proper value of D is chosen. This can be shown to occur by writing the expression
for the total current Ii at the output of the first matrix, with all input signals present
and chosen as above. In general,

Ii =
1

(M)1/2 ∑
(M −1)/2

−(M −1)/2
Jme j2p (m /M)i (8.77)

For Jm given above, this reduces to

Ii = (M)1/2 sin[Mp ((i /M) − D)]
M sin[p ((i /M) − D)]

(8.78)

When D is chosen equal to i /M, this expression is unity, and all signals at other
terminals (Ij ) are zero. Only the i th output port has a nonzero signal. This signal
becomes the input to matrix B and produces the output phase progression at the
n th output port of matrix B:

2pn (dL /l )ui = 2p in /N (8.79)

and thus the differential phase between elements of (2p i /N).
The array amplitude illumination [Anm ], assuming any single input Iim , peaks

at

[nM − mN] = 0 or n =
mN
M

(8.80)

and so the number of elements between any two adjacent peaks (for any i th input
port) is

nn − nn −1 = N /M (8.81)

and the effective subarray size is

D = (N /M)dL (8.82)

independent of m. Note that this spacing is independent of frequency for the case
of an orthogonal beam (Butler) matrix.

In summary, the input phase progression of D = 2p i /M has thus produced an
output phase progression of 2p i /N or the output incremental phase has been
reduced by a factor (M /N) compared to the input incremental phase, and the
intersubarray distance in the main aperture is DL increased by the (N /M) ratio.
The maximum input incremental phase (to excite the outermost beam) is

|Dmax | = 2p
(M − 1)

2M
= p (M − 1)/M (8.83)
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and so the maximum output phase is M /N times this, or

dmax =
p (M − 1)

N
(8.84)

and this corresponds to a maximum scan angle umax = sin umax, where

dL sin umax
l

= 0.5(M − 1)/N (8.85a)

or

(D /l ) sin umax = 0.5
(M − 1)

M
(8.85b)

Since this is the beam peak, the 4-dB point is at (D /l ) sin umax = 0.5 and the
element factor is unity.

Using the above definitions, one can write the subarray pattern in terms of the
subarray aperture distribution Anm from (8.70) as

fm (u) =
1
Jm

∑
n

Anm exp( j2pndLu /l )

fm (u) =
M

(NM)1/2 e j2pu (dL /l )(N /M)m (8.86)

? ∑
(N −1)/2

n =−(N −1)/2
e j2pu (dL /l )[n −mN /M] sin{(M /N)p [n − (mN /M)]}

M sin{(p /N)[n − (mN /M)]}

This expression gives the pattern of any m th subarray, peaked at the location
n = m(N /M) and with phase center at the same point.

Since ndL (N /M) = nD, it is clear that applying the steering vector

Jm = | Jm |e−j2pn (D /l 0 )u0 (8.87)

in the array pattern expression (8.75) will scan the peak of the beam to the angle
u0 at the frequency f0 provided that u0 is within the subarray angular pass region
( |u0 | < sin umax). With this excitation, the array beam will squint with frequency,
and applying a time-delayed JM is necessary for wider band operation.

The flat subarray patterns have the shape required for suppressing grating
lobes. If the array pattern were scanned to the peak u = umax, then the first grating
lobe of the array is at the angle

u = umax − l /D =
l

2dL
[(M − 1)/N] −

lM
NdL

= −
l

2NdL
(M + 1) (8.88)
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which is beyond the edge of the subarray pattern (in fact, it is at a zero of the
subarray pattern) and so is substantially suppressed.

Figure 8.24 shows an example of limited field-of-view scanning with such a
generic overlapped subarray system. The data were computed using the subarray
patterns fm (u) from (8.71) in the pattern expression (8.75), with steering vector
in (8.87). The results shown in Figure 8.24 demonstrate performance of an array
of 64 elements, eight subarrays, and l /2 element spacing. The amplitude excitation
at the subarray input ports was that of a −40-dB Chebyshev illumination and
supported about −35-dB sidelobes at broadside. At u0 = 0.75 (Figure 8.24), the
pattern is improved because the near sidelobes on the right are suppressed by the
subarray pattern falloff, while those at the left are near the center of the subarray
pattern and approach the design sidelobe level of −40 dB. The peak at the left is
the grating lobe onset, and grows to an unacceptable level for u0 = 0.1 (not shown).
The data indicate that although the network provides scan for uniformly illuminated
subarray ports over the entire set of M output beams with unity element use
factor, with a low-sidelobe pattern the beam is so broad that proper grating lobe
suppression requires compromise in the element use factor.

8.2.4 Reflectors and Lenses with Array Feeds

Fixed-beam reflector and lens antennas can provide high gain (large aperture) at
very low cost relative to array systems. These systems can be scanned over limited
angular regions by several different techniques and with varying degrees of success.
This section discusses several kinds of array feeds for reflector and lens systems
and compares these alternatives to more conventional arrays.

The sketch in Figure 8.25 shows three possible feed locations for focus correc-
tion of a reflector (or lens). The reflector is shown receiving a plane wave from a
direction along the parabola axis (solid lines) and one at an angle u from that axis
(dashed lines). Several alternative feed locations are indicated by straight lines (or

Figure 8.24 Limited field-of-view scanning of constrained overlapped subarray feed (64-element
array and 8 subarrays with −40-dB Chebyshev illumination).
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Figure 8.25 Feed plane locations for a scanned reflector: (1) feed at plane closer than focal plane
(plane 1); (2) feed at plane passing through focal point; (3) feed at plane beyond
focal plane.

planes) but could also be curved three-dimensional surfaces. As the angle of the
incident wave changes, the focal point becomes displaced and distorted. The
antenna design is selected to best match the off-axis focal spot.

The kind of optical feed required is quite different for each of these three feed
locations. In the case of the first type (dashed plane 1), the feed is moved substan-
tially in from the focal plane. The feed is required to match a wavefront that is
converging but has nearly constant amplitude and is certainly free of the ripples
and sign changes present at the focal plane. At this location, the feed is a relatively
large array with fixed amplitude taper and electronic phase shifter control to
produce the required phase distribution. Since there is usually no feed amplitude
correction, these systems have modest sidelobe levels (usually −20 dB or higher).
Clearly, the use of digital beam forming systems will improve this sidelobe level
in future systems.

Alternative feed locations are shown at planes 2 and 3. A feed at the focal
plane (location 2) is essentially a multiple-beam system, since the received energy
is focused to relatively small spot locations in that plane. Electronic control is
exercised using a switching matrix to excite the multiple beams separately or in
weighted clusters (Figure 8.1).

If a constrained multiple-beam feed is used at location 2, this system is a
practical implementation of the completely overlapped subarraying system
described in Section 8.2.3 and shown in its ideal form in Figure 8.22(a). Often this
type of feed is referred to as a transform feed, because the output signals are a
discrete Fourier transform of the input signals.
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Feeds at location 3 are focusing feeds also and play the same role as the
transform feed that might have its front face at location 2. Such feeds will not be
distinguished from the transform feeds throughout this section.

Limited Field-of-View Reflector Systems

The earliest forms of limited scan systems consisted of an array used as a transverse
feed for a reflector (or lens) antenna [61, 62]. The array is located a distance less
than the focal length from the reflector (location 1), and so the objective serves to
project the incoming received wavefront onto the array face, but does not focus it
at the array. The system converts the incident wavefront to another nearly planar
wavefront at the array, and a tapered array distribution provides for sidelobe
control. A key feature of such systems for the limited field-of-view application is
that the objective must be large, because the scanned array illuminates a spot that
moves across the main aperture as a function of scan. Design is usually based on
the criterion that the array aperture illumination be the complex conjugate of the
received field distribution for an incident plane wave [62]. This places a minimum
limit on the size of the array, because the usual requirement to scan with phase
only requires that the array must be outside of the region of nonuniform fields
near the focus. Beginning in the early 1960s, the use of such a transverse feed was
investigated by a number of authors and has proven to be an economical means
of providing limited sector scanning of reflector antennas.

Winter [62], Tang [63], and Howell [64] have studied the geometrical aspects
of scanning and feed blockage with arrays mounted as shown in Figure 8.26(a).
Unless extremely large reflectors are used, blockage alone limits the achievable
sidelobe level to about −20 dB for on-axis-fed reflector systems. Tang [63] and
Howell [64] obtained equations for the size of the reflector based on the geometry
of Figure 8.26(a). The figure shows a symmetrical parabolic reflector with an array
feed of size 2ya . Two rays cross at the top of the array. The lower ray at an incident
angle 0° is reflected at yd and passes through the focus. The second ray is incident
at an angle u and hits the parabola at ye . After reflection, this ray crosses the first
ray path at the array edge. The condition for determining array size is to choose
the array so that it intercepts all the reflected rays that come from the active region
on the reflector for all angles up to the maximum scan angle. Rays at the bottom
of the reflector are not considered in this development because they remain on the
reflector and add no new constraint.

Reflection from the aperture follows Snell’s law:

n̂REF = n̂INC − 2(n̂S ? n̂INC)n̂S (8.89)

where n̂REF and n̂INC are unit vectors in the direction of reflected and incident
rays, and n̂S is a unit vector representing the surface outward normal.

Measured from a coordinate system at the parabola focus with z the distance
from the y-axis to the reflector surface, the equation of the surface and the outward
normal unit vector are
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Figure 8.26 Reflector scanned by array: (a) reflector and array geometry showing ray locations
for full array utilization (solid line for on-axis beam, dashed for scanned beam); and
(b) normalized array size ye/yd versus scan angle for oversize ratio R = ye/yd . (From:
[65].  1982 Peter Peregrinus, Ltd. Reprinted with permission.)

z = f [1 − (y /2f )2] (8.90)

n̂S =
−ẑ − ŷ(y /2f )

[1 + (y /2f )2]1/2

The resulting reflected ray unit vector is

n̂REF =
1

1 + (y /2f )2 [ŷg1(y, u ) + ẑg2(y, u )] (8.91)

where

g1(y, u ) = [(y /2f )2 − 1] sin u − (y / f ) cos u

g2(y, u ) = [(y /2f )2 − 1] cos u + (y / f ) sin u

The resulting size 2ya is given in terms of the other reflector parameters and the
given scan angles as [65]
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Figure 8.26 (Continued.)

Ya
Yd

= 1 + K1 (8.92)

where

K1 =
g2(ye , u )(ye − yd )/ f + g1(ye , u )[(ye )2 − (yd )2]/(2 f )2

g2(ye , u )yd / f + g1(ye , u )[(yd /2 f )2 − 1]

Figure 8.26(b) shows the normalized array size (ya /yd ) as a function of the
maximum scan angle u and several values of allowed oversize ratio or spot motion
R = (ye /yd ) for effective focal length ratios ( f /2yd ) of 0.5 and 1.0. The figure
shows that the illuminated region must be allowed to move in order to fully utilize
the array for all scan angles. The choice of a large ye tends to make the array
smaller.

The result is used to estimate reflector and array size and location for a given
coverage sector. It can thus be used to estimate gain reduction, aperture efficiency,
and sidelobes due to blockage. One can also obtain a formula for the element use
factor, assuming the reflector scans a rectangular angular sector u1 by u2 radians
using effective aperture sizes yd1 and yd2 and array element spacings a1 and a2

N
Nmin

=
0.25
u1u2

ya1ya2l2

yd1yd2a1a2
(8.93)



434 Special Array Feeds for Limited Field-of-View and Wideband Arrays

The principal advantages of such array-fed reflectors are that they are relatively
simple to design, inexpensive relative to array systems, and have low loss feeds.
Their disadvantages are that they use an oversize reflector and that the array itself
needs to be quite large, with an element use factor for two-dimensional scanning
of about 2.5 or 3. Although this number is not much different than that obtained
for periodic arrays, there are no grating lobes to be suppressed for the reflector
system, so the wide-angle sidelobes (but not the near sidelobes) are improved in
comparison with the array case.

Offset-fed reflectors have been used successfully to avoid blockage and improve
sidelobe levels, and a number of such array-fed reflectors have found use in airport
precision approach radars and other limited field-of-view systems [29].

