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Preface

This book deals with the issue of fundamental limitations in filtering and
control system design. This issue lies at the very heart of feedback theory
since it reveals what is achievable, and conversely what is not achievable,
in feedback systems.

The subject has a rich history beginning with the seminal work of Bode
during the 1940’s and as subsequently published in his well-known book
Feedback Amplifier Design (Van Nostrand, 1945). An interesting fact is that,
although Bode’s book is now fifty years old, it is still extensively quoted.
This is supported by a science citation count which remains comparable
with the best contemporary texts on control theory.

Interpretations of Bode’s results in the context of control system design
were provided by Horowitz in the 1960’s. For example, it has been shown
that, for single-input single-output stable open-loop systems having rel-
ative degree greater than one, the integral of the logarithmic sensitivity
with respect to frequency is zero. This result implies, among other things,
that a reduction in sensitivity in one frequency band is necessarily accom-
panied by an increase of sensitivity in other frequency bands. Although
the original results were restricted to open-loop stable systems, they have
been subsequently extended to open-loop unstable systems and systems
having nonminimum phase zeros.

The original motivation for the study of fundamental limitations in
feedback was control system design. However, it has been recently real-
ized that similar constraints hold for many related problems including
filtering and fault detection. To give the flavor of the filtering results, con-
sider the frequently quoted problem of an inverted pendulum. It is well
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known that this system is completely observable from measurements of
the carriage position. What is less well known is that it is fundamentally
difficult to estimate the pendulum angle from measurements of the car-
riage position due to the location of open-loop nonminimum phase zeros
and unstable poles. Minimum sensitivity peaks of 40 dB are readily pre-
dictable using Poisson integral type formulae without needing to carry out
a specific design. This clearly suggests that a change in the instrumenta-
tion is called for, i.e., one should measure the angle directly. We see, in this ex-
ample, that the fundamental limitations point directly to the inescapable
nature of the difficulty and thereby eliminate the possibility of expend-
ing effort on various filter design strategies that we know, ab initio, are
doomed to failure.

Recent developments in the field of fundamental design limitations in-
clude extensions to multivariable linear systems, sampled-data systems,
and nonlinear systems.

At this point in time, a considerable body of knowledge has been assem-
bled on the topic of fundamental design limitations in feedback systems.
It is thus timely to summarize the key developments in a modern and
comprehensive text. This has been our principal objective in writing this
book. We aim to cover all necessary background and to give new succinct
treatments of Bode’s original work together with all contemporary results.

The book is organized in four parts. The first part is introductory and it
contains a chapter where we cover the significance and history of design
limitations, and motivate future chapters by analyzing design limitations
arising in the time domain.

The second part of the book is devoted to design limitations in feed-
back control systems and is divided in five chapters. In Chapter 2, we
summarize the key concepts from the theory of control systems that will
be needed in the sequel. Chapter 3 examines fundamental design limita-
tions in linear single-input single-output control, while Chapter 4 presents
results on multi-input multi-output control. Chapters 5 and 6 develop cor-
responding results for periodic and sampled-data systems respectively.

Part III deals with design limitations in linear filtering problems. After
setting up some notation and definitions in Chapter 7, Chapter 8 covers
the single-input single-output filtering case, while Chapter 9 studies the
multivariable case. Chapters 10 and 11 develop the extensions to the re-
lated problems of prediction and fixed-lag smoothing.

Finally, Part IV presents three chapters with very recent results on sen-
sitivity limitations for nonlinear filtering and control systems. Chapter 12
introduces notation and some preliminary results, Chapter 13 covers feed-
back control systems, and Chapter 14 the filtering case.

In addition, we provide an appendix with an almost self-contained re-
view of complex variable theory, which furnishes the necessary mathe-
matical background required in the book.
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Because of the pivotal role played by design limitations in the study of
feedback systems, we believe that this book should be of interest to re-
search and practitioners from a variety of fields including Control, Com-
munications, Signal Processing, and Fault Detection. The book is self-
contained and includes all necessary background and mathematical pre-
liminaries. It would therefore also be suitable for junior graduate students
in Control, Filtering, Signal Processing or Applied Mathematics.