Rudge and Whithers [66] studied reflector systems fed by Butler matrix feeds,
which are completely overlapped subarray systems. They investigated the use of
such feeds when the array is moved away from the focal point along a circular
arc, as shown in Figure 8.27. The arc chosen is along that circle passing through
the focal point and the two extreme edges of the reflector. The key factor of this

Figure 8.27 (a, b) The focal region fields of a parabola along a circular arc for several incident
wave angles. (From: [66].  1969 IEE. Reprinted with permission.)
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geometry is that for any point along the arc, the angle 2u * subtended by the
parabola edges as seen at the feed point is a constant. Rudge and Whithers showed
that the transform characteristic of the feed could be used to provide a first-order
correction to the off-axis pattern. Figure 8.27 shows that the reflector focus field
is a sin x /x-type illumination in response to a received on-axis beam; but when
the incident beam comes from some other angle, the focal plane distribution moves
off axis, and is, in addition, substantially distorted. The authors showed that the
Fourier transform of this distribution is a progressive phase illumination with
relatively slow amplitude variation. Since the Butler matrix feed accomplishes this
transformation, it needs only to be excited with a corporate power divider and
phase shifters and moved so that it intercepts almost the entire focal region in
order to correct for off-axis scanning of the reflector. The authors used an eight-
element Butler matrix feed and demonstrated good scanning performance over ±15
beamwidths.

Dual-reflector systems and lens-fed reflector systems with array feeds have been
found to have superior scanning characteristics and use smaller, more efficient
primary apertures than single-reflector systems. Fitzgerald shows that both near-
field Cassegrainian [67] [Figure 8.28(a)] and offset-fed Gregorian [68] [Figure
8.28(b)] confocal paraboloid configurations could scan many beamwidths with
good efficiency. The off-axis configuration exhibited better sidelobe performance
because of reduced blockage. The element use factor for this geometry was about
2.5. Optimizing the main and subreflector contours can improve scan characteristics
and reduce the element use factor to about 2. McNee et al. [69] studied a limited
scan system consisting of an offset main reflector, a multiple-beam lens feed, and
a phased array (Figure 8.29). The system was designed according to the principles
of overlapped subarray systems and resulted in an element use factor smaller than
that of Fitzgerald because the feed array was made to scan over wider scan angles.
The additional scan is possible because the feed lens is made very large (approxi-
mately 0.65 the size of the main reflector) compared to the subreflectors of Fitzger-
ald (0.25 to 0.3 times the main reflector diameter). This allows the array to scan
almost to its scan limit (d /l sin u = 0.5), but the final structure is bulky and may
not be suitable for all applications. The analytical results indicate that a 1° beam
can be scanned over a ±10° sector with sidelobes at −20 dB and an element use
factor of approximately 1.4.

One important feature of all the dual-transform systems is that, unlike single-
reflector or lens systems in which the scan limit is restricted to some fixed number
of beamwidths, the dual-transform systems are basically angle limited, not limited
to some given number of beamwidths of scan.

Other dual-reflector systems have been investigated by Bird et al. [70] and
Dragone and Gans [71]. The theoretical study of Chang and Lang [72] emphasizes
control of maximum gain over a scan sector. Figure 8.30(a) shows the geometry
for this study which used point source feeds. The Cassegrainian geometry is a
‘‘folded’’ version of the multiple-beam feed configuration with feed elements in the
focal plane. The study compared data for a conventional offset Cassegrainian with
data for an offset-shaped reflector system with both main and subreflector gen-
erated using a bifocal condition. The discrete angles at which the bifocal condition
was maintained were only ±2° and ±3° off boresight for rotationally symmetrical
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Figure 8.28 Dual-reflector systems for limited field of view: (a) near-field Cassegrainian geometry;
and (b) offset-fed Gregorian geometry. (After: [67, 68].)

reflector systems of 0.5° beamwidth. The bicollimated versions were found to give
improved performance if a scan sector of ±8 beamwidths was required, but at up
to about ±5 beamwidths, the Cassegrainian geometry was near optimum.

Rao [73] investigated near-field Gregorian reflector antennas [Figure 8.30(b)]
for wide-angle scanning. Data on aperture phase errors ensure that the bicollimated
reflector system provides up to 45% more scanning range than an equivalent
confocal reflector system. An offset bifocal (two off-axis foci) reflector system



8.2 Antenna Techniques for Limited Field-of-View Systems 437

Figure 8.29 Lens/reflector geometry for completely overlapped subarray system. (From: [69].
 1975 IEEE. Reprinted with permission.)

designed and studied by Rappaport [74] exhibited over ±12-beamwidth scan with
peak gain variation of 3 dB and sidelobes less than −16 dB below the main beam.

Limited Field-of-View Lens Systems

Several dual-lens configurations have been shown to provide high-quality electronic
scanning over limited angular sectors. In the configuration of Figure 8.31 investi-
gated by Tang and Winter [75], the array focuses on a small spot on the elliptical
rear face of a lens, which transfers the spot to a region on the focal arc of a final
lens with a spherical back face. The element use factor is 1.7, and the sidelobes
are at approximately the −16-dB level for a ±10° scan. The beamwidth was kept
at 1° for this theoretical study. The intermediate lens is about 0.7 times the size
of the main lens because of the large scan requirement.

The HIPSAF antenna system was the first implementation of a space-fed over-
lapped subarray system. This system has application as a feed for a limited field-
of-view antenna and for a wideband array feed. The wideband properties will be
discussed in a later section. The basic HIPSAF geometry, shown schematically in
Figure 8.32, consists of a large objective aperture that is a space-fed lens and a
Butler matrix feed. The front face of the lens includes phase shifters that are
necessary for wideband wide-angle scanning, but for limited scan application, the
phase shifters are fixed to provide the spherical correction so than an incident on-
axis wave is focused at the feed. The HIPSAF feed had a spherical front surface,
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Figure 8.30 Dual-reflector bicollimated systems. (a) Multiple-beam Cassegrainian system. (b) Limited field-of-view scanning system. (From: [73].  1984 IEEE.
Reprinted with permission.)
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Figure 8.31 Dual-lens limited field-of-view system. (After: [75].)

but is shown as a plane in the figure. The figure shows two subarray distributions
excited by individual ports of the Butler matrix. The sin x /x form of this illumination
results in the flat-topped subarray pattern. The subarray pattern shown at the right
is scanned so that the center is at 45° by means of the phase shifters in the front
face. The reason for scanning the subarray pattern has to do with the system’s
broadband characteristics, and is discussed in the next section. Although the HIP-
SAF system was developed as a broadband array feed, the system is a fundamental
dual-transform limited scan system. In this mode, the phase shifters are set to zero
and the scan controlled by the array feed. Tang [29] showed the feasibility of
limited field-of-view control with such transform systems.

Optically Fed Overlapped-Subarray Systems

A number of other lens and reflector combinations have been used to produce
completely overlapped-subarray patterns. Many of these are discussed in the chapter
by Ajioka and McFarlane in the text edited by Lo and Lee [22].

For the purposes of this presentation, consider the generic system of Figures
8.33 and 8.34(a), in which the lens has a circular back face. This geometry was
first described in a paper by Borgiotti [76], although the principle of operation for
generalized optical systems of this class had been given earlier by Tang [29].
Borgiotti evaluated the scanning performance of this network in detail for the
limited field-of-view application. The network has no phase shifters in the array
front face, and the number of control elements used is approximately equal to the
theoretical minimum. The system uses a hybrid (Butler) matrix and a bootlace lens
with a linear outer profile and circular inner profile to perform the two spatial
transforms. Borgiotti presents formulas to estimate subarray spacing and other array
parameters. The lens is excited by a planar array, which is in turn fed by a Butler
matrix or other multiple-beam network. Assume that the network is orthogonal.
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Figure 8.32 Dual-transform (overlapped subarray) system using space-fed lens and transform feed:
(a) geometry showing feed array near-field patterns of several subarray input terminals;
and (b) subarray pattern (scanned off axis by phase shifters in lens). (From: [29].
 1972 Artech House, Inc. Reprinted with permission.)
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Figure 8.33 Completely overlapped subarray (dual transform) lens perspective: (a) feed illumination
and radiated subarray pattern; and (b) synthesized aperture taper and array radiation
pattern. (From: [77].  1986 IEEE. Reprinted with permission.)

If a single input port is excited, the multiple-beam network places a progressive
phase shift across the array. The array radiates with a sin x /x-type pattern and
illuminates the lens back face with this inphase illumination. Exciting any other
input port results in a displaced sin x /x-type illumination that is orthogonal to the
first, and again completely overlaps the distribution formed by any other input.
Each of these overlapped-subarray illuminations is transferred through the main
lens and radiates to form a flat-topped subarray pattern (since the Fourier transform
of a sin x /x function is a pulse).

Each of the subarrays radiate broadside but have their phase centers displaced
across the large objective aperture. When all of the subarray inputs are excited
with a tapered progressive phase illumination, the main lens radiates a low-sidelobe
beam that can be scanned over the width of the subarray pattern.

Figure 8.33 illustrates the operation of the completely overlapped subarray
antenna (in this case, for a lens with cylindrical back face) [77]. At the left, the
network is shown excited at a single-beam port. In this sequence, the array is
shown radiating a scanned beam that results in a displaced sin x /x illumination at
the objective lens and a radiated flat-topped subarray pattern. At the right, all
subarray ports are excited inphase. The aperture taper is synthesized by selecting
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Figure 8.34 Geometry of transform-fed lens antenna: (a) two-dimensional cylindrical lens; and
(b) two-dimensional lens with flat back face.

the proper weights for the various subarray ports, and the combined illumination
radiates with a low-sidelobe broadside pattern. This array pattern can be scanned
throughout the width of the subarray pattern using phase weights in addition to
the amplitude weights at the beamformer input. If the dimensions are chosen for
maximum scan, the element factor can be unity. Further details that describe the
geometric properties of overlapped subarray lens systems are given in the following
sections.

The operation of the system of Figures 8.33 and 8.34(a) is best understood by
following the response to a signal applied at the m th port of the Butler matrix
(orthogonal beam) feed array. An incident signal at this point results in the progres-
sive phase at the output of the feed:
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Figure 8.34 (Continued.)

exp[−j2p i (dy /l )um ] (8.94)

where

um =
ml

Mdy
= sin fm (8.95)

Since the lens is cylindrical, with focal length F, the vertical coordinate at the back
face of the lens is given by y = F sin f .

The feed array radiates to the back face of the main lens with the illumination
below, assuming that each feed element has the same spatial element pattern G(f ).
The expression below is shown normalized to unity amplitude and is the feed array
pattern (in f -space) or the lens back face illumination (with y = F sin f ).
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Am (y) =
G(f )

M ∑e j2p i (dy /l )(sin f − sin f m ) (8.96)

= G(f )
sin[Mp (dy /l )(sin f − sin fm )]
M sin[p (dy /l )(sin f − sin fm )]

Here the dimension y is measured vertically on the lens back face. y = F sin f and
fm define the center of the m th subarray (m = +1/2, . . . ). Since the coordinate
y = ndL , this Am (y) is later denoted by Anm .

The expression (8.96) is the illumination for the m th subarray. In this expres-
sion, the beamformer has been assumed to be orthogonal, and so fm is a function
of frequency. Each subarray has a similar inphase illumination and radiates to the
main lens with the peak at

ym = F sin fm (8.97)

The distance between two adjacent peaks is the intersubarray distance D (a function
of frequency) given by

D = ym − ym −1 = F
l

Mdy
(8.98)

so sin fm is also given by

sin fm =
mD

F
(8.99)

In writing the above expression Am (y), it is assumed that the main lens back
face is in the far field of the feed array. This assumption is not severe, and it has
been shown by Borgiotti [76] and Fante [78] that near-field effects can be corrected
by adding fixed time-delay units to correct for the curvature of the focused field
at the feed array.

The main lens has elements at yn = ndL , for n, the element index on the main
lens, and dL , the element spacing on the main lens (dL is nominally about l /2 at
center frequency).

Each individual subarray pattern fm (u ) results from an illumination Am (y) =
Am (ndL ) at the back face of the lens and having its phase center at ym = mD. The
subarray pattern, written with its phase normalized to zero at the subarray phase
center ym and its amplitude normalized to unity is

fm (u) =
K(u )

N ∑
(N −1)/2

−(N −1)/2
Anme j2pn (dL /l ) sin u (8.100)

where K(u ) is the main lens element pattern.
The above is the most general form for writing the subarray radiation pattern,

since it is directly related to the aperture illumination. For the case of isotropic
feed array element patterns [G(f ) = 1], one can obtain the convenient form below:
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fm (u) = K(u ) ∑
n

Anme j2pn (dL /l ) sin u

= K(u ) ∑
(M −1)/2

i = −(M −1)/2
e+j2p i (dy /l ) sin f m ∑

(N −1)/2

n = −(N −1)/2
e j2p i (dL /l )[(idy /F ) + sin u ]n (8.101)

= K(u ) ∑
(M −1)/2

i = −(M −1)/2
e+j2p i (dy /l ) sin f m

sin[(NpdL /l )(sin u − idy /F )]
N sin[(pdL /l )(sin u − idy /F )]

This expression compares directly with that given in (8.71) for the constrained
dual-transform system, except that here the cluster of ‘‘constituent’’ sin x /x-type
beams have their peak locations at

sin ui = idy /F (8.102)

for −(M − 1)/2 ≤ i ≤ (M − 1)/2. Since these beams are formed using an equal path
length main lens, their beam peaks are fixed in angle and do not squint. The
subarray pattern width is constant, independent of frequency. The above expression,
given in terms of the set of constituent beams, allows an estimate of the subarray
pattern width. Measured to the 4-dB point of the outermost beam at

umax = sin−1[Mdy /(2F )] (8.103)

this width is approximately

e = 2 arc sin[Mdy /(2F )] ∼ Mdy /F (8.104)

Figure 8.35(a) shows that the angle subtended by the feed is the same e, so
one can readily determine the required feed size and the number of feed elements
by equating the subtended feed angle to the desired subarray width.

To obtain an array pattern, it is again convenient to write the subarray pattern
directly in terms of the array amplitude distribtution Am (ndL ). The subarray pattern
is written

fm (u) = K (u )
e j2pm (D /l )u

N
(8.105)

× 5 ∑
(N −1)/2

n = −(N −1)/2
G(f )e j2p (u /l )(ndL − mD) sin[Mp (dy /(Fl )(ndL − mD))]

M sin[p (dy /(Fl )(ndL − mD))]6
In this form, it is again clear that the array illumination consists of M subarrays
evenly spaced across the aperture with frequency-dependent spacing D and having
the peaked sin x /x-type illumination with phase center located at the subarray
aperture peaks.

The radiation of the lens system of Figure 8.33(a) with all subarrays excited
is given by
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Figure 8.35 Limited field-of-view characteristics of cylindrical lens with dimensions (normalized to
wavelength) L = 363.2: F = 200: array size 12 elements (6l ): (a) subarray pattern;
and (b) broadside and scanned patterns. (From: [79].  1983 IEEE. Reprinted with
permission.)

F(u) = ∑
(M −1)/2

m = −(M −1)/2
Jm fm (u ) (8.106)

In this case, the array consists of M subarrays, where M can be even or odd. The
Jm are the excitation coefficients for the transform feed. The subarray excitations
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Jm for phase scanning the array pattern to the angle u0 are given [using (8.105),
(8.106)] as

Jm = | Jm | exp[−j2pm (D /l0)u0] (8.107)

= | Jm | exp[−j2pm (F /Mdy )u0]

If wideband scanning is required, l should replace l0 in (8.107), and time-delay
units must replace phase shifters in the feed input ports.

In place of the orthogonal feed for this lens or reflector, if one were to use a
Rotman lens or other time-delay beamformer to perform the first transformation,
then the centers of the subarray aperture illuminations would be fixed in location
for all frequencies, and the radiated subarray patterns would be stable and would
not move with frequency, but would narrow at the high frequencies and broaden
at the low frequencies.

A system with a time-delay lens feed and lens main aperture is designed at
center frequency f0 such that the multiple-beam antenna (feed) output progressive
phase is given by (8.95), but with

um = ml0 /(Mdy ) = sin fm (8.108)

The subarray illumination is given by the same equation, with the above substi-
tution for fm , and the intersubarray spacing D is then

D = Fl0 /(Mdy ) (8.109)

independent of frequency.
The resulting array pattern is given by (8.106) and the beam is phase scanned

by currents of the form

Jm = | Jm | exp[−j2pm (D /l0) sin u0] (8.110)

= | Jm | expS−j2pm
F

Ndy
sin u0D

If wideband scanning is required, then again l0 should be replaced by l in (8.110),
and time-delay units must replace phase shifters in the network.

Figure 8.35 shows data for a cylindrical lens of diameter 363l and focal length
200l . The feed array consists of 12 elements spaced l /2 apart. The figure shows
that when a transform (focusing) feed is used with a lens primary aperture, exciting
any one of the array input ports produces a flat-topped subarray radiation like
that shown in the figure. If all the subarrays are excited by an equiphase distribution,
then the main lens forms a beam (shown at left in the figure) with near sidelobes
at the level determined by the feed input taper (−30-dB Chebyshev for the figure)
and far sidelobes further suppressed by the envelope of the subarray pattern. The
beam is scanned by applying phased or time-delayed signals at the feed input ports.
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Since the lens beamwidth is approximately l /(Nd), or

u3 ≈ l /(NdL ) NdL = MD (8.111)

then the beamwidth is also given by

u3 =
l

MD
=

dy

F
(8.112)

The subarray pattern width e is thus M times this beamwidth (e = Mdy /F), and
so the subarray pattern width is that of the cluster of M constituent beams. As the
array is scanned over the extent of the subarray pattern, then the array scans a
sector equal to M beamwidths.

In summary, a subarray pattern formed by M elements, and having a width e
given by the above, is also seen as formed by a cluster of M orthogonal beams.
The maximum scan sector covered by the array feed is equal to the number of
elements in the feed (in beamwidths). This corresponds to an element use factor
of unity. Figure 8.35 shows an array pattern scanned over the range of the subarray
pattern. In this case, the design sidelobe level was a −30-dB Chebyshev pattern
and, indeed, the resulting pattern maintains this desired level.

If the lens back face is not cylindrical but is plane, as in Figure 8.34(b), then
the subarrays formed by the feed are unequally spaced, will not in general be
symmetrical in the angle f , and will need phase corrections within the main lens.
Added phase or time-delay corrections are needed at each subarray beam port to
account for the path length difference from the array feed to the various subarray
phase centers on the main lens. In this case, it is important that the ratio of F /L
be large (in excess of 1.5) to minimize distortions. Mathematically, this case is
handled with ym = F sin fm in (8.97) and subarray centers at ym replaced by

ym = F tan fm (8.113)

with F the distance from the planar lens back face to the feed. In addition, the
distance between the feed center and points on the lens back face is not F, but

R(f ) = F /cos f (8.114)

and in (8.96), the subarray illumination Am (y) or Anm must be multiplied by the
factor

e−j2pR (f )/l

R(f )
(8.115)

to account for the change in path length across the main lens back face. This effect
also needs to be partially compensated for by adding an extra line length to each
m th subarray input port to compensate at the phase center of the subarray. The
added phase (time-delay) factor is
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e+j2pR (f )/l (8.116)

which signifies a time advance of the outer subarrays relative to the central subarray.
With these changes, the summations indicated in the revised form of (8.96) through
(8.101) cannot be written in closed form, but need to be evaluated term by term.

One of the limitations to the use of transform feeds is the need for large array
feeds if the system is to be scanned over many beamwidths [see (8.104)]. Mailloux
[79] extended reflector scanning work of Rudge and Whithers [66] to investigate
wide-angle subarray formation and lens scanning by means of small transform
array feeds moved away from the primary focus.

Figure 8.36 shows the transform feed moved off-axis along the circular arc of
Figure 8.27 chosen by Rudge and Whithers for the reflector case. This arc has the
feature that from any point on the circle, the angle 2F subtending the two edges
of the cylindrical lens is a constant. This means that the feed array scan sector is
fixed. The angle F is given by

F = sin−1(L /2F ) (8.117)

When the feed is moved off axis, the subarray pattern moves off boresight to an
angle D, measured from the lens back and given approximately by

sin D = (d /F ) sin d (8.118)

where d is the angular displacement of the feed measured from the point P, and
d is the diameter of the enclosing circle.

Since the array feed width is Mdy , then if a second array were placed so as to
just touch a center mounted feed, then for the array at this position

sin d = (Mdy)/F (8.119)

This width is approximately equal to the subarray width e (8.104), and so the
subarray patterns of adjacent (touching) feeds would cross at approximately the
−4-dB point. Unfortunately, the actual subarray pattern of finite lenses is narrowed,
so contiguous feeds produce subarray patterns with a deep trough between them.

As the arrays are moved off axis along the circular arc, the subarray pattern
locations also move off axis by an amount approximately equal to the angular
feed displacement. Figure 8.37(a) shows subarray patterns for the transform-fed
lens as a function of the feed displacement. The feed has 12 elements, and the
figure shows subarray patterns corresponding to those at either side of the lens
(p = 6, −5) and the centrally located subarray (p = 0). For the on-axis feed, these
two outer subarrays are identical, but as the feed is moved off axis, the subarray
patterns become distorted and do not even occupy the same region of space. Low-
sidelobe beams can nevertheless be formed out to very-wide-scan angles except at
these regions between adjacent subarrays. Figure 8.37(b) shows what level sidelobes
can be maintained for a lens with F = 200l and subarray centers as indicated in
the figure. Here it is clear that −30 dB can be achieved for subarray centers near
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Figure 8.36 Geometry of off-axis feed and two-dimensional cylindrical lens.
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Figure 8.37 Radiation characteristics of off-axis transform-fed lens: (a) subarray patterns for off-axis feeds;
and (b) maximum sidelobe radiation level for scanned feeds at fixed offset angles.

broadside, but not at the subarray crossover angles. One can improve the pattern
quality for beams at these angles by inserting other feeds at positions between the
adjacent ones, as shown for the dashed sidelobe level that corresponds to a feed
at d = 3.67°. In brief, by applying no correction other than this simple switching
procedure, one can get good pattern control with less than −25-dB sidelobes over
the region ±10.5°, or ±35 beamwidths for the lens data of Figure 8.37. Beyond
that angle, one can only get low sidelobes at the subarray center unless more
sophisticated control is implemented at the feed.

Another important feature of such transform feeds is that the scan sector for
a given F /L ratio is not limited by some maximum number of bandwidths, but is
primarily angle limited. This means that two systems with the same F /L can be
scanned over the same scan range by merely increasing the number of feeds
according to the above condition, independent of the total number of beamwidths
scanned.

The main design parameters are chosen as follows:

• The diameter L by the minimum beamwidth;
• The angle 2F by the maximum array scan angle and the ratio F /L .

The allowable lower bound on F /L is about 0.58 for a ±60° array scan. In general,
increasing F /L makes the array design simpler by decreasing the array scan angle,
and reduces phase front curvature in the lens system. This decreases quadratic
phase error.
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Figure 8.37 (Continued.)

8.2.5 Practical Design of a Dual-Transform System

Transform-fed lens studies have gone beyond the conceptual and theoretical level
to building and testing actual devices. Southall and McGrath [77] studied and built
a lens combination like that of Figure 8.38 composed of a probe-fed parallel plane
lens with circular back face and fed by a Rotman lens feed.