The authors wish to deeply thank several people who, directly or in-
directly, assisted in the preparation of the text. Our appreciation goes
to Greta Davies for facilitating the authors the opportunity to complete
this project in Australia. In the technical ground, input and insight were
obtained from Gjerrit Meinsma, Guillermo Gómez, Rick Middleton and
Thomas Brinsmead. The influence of Jim Freudenberg in this work is im-
mense.
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1

A Chronicle of System Design
Limitations

1.1 Introduction

This book is concerned with fundamental limits in the design of feedback
control systems and filters. These limits tell us what is feasible and, con-
versely, what is infeasible, in a given set of circumstances. Their signifi-
cance arises from the fact that they subsume any particular solution to a
problem by defining the characteristics of all possible solutions.

Our emphasis throughout is on system analysis, although the results
that we provide convey strong implications in system synthesis. For a va-
riety of dynamical systems, we will derive relations that represent funda-
mental limits on the achievable performance of all possible designs. These
relations depend on both constitutive and structural properties of the sys-
tem under study, and are stated in terms of functions that quantify system
performance in various senses.

Fundamental limits are actually at the core of many fields of engineer-
ing, science and mathematics. The following examples are probably well
known to the reader.

Example 1.1.1 (The Cramér-Rao Inequality). In Point Estimation Theory, a
function θ̂(Y) of a random variable Y — whose distribution depends on an
unknown parameter θ— is an unbiased estimator for θ if its expected value
satisfies

Eθ{θ̂(Y)} = θ , (1.1)
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where Eθ denotes expectation over the parametrized density function
p(· ; θ) for the data.

A natural measure of performance for a parameter estimator is the co-
variance of the estimation error, defined by Eθ{(θ̂−θ)2}. Achieving a small
covariance of the error is usually considered to be a good property of an
unbiased estimator. There is, however, a limit on the minimum value of
covariance that can be attained. Indeed, a relatively straightforward math-
ematical derivation from (1.1) leads to the following inequality, which
holds for any unbiased estimator,

Eθ{(θ̂− θ)2} ≥
(

Eθ

{
(

∂ logp(y; θ)
∂θ

)2
})−1

,

where p(· ; θ) defines the density function of the data y ∈ Y.
The above relation is known as the Cramér-Rao Inequality, and the right

hand side (RHS) the Cramér-Rao Lower Bound (Cramér, 1946). This plays a
fundamental role in Estimation Theory (Caines, 1988). Indeed, an estima-
tor is considered to be efficient if its covariance is equal to the Cramér-Rao
Lower Bound. Thus, this bound provides a benchmark against which all
practical estimators can be compared. ◦

Another illustration of a relation expressing fundamental limits is given
by Shannon’s Theorem of Communications.

Example 1.1.2 (The Shannon Theorem). A celebrated result in Commu-
nication Theory is the Shannon Theorem (Shannon, 1948). This crucial the-
orem establishes that given an information source and a communication
channel, there exists a coding technique such that the information can be
transmitted over the channel at any rate R less than the channel capac-
ity C and with arbitrarily small frequency of errors despite the presence
of noise (Carlson, 1975). In short, the probability of error in the received
information can be made arbitrarily small provided that

R ≤ C . (1.2)

Conversely, if R > C, then reliable communication is impossible. When
specialized to continuous channels,1 a complementary result (known as
the Shannon-Hartley Theorem) gives the channel capacity of a band-lim-
ited channel corrupted by white gaussian noise as

C = B log
2
(1 + S/N) bits/sec,

where the bandwidth, B, and the signal-to-noise ratio, S/N, are the rele-
vant channel parameters.

1A continuous channel is one in which messages are represented as waveforms, i.e., con-
tinuous functions of time, and the relevant parameters are the bandwidth and the signal-to-
noise ratio (Carlson, 1975).
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The Shannon-Hartley law, together with inequality (1.2), are fundamen-
tal to communication engineers since they (i) represent the absolute best
that can be achieved in the way of reliable information transmission, and
(ii) they show that, for a specified information rate, one can reduce the sig-
nal power provided one increases the bandwidth, and vice versa (Carlson,
1975). Hence these results both provide a benchmark against which prac-
tical communication systems can be evaluated, and capture the inherent
trade-offs associated with physical communication systems. ◦

Comparing the fundamental relations in the above examples, we see
that they possess common qualities. Firstly, they evolve from basic ax-
ioms about the nature of the universe. Secondly, they describe inescapable
performance bounds that act as benchmarks for practical systems. And
thirdly, they are recognized as being central to the design of real systems.