Although this study was part of the development of a wideband array feed,
the major practical conclusions pertain to both limited field-of-view and wideband
systems. These studies indicated the necessity of careful control of mutual coupling
effects in both the main lens and Rotman feed. Among the several innovations
introduced in their study was that the main lens circular back face was designed
with equally spaced elements. In an early stage of this study, a lens had been
constructed with back face elements directly behind their corresponding aperture
elements. This forced the cylindrical array element spacing to vary from 0.5l0 at
the center to 0.72l0 at the edges. With this large variation in spacing, there was
no possibility of properly matching all of the back face elements, and this resulted
in an inverse taper that raised sidelobes. By making the elements equally spaced
at 0.52l0 across the back face as shown in Figure 8.38, it was possible to match
both the front and back faces of the lens. This improved sidelobes considerably.



8.2
A

ntenna
Techniques

for
Lim

ited
Field-of-View

System
s

453Figure 8.38 Antenna layout drawing of cylindrical lens fed by Rotman lens beamformer. (From: [77].  1986 IEEE. Reprinted with permission.)



454 Special Array Feeds for Limited Field-of-View and Wideband Arrays

A second innovation was repositioning of the focal array to account for the
fact that the true phase center of an array of probe feeds in front of a back plane
does not lie at the back plane (as it would for a single probe and its image). Because
of mutual coupling, the phase center may be closer to the probe. This fact impacts
the feed array location, which should be at the focus of the lens, and it impacts
the Rotman lens feed as well. Figure 8.39(a) [80] shows data for an infinite array

Figure 8.39 Element pattern characteristics for microwave lens feeds. (a) Monopole characteristics
in array. (After: [80].) (b) Phase center location versus frequency (0.556l spacing).
(From: [77].  1986 IEEE. Reprinted with permission.)
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of probes in a parallel plane region. This figure shows the normalized element
pattern for probes spaced 0.4l and 0.6l apart and clearly indicates significant
distortions of the element pattern when the spacing is 0.6l . The distortion is due
to the entrance of a grating lobe at endfire when the scan angle is denoted f̂EGL.
This effect narrows the element pattern and makes the element pattern phase
become a complex function of angle. In effect, the element has a nonunique phase
center. Reducing the spacing to 0.4l corrects both of these problems.

Feed design is further complicated because the phase center of an array of
probes is not located at the back plane location. Figure 8.39(b) shows the result
of phase center location measurements by Southall and McGrath [77] and records
the significant change in phase center as a function of frequency. Only at the lower
frequencies does the phase center occur close to the back plane. Since the array
was to operate in the vicinity of 9 GHz, where the probe phase center was located
very near the probe center pin, the array feed was moved so that the center pins
were on a line through the main lens focus.

A final innovation was necessary to improve the performance of the Rotman
lens feed. The impedance matching problem is more severe for the Rotman lens
because of the high degree of curvature within the lens and the need for each lens
radiator to have a wide element pattern to properly illuminate the adjacent face.
The amplitude curve of Figure 8.39 shows significant variation across the path
which would result in a substantial error in illumination and poor sidelobe control.
This effect was corrected using additional probe elements with matched loads to
broaden the element patterns. Figure 8.38 shows these ‘‘dummy’’ beam ports at
the input of the Rotman lens.

8.3 Wideband Scanning Systems

Conventional phased arrays operate over bandwidths that are inversely propor-
tional to the array size. The use of true time delays instead of phase shifts would
eliminate the bandwidth restriction due to beam squint, but unfortunately the only
viable time-delay technology at the time of this writing consists of switched sections
of transmission lines. For example, a large array of 50 wavelengths on a side and
scanning to ±60° would need a total time delay from zero to 50 sin 60°, or 43l .
To obtain precision equivalent to an N-bit phase shifter, about N + 6 bits is
necessary. If these units are made with discrete time-delay bits, as is the common
practice for phase shifters, the units become too bulky and heavy, and so lossy as
to be impractical for most applications, except perhaps for stationary ground-based
arrays at relatively low frequencies. The solution to this problem is to devise
suboptimum means of providing time delay. Two architectures have been used.
The first method consists of matching the time delay at only a fixed number of
angles and using phase shifters to scan the array over the small scan ranges between
the selected angles of perfect delay. The second method is to divide the array into
subarrays and produce true time delay behind each subarray while using phase
shift within the subarrays.
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8.3.1 Broadband Arrays with Time-Delayed Offset Beams

The bandwidth of limited field-of-view arrays can be relatively large (1.80), in
Chapter 1 because umax is small. Similarly, if an array is excited by a feed system
that produces true time delays at a number of points in space and phase shifters
at the array elements to scan between the fixed beam positions, then the bandwidth
is given by the same equation, but with the maximum scan angle sin umax divided
by the number of preset time-delayed positions M and the fractional bandwidth
multiplied by M.

D f
f0

=
0.886BbM

(L /l0) sin umax
(8.120)

where Bb is the beam broadening factor, and L is the array length.
There are a number of ways of implementing these offset beams. One method

is to use a quasi-optical or constrained multiple-beam array feed and phase shifters
at the array face, as in Figure 8.40(a) [81], or using the Blass matrix of Figure 8.6.
Another method that has proven practical is to build discrete time-delay units with
M increments of time delay and use one time-delay unit and one phase shifter per
element [Figure 8.40(b)]. It is thus necessary to construct different time-delay units
for each element of the array. However, this array organization has perfect time
delay at the chosen offset positions and can multiply the bandwidth by M relative
to a conventional array. Most significant is that the array phase progression between
adjacent elements is constant, and so the array phase front is continuous and the
array sidelobes can be as low as other tolerances will allow. This array time-delay
architecture may be costly, but is the standard for low-sidelobe arrays.

8.3.2 Contiguous Time-Delayed Subarrays for Wideband Systems

The most obvious way of adding time delay to an array is to group elements of
the array into subarrays and insert time delay behind each subarray and phase
shifters at the array face to maintain a perfect continuous wavefront at center
frequency. This architecture is depicted in Figure 8.40(c). The time-delay units
ensure that the center of each subarray is delayed correctly at all frequencies; but
as the frequency is changed from the center frequency, the phase progression across
each subarray develops the wrong slope and the array incurs a periodic phase
error, as indicated in the figure.

The one-dimensional array shown in the figure consists of Q equally spaced
subarrays of M elements each, and with time-delay units at the center of each
subarray. The resulting array pattern is the product of an array factor that has no
frequency dependence times a subarray pattern that represents the phase-shifted
subarrays.

E(u) = e(u)
sin[Mpdx (u /l − u0 /l0)]
M sin[pdx (u /l − u0 /l0)]

sin[QpDx /l (u − u0)]
Q sin[pDx /l (u − u0)]

(8.121)

Here e(u) is the element pattern and Dx = Mdx is the subarray size.
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Figure 8.40 Wideband scanning array feeds: (a) array-fed by time-delayed beamformer; (b) array
fed by time-delay units and phase shifters; and (c) array of contiguous subarrays with
time delay at the subarray level. (From: [81].  1981 IEEE. Reprinted with permission.)

Since the first term of the above equation represents a time-delayed contribution
and does not squint with frequency, the only bandwidth limitation is from the
second term. Comparing this expression with that of a full phase-steered array of
Q × M elements, it is evident that in terms of power loss alone the subarraying
increases bandwidth by the factor M, the number of subarrays.
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Figure 8.40 (Continued.)

D f
f0

=
0.886BbM

(L /l0) sin umax
(8.122)

where L = QMdx .
Although the array of contiguous subarrays provides wideband operation, the

phase discontinuity depicted in the figure results in an increased sidelobe level that
may be intolerable for certain applications. The sidelobes that result from this
periodic phase error are grating lobes, and the analysis to evaluate their levels
follows the development in Chapter 7 for discrete phase shifters and quantization
levels [82].

The normalized power in the p th grating lobe is

PS =
(pX )2

sin2[p (X + p /M)]
(8.123)

where

X =
u0d
l0

D f
f0

and the array has M elements per subarray.
To evaluate the benefits of contiguous subarrays, Figure 8.41(a) shows the

broadband characteristics of a 64-element linear array with phase shift steering.
The beam is phase scanned to 45° (u = 0.707) at center frequency. The dashed
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Figure 8.41 Broadband characteristics of an array of contiguous subarrays. (a) Pattern of uniformly
illuminated array organized with phase shift steering. (b) Pattern of 64-element array
with eight contiguous subarrays. (c) Grating lobe levels for phased arrays with time-
delayed contiguous subarrays. (From: [82].  1984 IEEE. Reprinted with permission.)

curve shows squint of the main beam peak to a smaller angle f /f0 = 1.1. At only
10% off center frequency, only a sidelobe of the pattern radiates in the chosen
main beam direction.

Figure 8.41(b) shows the grating lobe power (in decibels) of the 64-element
array with time delay at eight contiguous subarrays. The figure plots the power
normalized to the main beam versus the generalized variable X for various rations
of p /M (grating lobe index divided by the number of elements in the subarray).
This curve is general and allows calculation of a wide number of cases.

Figure 8.41(c) shows an example of a uniformly illuminated array with time-
delay steering at the subarray level. Although the pattern distortion is substantial,
the pattern squint has been eliminated by the time-delay steering. The results of
(8.123) are plotted as horizontal lines and are clearly good representations of the
computed grating lobe levels for various f /f0 ratios.

8.3.3 Overlapped Time-Delayed Subarrays for Wideband Systems

Constrained Dual-Transform System

The technology of overlapped subarrays, with the resulting flat-topped subarray
patterns, presents an excellent means for providing time delay at the subarray level.
This application is discussed in the paper by Tang [29], and much of the early
work in this area was pioneered by the Hughes Corporation. Consider the ideal
subarraying system of Section 8.2.3, but using phase shifters in the array face and
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Figure 8.41 (Continued.)

time-delay units at the subarray input ports, as shown in Figure 8.41(c). The phase
shifters added at the array face produce a progressive phase distribution that scans
the center of all subarray patterns from their broadside location in Figure 8.42 to
the desired scan angle u0 at the center frequency. The subarrays are excited by a
time-delay network that collimates the array to put an array factor peak at the
angle u0 for all frequencies. The advantage of the overlapped subarray in this case
is that, since the subarray pattern moves with frequency, its broad flat-topped shape
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Figure 8.42 Pattern characteristics of 64-element array fed by overlapped subarray beamformer.

allows for it to scan substantially without suppressing the main beam radiation at
u0 . Moreover, the steep slope and low sidelobes of the subarray pattern suppress
the grating lobes of the periodic phase error.

The equations of Section 8.2.3 are modified to account for the addition of
phase shifters at the array face and time-delay units at the subarray input ports.
The phase shifters introduce a progressive phase shift across the array face. At the
n th element, the phase introduced is

exp[−j2pn (dL /l0)u0] (8.124)

where u0 = sin u0 is fixed in frequency. In the absence of any other control signal,
this phase scans the center of all subarrays to u0 at center frequency f0 .

A signal applied to the i th input port of the matrix at the right (the M × N
matrix) produces a progressive set of phases at the N array elements and radiates
with the scanned pattern below:

gi (u) =
Ii

N1/2 f e (u)
sin{(NpdL /l0)[(u − ui ) f / f0 − u0]}
N sin{(pdL /l0)[(u − ui ) f / f0 − u0]}

(8.125)

where f e (u) is the array element pattern (assumed equal for all elements), and the
constituent beams of the matrix are now displaced by the amount of the scan (u0).
Here the ui are defined as before.
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The aperture illumination corresponding to the m th subarray is similar to that
given in the previous section, except for an added progressive phase: for each n th
element of the N-element array,

Anm =
e−j (2p /l 0 )u0ndL

N1/2 ∑
(M −1)/2

i =−(M −1)/2
Iime−j2p (n /N)i (8.126)

=
MJme−j (2p /l 0 )u0ndL

(MN)1/2
sin Mp [(nM − mN)/MN]
M sin p [(nM − mN)/MN]

The scanned subarray patterns are written n terms of the intersubarray distance
D using, as before, mdL = m(M /N)D to obtain

fm (u) =
Me j2pmD [u /l − u0 /l 0 ]

(MN)1/2 ∑
n

sin(pFmn )
M sin(pFmn /M)

e j2pDFmn [u /l − u0 /l 0 ]

(8.127)

where

Fmn = [(M /N)(n − mN /M)]

This expression reveals that the subarray pattern is unchanged from the previous
case, except for being phase steered so that it is centered about the direction cosine
u = (l /l0)u0 , and therefore at u0 at center frequency. The subarray pattern is thus
phase steered and squints with frequency. The required steering vector to time-
delay scan the array to the angle uMB , which may or may not be scanned to the
subarray center at u0 , is given by

Jm = | Jm | exp[−j2pmD(uMB /l − u0 /l0)] (8.128)

In this expression, the added term exp[ j2pm(D /l0)u0] is required to remove
the excess phase shift at the center of the m th subarray. With this excitation, the
subarray pattern is centered at u0 and squints with frequency, while the array
factor is scanned to u0 by time-delay devices. The array bandwidth is approximately
given by (1.80), repeated below, where Du is interpreted as the subarray pattern
width to the 4-dB point at center frequency. This expression does not allow for
changes in the subarray width as a function of frequency and does not allow for
narrowed bandwidth due to sidelobe growth.

D f
f0

=
Du
u0

(8.129)

=
Ml

D sin u0
=

Ml
Ndx sin u0
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Figure 8.42 shows the pattern characteristics of an overlapped subarray feed
for a 64-element array that is fed by a constrained subarray beamformer and eight
subarrays. In this case, there is no beam squint because of the time-delay steering,
and the pattern quality is much improved relative to the contiguous subarray time-
delay system. The bandwidth is determined by the growth of grating lobes.

Transform-Fed Lens System

The dual-transform lens system of Figure 8.38 is also used as a wideband subarray-
ing feed. It was first used in the HIPSAF antenna, and studied later by Fante [78]
and Southall and McGrath [77]. The application of the dual transform to reflector
scanning was proposed and studied by Chen and Tsandoulas [83]. Parameters for
the transform-fed system are given below.

The subarray pattern of a lens fed by an orthogonal beam matrix is given by
the expression below, which is similar to (8.105):

fm (u) = e j2pmD (u /l − u0 /l 0 ) ∑
(N −1)/2

n =−(N −1)/2
e j2pFbm (u /l − u0 /l 0 ) sin[Mp (dy /l )bm ]

M sin[p (dy /l )bm ]

(8.130)

where bm = sin f − sin fm = 1/F(ndL − mD). Like the constrained case, this pattern
squints with frequency, but again its broad shape allows for substantial bandwidth
relative to the conventional array if time-delay units are used as the feed. The
scanning currents at the feed input again need to have the form

Jm = | Jm |e−j2pmD [u0 /l − u0 /l 0 ] (8.131)

This expression, like (8.128), has a time-delayed exponential component and a
phase-shifted component. The array is time-delay steered, but the added phase shift
exp( j2pmu0D /l0) term is required to remove the phase shifts introduced at the
subarray centers by the phase shifters in the main aperture.

Note that the array aperture is controlled by phase shifters, not time-delay
elements, and so although the subarray patterns are centered on the angle u0 at
center frequency, the subarray pattern squints to move closer to broadside at
higher frequencies, and away from broadside (to the right in the figure) at lower
frequencies.

The network subarray input ports are then excited with true time delays, and
the various subarray patterns are collimated to form a main beam that is fixed in
space. As the frequency is changed, the main beam location remains unchanged,
but the subarray pattern moves one way or the other until at the frequency end
point the beam radiation is cut off by the subarray pattern.

The system bandwidth (for a large array) is given approximately by
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D f
f0

=
Du
u0

=
e

u0
=

Mdy

F sin u0

=
M

sin u0
(l0 /MD) (8.132)

= M
l0

(NdL sin u0)

or M times the bandwidth of the array without time delay.
A more precise expression for bandwidth of the space-fed lens system, given

by Southall and McGrath, accounts for the fact that the subarray width e is
independent of frequency, and so the subarray width and array squint only limit
bandwidth at the lower frequency band edge. At the upper band edge, the bandwidth
is limited by the grating lobe entering into the subarray passband. The resulting
fractional bandwidth is thus given by the relationship

D f
f0

=
l0

DSsin u0 +
Mdy

F D (8.133)

=
Ml0

(Ndy )Ssin u0 +
Mdy

F D
A Partially Overlapped Line Source Array of Overlapped Subarrays

Some applications, like space-borne radar, require a receiving array that is very
long in one dimension and short in the other. This construction will likely result
in the need for time-delayed subarrays along the larger axis, with digital beamform-
ing and further processing done behind each subarray. Assuming that there is no
need for time-delay control in both planes, a logical engineering choice is to use a
line source array with time delay and possibly digital beamforming and processing
for the long dimension and simple corporate phase steered or multiple beam col-
umns in the other. The instantaneous bandwidth for such systems tends to be in
the range of 5%, and with the need to minimize the number of digital receivers,
it is desirable to use large subarrays. Figure 8.43(a) shows the pattern of an array
with contiguous subarrays 16 wavelengths apart at center frequency f0 , where the
32 elements are spaced a half-wavelength apart. The array is scanned to 45° at
the frequency 1.03f0 . The pattern has evidently large quantization lobes spaced at
multiples of the inverse of the normalized subarray spacing. It is required to design
a network that synthesizes flat-topped subarray patterns, but these subarrays are
much too large to produce with elements that have shaped patterns or with any
of the fully constrained networks like the chess network described earlier. Alterna-
tively, with the quasi-optical overlapped subarrays documented in the last section,
this would be a very large structure, with focal length on the order of the array
length. If one needed N subarrays of a certain width, one could simply place a
number of smaller beamformers side by side to provide the beamforming for the
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Figure 8.43 Comparison of radiation patterns for arrays of 16 subarrays with 32 elements each:
(a) pattern of array of contiguous subarrays; and (b) pattern of uncompensated partially
overlapped sections of overlapped subarrays. (From: [84].  2001 IEEE. Reprinted with
permission.)

longer dimension. We will refer to these smaller beamformers as sections of the
array, and each section includes overlapped subarrays consisting of M × M time-
delayed networks (like a small Rotman lens, or more likely a stage of digital
processing). These sections, with much shorter focal length, could have the correct
subarray pattern width, but each would form only Ns beams, so that a total of
N /Ns of such beamformers would make up the new beamformer.

This procedure does suppress the large quantization lobes of Figure 8.43(a),
but unfortunately it produces a number of relatively high (−20 dB) sidelobes very
closely spaced and beginning near the main beam. These sidelobes are new quantiza-
tion lobes with spacing equal to the normalized inverse of the separation between
sections. They are caused by the fact that within the group of subarray patterns
formed by each section, the central subarray patterns are of good quality while
the outer ones of each group are much poorer quality, because their sinc-like
distributions are truncated. If the sections are all aligned, and with all the subarrays
excited, the resulting aperture distribution (the sum of all of the sinc-like functions)
has a repeated amplitude modulation with the period of the section length. It is
this amplitude modulation that produces the new, closely spaced quantization
lobes.

Figure 8.44 shows a modular network that avoids this new kind of quantization
lobe [84]. The network uses double the number of beamforming sections and sums
their output as shown. Each feed produces M (M = 4 in the example) sinc-like
functions in the aperture, corresponding to M subarrays. In the example, we excite
only the central two (or M /2) beams, labeled 1 and 2 from the section shown at
the left, beams 3 and 4 from the central section, and 5 and 6 from the section
shown at the right. Summing the outputs has the result of partially overlapping
these aperture distributions. The resulting subarrays are very similar but still not
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Figure 8.44 Network realization of modular feed for partial overlapping of transform feeds (without synthe-
sis). (From: [84].  2001 IEEE. Reprinted with permission.)

Figure 8.45 Radiation patterns of array with synthesized subarray patterns at center frequency and band
edges. (From: [84].  2001 IEEE. Reprinted with permission.)
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identical, and that leads to some residual quantization lobes. These are much
smaller than before, but they are significant because they are close to the main
beam. Figure 8.43(b) shows this resulting pattern for an overlapped subarray with
the same dimensions as Figure 8.43(a). Adjusting the weights at the output of the
M × M feed by a projection method to compensate for this effect makes all subarray
patterns nearly identical by removing any remaining amplitude modulation of the
aperture field. Figure 8.45 shows the resulting synthesized patterns over a 6%
bandwidth and indicates that this modular array has the potential to achieve
excellent sidelobe control with very few subarrays in a relatively compact, light-
weight line source. These results have not been demonstrated with a fabricated
array.
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List of Symbols

a angle (degrees or radians), attenuation constant (nepers/m)
b phase constant (equals 2p /l )
d 2 amplitude error variance, normalized to unity
e permittivity (dielectric constant, F/m)
eA aperture efficiency
eP polarization efficiency
eL loss efficiency
eT taper efficiency
G reflection coefficient
h characteristic impedance
hB number of scanned beamwidths
u angle (degrees or radians)
û unit vector in the q direction
u3 3-dB bandwidth
l wavelength
m permeability (H/m)
p 3.1415927 . . .
r unit vector in the r direction, polarization unit vector
s radar cross section
s 2 sidelobe level variance
f̂ unit vector in the f direction
F2 phase error variance (rad2)
f angle (degrees or radians)
V ohm
v angular frequency (equals 2p f, rad/s)
A ampere, magnetic vector potential (Wb/m), area (m2)
A magnetic vector potential (Wb/m)
a area (m2)
an element excitation
B magnetic flux density (Wb/m2), susceptance (mhos)
B magnetic flux density (Wb/m2), susceptance (mhos) Bb
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Bb beam broadening factor
C a constant, velocity of light (m/s), capacitance (F)
°C degree Celsius
c a constant, velocity of light (m/s)
D electric flux density (F/m2)
D electric flux density (F/m2)
D(u, f ) directive gain
D0 directivity
d distance (m)
dB decibel equals 10 log (P2 /P1)
dBi decibel over isotropic
E electric field intensity (V/m)
E electric field intensity (V/m)
F farad, noise figure, electric vector potential (coulombs/meter)
F electric vector potential (coulombs/meter)
F(u, f ) array factor
f(u, f ) element pattern
G conductance (mhos), gain
GR realized gain
g circuit gain (g > 1) or loss (g < 1)
H henry
H magnetic field (A/m)
I current (A)
I current (A)
i current (A)
J joule
J current density (A/m2)
JS surface current density (A/m)
K Kelvin
k Boltzman’s constant
k wave number (equals 2p /l , m−1)
L inductance (H)
M magnetic current (V/m2), covariance matrix
MS magnetic surface current (V/m)
N number (integer), circuit noise (W)
NA noise power (W)
n number (integer)
n unit vector normal to surface
P power (W)
Q charge (C)
R resistance (ohms)
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S signal power (W), power density (W/m2)
S Poynting vector (W/m2)
s second (of time)
T temperature (K)
TA antenna temperature (K)
TB brightness temperature (K)
u direction cosine
V volt
v direction cosine
W watt
Wb Webers
X reactance (ohms)
x̂ unit vector in x direction
Y admittance (ohms)
ŷ unit vector in y direction
ZL load impedance
Z0 characteristic impedance (of free space)
ẑ unit vector in z direction
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Index

A Angular filters
dielectric layer, 409Absolute convergence, 305
for grating lobe suppression, 408–11Active arrays
metallic grid, 410configurations, 35

AntennasEIRP, 35–37
broadband flared-notch, 248–51Adaptive arrays, 159–61
cavity-backed, 250, 252configurations, 161
coplanar strip line, 270fully, 160
horn aperture, 405–8illustrated, 161
inverted L (ILA), 247, 248partially, 160
microstrip slot, 252theory, 160
multiple-beam, 380Adaptive cancellation, 169
near-field Gregorian reflector, 436Adaptive weights, 163–65
overlapped subarray, 441Adjacent beams, 383
planar inverted F (PIFA), 247, 248Admittance, 265
receiving, in polarized plane waveinput, 266

field, 8–10slot array, 322
sleeve, 238–41Alternating projection method, 149–53,
slot line, 270218
system requirements, 1–12convergence, 153
temperature, 4, 5defined, 149
transform-fed lens, 442–43procedure, 149–50
Vivaldi, 249–50successive projectors, 151
wideband, 251Alternative transmission line elements,
See also Dipoles; Monopole antennas269

Aperiodic arraysAmplitude distributions, 84
illustrated, 419quantized, 99–106
for limited field-of-view, 417–21separable, 19, 84
See also Periodic arraysAmplitudes

Aperiodic grid, 420error, 354, 412
Aperture, 4illumination, 427

array, 44–47lobe, 274
circular, 156quantized subarray, 375–77
control, 463quantized taper, 374–75
dimensions, 185random, 353–62

Angle error, 12 effective sizes, 433
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Aperture (continued) Bandwidth, 30–34
alternate perspective, 33efficiency, 75
criterion, 193illuminations, 21, 135, 425, 426, 462
elevation patterns and, 196–97normalized illumination, 129
fractional, 31, 267one-dimensional distribution, 390
interference, 174reflection from, 431
limitations, 43taper, 441–42
limited field-of-view arrays, 456Aperture antenna elements, 251–58
restriction, 34horn, 257–58
transform-fed lens system, 463–64ridged waveguide, 256–57

Bayliss patterns, 130–33slot, 252–54
circular arrays, 155–57waveguide radiators, 254–56
generalized patterns synthesized from,See also Elements

137–39Aperture efficiency
parameters, 133defined, 4
radiation, 11known, 88
synthesized, 131modified sin pz /pz line source, 130

Beam broadening factor, 118Taylor pattern, 155
for Chebyshev array, 119Archer lens, 398
defined, 19Array analysis, 63–75

Beam coupling factor, 386, 387, 390Array architecture, 44–59
Beam coupling matrix, 387aperture, 44–47
Beam crossoverarray control, 55–59

illustrated, 380beamforming modalities and, 53–55
level, 379feed, 47–52
loss, 381–84frequency ranges, 45

Beam deviation factor (BDF), 399Array blindness, 306–19
Beamformingdefined, 306–7

analog, 53lattice dimensions and, 313
digital, 53–55, 392location vs. waveguide aperture size,
modalities, 53–55313

Beam patterns, 386locus, 313
Beam pointing error, 358–59onset, predicting, 314
Beamsphenomenon, 308

adjacent, 383to wider angles, 313
constrained circuits for forming,Array control, 55–59

393–95modalities, 54
curves of efficiency, 391RF components, 55–59
of parabolas, 399Array failure correction, 180
pencil, 84Array spacing, 75
phase-steered, 394Array theory, 12–34
radiation efficiency, 386Attenuation coefficient, 7
time-delayed, 396, 456
triangular grids, 384

B Woodward-Lawson, 382–83, 400, 424
Balanced fed radiator, 268–69 Beamwidth, 11, 118

Chebyshev, 121Balun-fed folded dipole, 246
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continuous line source, 19 Cavity-backed antennas, 250
Cavity method, 187criterion, 31

endfire, 89 Channel noise, 172
Chebyshev distributions, 88half-power, 19, 123

lens, 448 Chebyshev illumination, 117, 429
Chebyshev patterns, 21scanning arrays, 19–22

tapering and, 19 characteristics, 119–21
efficiency loss, 122Taylor distributions, 125

thinned arrays, 99 synthesis, 118
Chebyshev polynomial, 116, 117variation with scan, 22

Bessel functions, 191, 336 Circuit losses, 37–38
Circular-aperture distributions, 21radial parameter vs., 192

series, 336 Circular arrays, 95
advantage, 187–88zero locations, 156

Bilateral slotline, 327 bandwidth, 193
commutating networks, 198Blass matrix, 396

Blass time-delayed multiple-beam directional elements, 190, 194–97
far-field patterns, 192forming circuit, 396

Bollings radiator, 268–69 geometries, 189
lattices, 417Boltzmann’s constant, 5

Bootlace lens, 398, 439 lens-fed, 199
patterns, 187–220Boundary condition, 295

Bowtie dipole, 236, 237 phase mode excitation, 190–93
practical developments, 188excited by coplanar strips, 236

excited by microstrips, 237 sector, 213, 214
synthesized patterns, 215illustrated, 239

See also Dipoles Circular planar arrays, 153–57
Bayliss difference patterns, 155–57Brick construction, 46

Brightness temperature, 4 Taylor synthesis, 153–55
Circular waveguides, 279Broadband arrays, 456

Broadband cancellation, 170 Circumferential polarization, 336
Collimation, 14–15Broadband flared-notch antennas,

248–51 Comb line arrays, 276
Commutating networks, 198Broadband interference, 171

Butler matrices, 49, 199, 201, 391, 392 Conformal arrays
analysis methods, 186–87high-power waveguide, 392

orthogonal beam, 427 aperture dimensions, 185
design conclusions, 208–10phase-steered beam formation, 394

for synthesizing shaped patterns, 392 pattern scanning, 216
synthesis with alternating projection,

C 218
Constrained dual-transform system,Cancellation, 308

adaptive, 169 459–63
Constrained feeds, 47broadband, 170

sidelobe, 173 Constrained lenses, 398
Constrained overlapped networks,Cascaded multiple-beam networks, 423

Cassegrainian geometry, 435 412–17
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Contiguous subarrays, 363 Dielectric layers, 315, 409
Dielectric WAIM sheets, 333–35broadband characteristics, 459

evaluation, 458–59 calculation procedure, 335
for scan matching, 334time-delayed, 456–59

uniformly illuminated, 364–65 susceptance, 333
Digital beamforming, 53–55, 392See also Subarrays

Continuous illumination, 75–76 Dilation factor, 124
Dipole arraysapproximating pattern of, 140

discretization, 139–41 periodic, 338–39
reactance, 322See also Illumination

Continuous tapers, 99 resistance, 322
scanning, 324Continuous transverse stub (CTS) arrays,

276–77 short, 322
with thin wire elements, 314Coordinate systems, 2, 10

Coplanar strip line antenna, 270 Dipoles, 8, 228–34
balun feed, 237–38Copolarization, 2

Covariance matrix, 164, 165 boundary condition, 295
bowtie, 236, 237, 239, 241inversion, 175–76

modified, 172 broadside directivity, 82
element patterns, 205–6Creeping waves, 336

Crossed polarization, 2, 227 fatter, 241
fed off-center, 238Cumulative probability, 359

Cylinders finite arrays of, 329
folded, 241–46arrays on, 335–36

patterns of elements on, 202–3 horizontal, 234, 235
impedance functions, 233patterns of slots on, 204

radiation from, 337 isolated, 232, 233
microstrip, 236, 246–47Cylindrical arrays

advantages, 187–88 mutual coupling, 294
phase center, 208bandwidth, 193

basic element, 188 polarization characteristic, 9
radiation pattern, 232commutating networks, 198

commutation, 197 sleeve, 238–41
special feeds, 234–38directional elements, 190, 194–97

geometries, 189 split tube balun feed, 236
vertical, 229, 232multiface planar array comparison,

219–20 See also Antennas
Directional elements, 190, 194–97normalized gain, 210–13

patterns, 187–220 Direction cosine space, 17
Directivity, 2, 8planar array comparison, 210

Cylindrical lens, 446, 453 average, 94, 103
broadside, 82

D constant, 81
errors, 38–41Delta function, 295, 296

Density-tapered arrays, 93–96 excitation errors and, 358
as fundamental quality, 3Designed sidelobe level, 360

Desired sidelobe level, 360 of ideal pattern, 103
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interference, 174 element excitation and, 71
linear arrays, 23 E-plane uniformly illuminated
maximum, 3 aperture, 403
omnidirectional elements, 79, 80 gain computed from, 73–75
optimum, 83–84 infinite array, 323
periodic array, 358 isolated, 203–4
planar arrays, 23–25 measured, 176–80
relative, 156, 157 microwave lens feed, 454
scanning arrays, 19–22 mutual coupling and, 69–73
thinned arrays, 99, 102 normalized gain, 212

Directivity formulas omnidirectional, 81
linear arrays, 76–83 parallel plane array, 298
for omnidirectional elements, 81 relationship, 178
planar arrays, 87–89 ripple, 210

Discrete spectrum, 301 unknown, 14
Dolph-Chebyshev synthesis, 116–21 use of, 71

defined, 116 in well-behaved infinite scanning
patterns, 117 arrays, 319–27

DOME structure, 220–21 Elements
Dual-lens limited field-of-view system, alternative transmission lines, 269

439 aperture antenna, 251–58
Dual-mode waveguides, 416 balanced fed radiator, 268–69
Dual-reflector systems, 435, 436, 438 coupling between, 68
Dual-transform systems, 405, 421, 435 electric current, 227–51

constrained, 459–63 ‘‘failed,’’ 354
practical design, 452–55 horn, 257
with space-fed lens, 440 infinitesimal, 225–27

linearly polarized, 282
E microstrip patch, 258–68, 258–69

one-dimensional scan, 269–77Edge slot arrays, 275
phased array, 225–82Effective isotropic radiated power (EIRP),
polarization characteristics, 225–2712
polarization diversity, 277–82defined, 35
radiating circular polarization, 278two-dimensional arrays, 35–37
ridged waveguide, 256–57Eigenvalues, 158
slot, 252–54Electric current elements. See Elements;
waveguide radiating, 254–56Wire antenna elements
waveguide slot array line source,Electric currents, 66

272–75Electric potential, 63
Element space adaptation, 160–61Element-by-element formulation, 302
Element use factor, 42Element patterns, 69
Elevation angle, 76array, 204–10
Elevation patterns, 194circumferential, 206

bandwidth and, 196–97in cylindrical sector, 202–3
horizontal dipole, 235defined, 12

dipoles, 205–6 Elliott’s formulas, 119
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Elliott’s modified Taylor patterns, design, 455
133–39 HIPSAF, 437–39

aperture illumination, 135 lenses with, 429–52
controlled nulls, 136 microwave lens, 454
defined, 134 multiple-beam array, 48–50
distribution, 134–35 off-axis, 398–99
illumination, 135 optical, 430
illustrated, 136 reflectors with, 429–52
in iterative procedure, 135 Rotman, 452

Endfire special, 234–38
beamwidth, 89 split tube balun, 236
Hansen-Woodyard gain, 90 T-bar, 254
scanning to, 89–92 time-delay lens, 447

Envelope function, 370 transform, 430, 449
E-plane scanning simulators, 343 wideband scanning array, 457
E-polarization, 345 Ferrite phase shifters, 56–57
Error effects, 353–77 configurations, 56

introduction, 353 switching speeds, 56
phase errors, 353–62 Ferroelectric phase shifters, 55, 56
random amplitude, 353–62 Filamentary current, 295

Errors Finite arrays, 327–29
amplitude, 412 of dipoles, 329
beam pointing, 358–59 integral equation formulation, 293–97
excitation, 358

See also Infinite arrays
incremental phase shift, 369

Finite difference time domain (FDTD)
mean square, 367

method, 187, 338normalized, 361
Finite element (FEM) method, 187, 338phase, 354, 366
Fixed-beam reflectors, 429quantization, 38–40
Floquet series, 301residual, 358
Folded dipoles, 241–46small, 359

balun-fed, 246symmetrical form, 356
basic, 242Excitation coefficients, 446
excited by microstrip balun, 242Excitation errors, 358
illustrated, 242
input impedance, 241–42F
parameters, 244–45Fan beam, 76, 78
strip, 242Far field, 12–13, 14
See also DipolesFar-zone fields, 67–68

Fourier-Bessel series, 155Feed architectures, 47–52
Fourier coefficients, 151, 190constrained, 47
Fourier series, 190multiple beam, 48–50

line source excitation, 132space-fed, 47–48
method, 109–11Feeds
operator, 151alternative locations, 430
synthesized representation, 110balun, 237–38

constrained, 47, 430 Fourier transform, 153, 300
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Fractional bandwidth, 267 Ground screen, 65, 89
G/Ts , 36dielectric constant and, 267

wideband arrays, 50, 51
HFriis transmission equation, 10
Hankel function, 301Fully adaptive arrays, 160
Hansen-Woodyard condition, 91cost, 174
Helmholtz equations, 66multiple-beam, 169–70
Hemispherical arrays, 220–21phased, 168–69
Hermitian matrix, 388
High-performance subarraying array feedG

(HIPSAF), 421
Gain feed, 437–39

array realized, 25–26 geometry, 437
computed from element patterns, Hilbert space, 142

73–75 Horizontal dipole, 234
element, 75 elevation pattern, 235
Hansen-Woodyard endfire, 90 impedance, 235
IEEE standard definition, 3 See also Dipoles
limitations due to circuit losses, 37–38 Horn apertures, 406
maximizing, 158 multimode, 406–7
normalized, 210–13 periodic antennas, 405–8
optimization, 157, 159 Horn elements, 257
realized, 74, 88 Howells-Applebaum method, 160,
reduction, 38 163–65
relative, 20 H-polarization, 345

Gain factor, 20, 23
IGalerkin’s method, 296

Generalized array configuration, 13 Illumination
Generalized patterns, 175–76 amplitude, 427
Geometrical Theory of Diffraction aperture, 21, 135, 425, 426

(GTD), 187 Chebyshev, 117, 429
Grating lobes, 84–87, 303 continuous, 75–76, 139–41

broadside, 408 edge parameter, 122
characteristics, 364 errors, 38–41
linear arrays, 27 normalized aperture, 129
planar arrays, 27–30 regions, 197
power, 458, 459 uniform, 211
real space, 308 Image principle, 65
series, 308 Impedance
spectrum, 28, 30 array, 322
suppression, 403, 408–11 for electromagnetically coupled patch
unwanted, 304 antennas, 330

Green’s functions, 186, 187, 261, 329 free-space, 386
free-space, 295, 298 horizontal dipole, 235
obtaining, 302 infinite array, 343
spectral, 295 monopole antenna, 230–31

step-up ratio, 243with UTD, 337–38
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Impedance (continued) with array feeds, 429–52
in well-behaved infinite scanning back face, 448

array, 319–27 beamwidth, 448
See also Input impedance bootlace, 398, 439

Impedance matching collimating dielectric, 407
Rotman lens feed and, 455 constrained, 398
wide-angle (WAIM), 331 cylindrical, 446, 453
for wideband radiation, 329–35 limited field-of-view systems, 437–39

Infinite arrays microstrip, 398
element patterns, 323 multiple-beam, 396, 397
geometries, 299 Rotman, 398, 454
impedance, 343 stripline, 398
input impedance, 322–23 two-dimensional cylindrical, 450
integral equation formulation, Lerner polarizer, 280–81

297–306 Limited field-of-view arrays, 41
one-dimensional dipole, 298 bandwidth, 456
radiating patterns, 322 constrained overlapped networks,
reflection coefficient, 326–27 412–17
scan characteristics, 322 with dielectric angular filter, 411
simulating performance of, 340 required controls, 43
solution, 305 scanned array pattern, 411
studies, 323 Limited field-of-view scanning, 429
theory, 298, 305 Limited field-of-view systems, 42,
well-behaved, 319–27 399–455

Input impedance, 3 aperiodic array, 417–21
folded dipoles, 241–42 cluster of beams, 424
infinite arrays, 322–23 cylindrical lens, 446
microstrip patch, 265

dual-lens, 439
slot elements, 25

dual-reflector, 435, 436Input power, 73
lens, 437–39Integrodifferential equation, 300
minimum number of controls,Interference

400–442bandwidth, 174
multimode horn apertures, 406broadband, 171
optically fed overlapped-subarray,directivity, 174

439–52powers, 176
periodic array, 402–21spectrum, 176
phase interpolation network, 413Inverted L antenna (ILA), 247, 248
reflector, 431–37Iterated difference pattern, 139
subarray aperture distribution, 404Iterated sum pattern, 137
types of, 400Iterative synthesis, 116

Linear arrays
K array factors, 28
Kummer’s transformation, 305 characteristics, 75–84
L of coaxial monopole elements, 208–9

collimation, 14–15Least mean square (LMS) algorithm, 160
directivity, 23Lenses

Archer, 398 directivity formulas, 76–83
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finite, 192 Microstrip patches, 258–68
aperture field model, 260gain optimization, 157
broadbanding, 268grating lobes, 27
circular, 259optimum directivity, 83–84
coaxially fed, 259pattern characteristics, 76–83
electric current model, 260periodic, 402
electromagnetically coupled, 259radiation patterns, 28, 29
elements, 258–69scan loss, 23
importance, 258scanning, 14–15
input impedance, 265with separable distributions, 109–53
with inset feed, 264superdirectivity, 83–84
models, 260See also Planar arrays
modifying, 263Linearly polarized antennas, 10
polarization characteristics, 268Line-source distributions, 19, 20
radiator, 260Line-source patterns, 77
rectangular, 259, 268Low-profile wire elements, 248
shorted quarter-wave, 259
simplified two-slot radiator, 261M
slot-coupled, 259

Magnetic currents, 66 transmission line model, 263
Matrix scanning system, 201 MMIC phase shifters, 58
Maxwell’s equations, 65 Mode-matching approach, 303
Meander line polarizers, 282 Modified sin pz /pz patterns, 128–30
Mean pattern, 97 aperture efficiency, 130
Mean phase error to zero, 372 defined, 128–29
Mean square error, 367 efficiency, 130
Measured element patterns, 176–80 illustrated, 131

array failure correction, 180 line source characteristics, 130
expansion, 177–78 Modified Taylor patterns, 133–39
magnitudes, 179 aperture illumination, 135
pattern control, 179 controlled nulls, 136
relationship, 178 defined, 134

Metallic grid angular filters, 410 distribution, 134–35
Method 1, 100, 101, 106 illumination, 135
Method 2, 100, 101 illustrated, 136
Method of Moments (MOM), 186–87 in iterative procedure, 135
Microelectromechanical systems (MEMS) Monolithic array construction, 46

switches, 53, 55 Monopole antennas, 228–34
illustrated, 58 impedance characteristics, 230–31
phase shifters, 58 resonance, 230

Microstrip dipoles, 236, 246–47 sleeve, 238–41
defined, 246 special feeds, 234–38
illustrated, 247 vertical, 229, 234
studies, 246 See also Antennas
See also Dipole Monopulse beam splitting, 11–12

Microstrip lenses, 398 Monopulse measurement, 12
Multi-element waveguide simulators, 345Microstrip lines, 265
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Multiface planar arrays, 219–20 flow graphs, 5
two-port, 6Multimode horn apertures, 406–7

Multiple-beam arrays Nonplanar arrays, 185–221
analysis/synthesis, 186applications, 380

feeds, 48–50 circular, 187–220
cylindrical, 187–220fully adaptive, 169–70

S/N optimization, 162–65 hemispherical, 220–21
introduction, 185–87Multiple-beam lenses, 50, 396, 397

Multiple-beam matrices, 52, 392–99 mutual coupling, 335–39
spherical, 220–21Multiple-beam systems, 379–99

beam crossover loss, 381–84 truncated conical, 221
Normalized gain, 210–13cascaded, 423

generic lens, 381 Normalized power, 458
Normal modes, 310illustrated, 380

multiple-beam matrices, 392–99 Numerical electromagnetics code (NEC),
291orthogonality loss, 384–92

reflector, 381
OMultiple sidelobe cancelers, 166

Mutual coupling, 69 Off-axis feeds, 398–99
geometry, 450complexity, 292

dipole antennas, 294 radiation characteristics, 451–52
transform, 449, 450, 451effects, 208

electromagnetics, 335 See also Feeds
Offset beams, 456element patterns and, 69–73

in N-by-N matrix, 82 Offset-fed reflectors, 434
Omnidirectional elements, 197for nonplanar surfaces, 335–39

Mutual impedance, 70 directivity, 79, 80
directivity formulas, 81effects, 291–93

matrix coefficients, 293 Optical beam formers, 392–99
Optically fed overlapped-subarrayMutual resistance, 88, 89

systems, 439–52
N Orchard power pattern synthesis, 144–49

antenna array factor, 145–46Near-field Gregorian reflector antennas,
436 disadvantages, 149

power pattern, 147N-element arrays, 424
Newton-Raphson technique, 148 shaped, 146

Orthogonal beam matrix, 463N/M ratio, 427
Noise Orthogonality loss, 384–92

defined, 384channel, 172
characterization, 4–8 in two-beam system, 389

Overlapped networks, constrained,component, 5
contribution, 6 412–17

Overlapped subarrayscovariance matrix, 164, 165
factor, 8 amplitude illumination, 425

antenna, 441figure, 6
Noise temperature completely, 425

constrained networks for forming, 416defined, 4
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defined, 42 generalized, 175–76
hemispherical array, 220–21formation, 423

with higher order mode overlap, 415 iterated difference, 139
iterated sum, 137patterns, 414

synthesized, 417 low-sidelobe, 386
modified sin pz /pz, 128–30See also Subarrays

Overlapped time-delayed subarrays, modified Taylor, 133–39
nonplanar array, 185–221459–67

constrained dual-transform system, optimization, 157–59
overlapped subarray, 414459–63

partially overlapped line source array, power, 141–44, 307, 308
pulse-shaped, 152464–67

transform-fed lens system, 463–64 quiescent, 160
radiation, 195–96

P resynthesizing, 180
shaping, 1Parallel plane arrays

element patterns, 298 spherical array, 220–21
subarray, 365, 444, 445, 462geometry, 418

radiation characteristics, 316, 317 Taylor, 123, 124, 126, 128
thinned array, 93–96, 97Parallel-plate simulators, 340

Partially adaptive arrays, 160 trough reduction, 172
truncated conical array, 221Partially overlapped line source array,

464–67 uniform, 113
Pattern synthesis, 109–80modular feed realization, 466

quantization lobes, 465, 467 alternating projection method, 149–53
Bayliss, 130–33Passive arrays

configuration, 35 Chebyshev, 118
circular planar array, 153–57discrete failure, 354

EIRP, 35–37 circular sector array, 215
Dolph-Chebyshev, 116–21Pattern characteristics

linear arrays, 76–83 Fourier transform method, 109–11
linear array, 109–53planar array, 84–87

Pattern control with measured element patterns,
176–80with measured element patterns, 179

waveguide arrays, 272 modified sin pz /pz, 128–30
Orchard, 144–49Pattern function, 109–10

Pattern nulling, 167, 168 pattern optimization, 157–59
with phase modes, 191–93Patterns

average, characteristics, 354–58 planar array, 109–53
power, 141–44Bayliss, 130–33

beam, 386 Schelkunov’s form, 111–13
sector array, 213–18Chebyshev, 21, 119–21, 122

circular array, 187–220 Steyskal’s, 141–44
Taylor line source, 121–28cylindrical array, 187–220

directivity, 2, 3 Woodward, 113–16
Peak sidelobes, 359–62elevation, 194, 196–97

far-field, 191, 192 behavior, 359
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Peak sidelobes (continued) size determination, 34–43
S/N optimization, 162–65characteristics, 364

cumulative probability and, 359 thinned, 92–106
tolerance effects, 40due to N-bits of quantization, 367

level, 361 wideband effects, 32–33
Phase errors, 354number and probability, 362

See also Sidelobes due to phase quantization, 366
mean, to zero, 372Pedestal function, 386

Pencil beams, 84 in periodic arrays, 353–62
Phase modesPeriodic arrays

average pattern characteristics, 354–58 with coefficients, 192–93
concept, 190average sidelobes, 356

beam pointing error, 358–59 of continuous current sheets, 191–93
currents, 190–91dipole, 338–39

directivity, 358 defined, 190
excitation, 190–93horn aperture, 405–8

for limited field-of-view, 402–21 synthesis and scanning with, 191–93
Phase quantizationlinear, 402

peak sidelobes, 359–62 grating lobe levels due to, 368
phase error due to, 366phase errors in, 353–62

random amplitude in, 353–62 RMS sidelobes due to, 368
sidelobes reduction due to, 371–73Periodic structures, 310

Petzval surface, 399 in uniformly illuminated arrays,
365–71Phase

add method, 372 Phase shift
error incremental, 369dithering, 372

interpolation networks, 413 scan angle and, 412
term, 463maximum output, 428

rounding off, 372 Phase shifters, 15, 17, 31, 200–201
3-bit, 371scanning, 15–18, 447

tolerance, 357 aperture control, 463
binary states, 55Phased arrays

analysis, 63–75 diode, 57
ferrite, 56–57bandwidth, 30–34

build cost, 339 ferroelectric, 55
hybrid circuit, 57characterization for radar/

communication systems, 12–44 loaded line circuit, 57
maximum reduction, 420constrained feeds, 47

construction, 45 MEMS, 58
microwave, 57directive properties, 1–4

elements, 225–82 MMIC, 58
N-bit, 365error effects, 353–77

fully adaptive, 168–69 programmed, 371
Phase-steered beams, 394generalized configuration, 13

input impedance, 3 Planar arrays
characteristics, 84–89noise characterization, 4–8

scan behavior, 339–46 circular, 153–57
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collimation, 14–15 quantization lobe, 376
total, 9–10cylindrical array comparison, 210

Power patternsdirectivity, 23–25
contour map, 308directivity formulas, 87–89
illustrated, 307grating lobes, 27–30
time delay at subarray ports, 376grating lobes/array grid selection,

Power pattern synthesis84–87
advantages, 141multiface, 219–20
Gaussian, 145over ground screen, 89
Orchard, 144–49pattern characteristics, 84–87
shaped, 146scanning, 14–15
Steyskal, 141–44with separable distributions, 109–53

Poynting vector, 304two-dimensional scanning, 18–19
Printed circuit series-fed arrays, 275–77See also Linear arrays
Probability density function, 96Planar inverted F antenna (PIFA), 247,
Projected arrays, 214248

Point matching, 296 Q
Poisson summation formula, 300, 301 Quantization errors, 38–40

one-sided, 328 Quantization lobes
uses, 301 power, 376

Polarization residual, 467
characteristics of infinitesimal suppression, 465

elements, 225–27 Quantized amplitude distributions,
circumferential, 336 99–106

Quantized amplitude taper, 101, 374–75dipole antenna, 9
Quantized subarray amplitudes, 375–77diversity, 277–82
Quantizing geometries, 102match, 8
Quarter-wave plate polarizer, 279radiated, 227
Quiescent array pattern, 160radiating circular, 278

scanning arrays and, 279 R
surface waves and, 317 Radiating circular polarization, 278
unit vector, 9, 10 Radiation

Polarizers, 277–82 aperture in conducting screen, 67
illustrated, 280–81 from cylinders, 337
Lerner, 280–81 efficiency, 386
meander line, 282 of elementary field sources, 226
quarter-wave plate, 279 fields, 225
waveguide circular, 279 integrals, 67–68

Polarizing grids, 280 patterns, 195–96, 465
Polynomial coefficients, 133 surface wave comparison, 318
Potential functions, 65–66 wideband, 329–35
Power Radiation characteristics

density, 3 off-axis transform feeds, 451–52
grating lobes, 459 parallel plane arrays, 316, 317
loss, 457 sector arrays, 213

uniformly illuminated arrays, 17normalized, 458
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Random error, 38–40 shift phase and, 412
Reactance two-dimensional array, 320

active, variation, 325 waveguide simulators, 341, 345
short dipole array, 322 Scan loss, 25–26

Reduced element spacing, 331–33 with array blindness, 26
Reflection coefficients, 304 curves, 25

active, 306 Scanning
contour plot, 319 dipole array, 324
infinite array, 326–27 to endfire, 89–92
measured, 177 fixed time delays, 52

Reflectors limited field-of-view, 429
with array feeds, 429–52 phase, 15–18, 447
dual systems, 435, 436 with phase modes, 191–93
fixed-beam, 429 time-delayed beam positions, 52
geometry, 432 two-dimensional, 18–19
lens-fed, 435 wide-angle, 327
limited field-of-view systems, 431–37 wideband, 447, 455–67
offset-fed, 434 Scanning arrays, 14–15
scanned by array, 432 beamwidth, 19–22
scanned by off-axis feeds, 398–99 directivity, 19–22

Relative convergence, 305 geometries, 16
Relative directivity, 156, 157 polarization and, 279
Residual sidelobe level, 355 Schelkunov’s form, 111–13
Resistance, 322

defined, 111
Resynthesizing patterns, 180

illustrated, 112
Ridged waveguide elements, 256–57

Schwarz-Christoffel transformation,characteristics, 256
243–44defined, 256

Sector arrays, 197–220design, 256
array element patterns, 204–10illustrated, 257
circular, 213, 214See also Aperture antenna elements
conformal cylindrical, 203Root matching, 139–41
isolated element patterns, 203–4defined, 140
normalized gain, 210–13examples, 140–41
pattern synthesis, 213–18generalized, 175
radiation characteristics, 213Rotman feed, 452
uniformly illuminated, 211Rotman lens, 50, 454

Semi-infinite arrays, 327–29illustrated, 49
Sidelobe cancelersimpedance matching problem, 455

defined, 160uses, 398
low-gain, 166wide-angle scanning, 48
multiple, 166Rounding off, 372
multiplicity, 167–68Row (column) arrays, 269–77
operation, 165–68

S pattern nulling with, 167
S/N optimization, 162–65Scan angle

maximum, 428 uses, 166–67
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Sidelobe levels, 92, 106 T-bar feed, 254
See also Aperture antenna elementsaverage, 106, 358

design, 106 Slot line antenna, 270
Small arrays, 339–46designed, 360

desired, 360 Smith chart plot, 326
Snell’s law, 431normalized, 355

peak, 361 Space-fed networks, 47–48
Spatial harmonic series, 301periodic phase, amplitude, time-delay

quantization and, 362–77 Spherical arrays, 220–21
Standing wave ratio (SWR), 327, 332residual, 355

Sidelobes Steering vector, 166
Stegen’s formulas, 118asymptotic, 129

average, 356, 418 Stein limit
achieving, 392control, 47, 81

equal, 123 defined, 386, 390
example, 388peak, 38, 92, 93, 97–98, 359–62

ratio, 123 Steyskal’s synthesis, 141–44
advantages, 141reduction, 19

reduction to phase quantization, defined, 141
examples, 144371–73

RMS, 368 minimization problem solution, 143
Stripline lenses, 398suppression, 126

tapering, 19 Subarray factors, 416
Subarray level adaptation, 161Signal-to-noise ratio, 12

optimization, 162–65 Subarray ports, 422
Subarrays, 35, 47, 455sensitivity determination, 10

Sine space, 17 contiguous, 363, 364–65
discrete phase, 375–77Sleeve antennas, 238–41

advantages, 239 excitations, 446–47
flat patterns, 428defined, 238

illustrated, 239–40 irregular, 420–21, 422
overlapped synthesis, 405isolated, 240–41

Slot arrays pattern peak, 369
patterns, 365, 444, 445, 462admittance, 322

with cavities, 321 phase center, 444
ports, 365edge, 275

geometry, 320, 321 ports, time delay at, 375
with quantized amplitude taper,performance, 320, 321

susceptance, 322 374–75
radiation patterns, 363, 364, 425tapered (TSAs), 326

tilted, 274 time-delayed, 375–77, 456–67
Subdomain basis functions, 297without cavities, 320

Slot elements, 252–54 Successive projectors, 151
Superdirective illuminations, 17defined, 252

illustrated, 252–53 Superdirectivity, 83–84
Supergain, 83input impedance, 254
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Surface waves, 306–19 mean/sample patterns variances, 97
pattern deterioration and, 92circles locus, 317

defined, 309 peak sidelobe, 97–98
probabilistic studies, 96–99polarization and, 317

structures supporting, 309–10 with quantized amplitude
distributions, 99–106TM, 316

Susceptance, 321–22 two-dimensional, 99
Thinningdielectric WAIM sheets, 333

slot array, 322 algorithms, 93
constant, 94thin dielectric layer, 333

Switching networks, 199 geometries, 102
statistical, 93System noise factor, 8

Three probable value method, 372
T Tile construction, 46

Tilted-slot arrays, 274Tapered slot arrays (TSAs), 326
dual polarized, 331 Time-delay compensation, 43–44

Time-delayed offset beams, 456scan impedance, 326
Taper efficiency, 74, 75 Time-delayed subarrays, 456–67

contiguous, 456–59approximate expression, 74
defined, 23 overlapped, 459–67

See also Subarraysfor Taylor patterns, 128
Tapering, 19 Time delay units (TDUs), 50, 51, 52

Tolerance effects, 40Taylor distributions
aperture, 127 Total power, 9–10

Transform-fed lens system, 442–43,beamwidth, 125
design sidelobe level, 125 463–64

bandwidth, 463–64efficiency, 126
modified, 134–35 overlapped time-delayed subarrays,

463–64one-parameter, 129
Taylor line source synthesis, 121–28 Transform feeds, 430

design parameters, 451Taylor patterns
aperture distribution, 124 limitations, 449

off-axis, 449, 450aperture efficiency, 155
circular arrays, 153–55 scan sector, 451

See also Feedsefficiency, 126
Elliott’s modified, 133–39 Transmission efficiency, 5

Transmission line loss, 38equal sidelobes, 123
of line sources, 127–28 Transverse electric (TE)

modes, 303, 340synthesis methods based on, 133–39
taper efficiency, 128 waves, 309

Transverse magnetic (TM)Thinned arrays, 92–106
applications, 92 modes, 303, 345

surface, 315average patterns, 93–96
beamwidth, 99 waves, 309, 316

Triangular grid arrays, 315density-tapered, 93–96
directivity, 99, 102 geometry, 85

grating lobe lattice, 85mean pattern, 97
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Triangular grid distribution, 87 Waveguide slot arrays
characteristics, 273Truncated conical arrays, 221

Two-dimensional arrays geometries, 273
line source elements, 272–75currents, 301

Poisson summation formula for, 301 pattern control, 272
Wave-type formulation, 302scan angle, 320

thinned, 99 Weights, 16
adaptive, 163–65, 170Two-dimensional scanning, 18–19

Two probable value method, 372 adaptively optimized two-element
system, 165

U adjusting, 467
Uniform distribution, 87 Weiner-Hopf theory, 328
Uniformly illuminated arrays Wide-angle impedance matching

characteristics, 364–65 (WAIM), 256, 331
phase quantization, 365–71 defined, 256

Uniform patterns, 113 dielectric sheets, 333–35
Uniform Theory of Diffraction (UTD), Wideband adaptive control, 170–74

186 Wideband arrays, 251
extensions, 337 control, 50–51
Green’s function using, 337–38 fractional bandwidth, 51

with TDUs, 50
V Wideband radiation, 329–35
Varactors, 58 Wideband scanning systems, 455–67
Variable amplitude control, 1 array feeds, 457
Vertical dipoles, 229, 232 broadband arrays with time-delayed
Vertical monopoles, 234 offset beams, 456
Vivaldi antenna, 249–50 contiguous time-delayed subarrays for,
Voltage standing wave ratio (VSWR), 456–59

237 overlapped time-delayed subarrays for,
459–67

W Wilkinson power divider, 325
Wire antenna elements, 227–51Waveguide radiators, 254–56

defined, 254 bowtie dipole, 241
dipole, 228–34dielectrically loaded, 256

illustrated, 255 dipole fed off-center, 238
folded dipole, 241–46See also Aperture antenna elements

Waveguide simulators, 339–46 ILA, 247, 248
low-profile, 248defined, 340

E-plane scanning, 343 microwave dipole, 246–47
monopole, 228–34geometries, 341, 342, 344

multi-element, 345 PIFA, 247, 248
sleeve antennas, 238–41normal mode excitation, 346

operation, 343 See also Elements
Wire cross section, 228parallel-plate, 340

principle, 341 Wire radiating diagram, 229
Woodward-Lawson beams, 382–83, 400,scan angles, 341, 345

scan plane definitions, 344 424
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Woodward-Lawson synthesis, 381, 392 Y
Woodward synthesis, 113–16 Yagi arrays, 311, 328

defined, 115–16
illustrated, 114–15
for iterative synthesis, 116
for shaped beams, 116
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