The reader may wonder why it is important to know the existence of
fundamental limitations before carrying out a particular design to meet
some desired specifications. Åström (1996) quotes an interesting exam-
ple of the latter issue. This example concerns the design of the flight con-
troller for the X-29 aircraft. Considerable design effort was recently de-
voted to this problem and many different optimization methods were
compared and contrasted. One of the design criteria was that the phase
margin should be greater than 45◦ for all flight conditions. At one flight
condition the model contained an unstable pole at 6 and a nonminimum
phase zero at 26. A relatively simple argument based on the fundamental
laws applicable to feedback loops (see Example 2.3.2 in Chapter 2) shows
that a phase margin of 45◦ is infeasible! It is interesting to note that many
design methods were used in a futile attempt to reach the desired goal.

As another illustration of inherently difficult problems, we learn from
virtually every undergraduate text book on control that the states of
an inverted pendulum are completely observable from measurements of
the carriage position. However, the system has an open right half plane
(ORHP) zero to the left of a real ORHP pole. A simple calculation based
on integral sensitivity constraints (see §8.5 in Chapter 8) shows that sen-
sitivity peaks of the order of 50:1 are unavoidable in the estimation of the
pendulum angle when only the carriage position is measured. This, in
turn, implies that relative input errors of the order of 1% will appear as
angle relative estimation errors of the order of 50%. Note that this claim
can be made before any particular estimator is considered. Thus much wasted
effort can again be avoided. The inescapable conclusion is that we should
redirect our efforts to building angle measuring transducers rather than
attempting to estimate the angle by an inherently sensitive procedure.

In the remainder of the book we will expand on the themes outlined
above. We will find that the fundamental laws divide problems into those
that are essentially easy (in which case virtually any sensible design
method will give a satisfactory solution) and those that are essentially
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hard (in which case no design method will give a satisfactory solution).
We believe that understanding these inherent design difficulties readily
justifies the effort needed to appreciate the results.

1.2 Performance Limitations in Dynamical
Systems

In this book we will deal with very general classes of dynamic systems.
The dynamic systems that we consider are characterized by three key at-
tributes, namely:

(i) they consist of particular interconnections of a “known part” — the
plant — and a “design part” — the controller or filter — whose struc-
ture is such that certain signals interconnecting the parts are indica-
tors of the performance of the overall system;

(ii) the parts of the interconnection are modeled as input-output opera-
tors2 with causal dynamics, i.e., an input applied at time t0 produces
an output response for t > t0; and

(iii) the interconnection regarded as a whole system is stable, i.e., a
bounded input produces a bounded response (the precise definition
will be given later).

We will show that, when these attributes are combined within an appro-
priate mathematical formalism, we can derive fundamental relations that
may be considered as being systemic versions of the Cramér-Rao Lower
Bound of Probability and the Channel Capacity Limit of Communications.
These relations are fundamental in the sense that they describe achievable
— or non achievable — properties of the overall system only in terms of
the known part of the system, i.e., they hold for any particular choice of
the design part.

As a simple illustrative example, consider the unity feedback control
system shown in Figure 1.1.

To add a mathematical formalism to the problem, let us assume that
the plant and controller are described by finite dimensional, linear time-
invariant (LTI), scalar, continuous-time dynamical systems. We can thus
use Laplace transforms to represent signals. The plant and controller can
be described in transfer function form by G(s) and K(s), where

G(s) =
NG(s)

DG(s)
, and K(s) =

NK(s)

DK(s)
. (1.3)

2It is sufficient here to consider an input-output operator as a mapping between input
and output signals.
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FIGURE 1.1. Feedback control system.

The reader will undoubtedly know3 that the transfer functions from ref-
erence input to output and from disturbance input to output are given
respectively by T and S, where

T =
NGNK

NGNK +DGDK
, (1.4)

S =
DGDK

NGNK +DGDK
. (1.5)

Note that these are dimensionless quantities since they represent the
transfer function (ratio) between like quantities that are measured in the
same units. Also T(jω) and S(jω) describe the response to inputs of a
particular type, namely pure sinusoids. Since T(jω) and S(jω) are dimen-
sionless, it is appropriate to compare their respective amplitudes to bench-
mark values. At each frequency, the usual value chosen as a benchmark
is unity, since T(jω0) = 1 implies that the magnitude of the output is
equal to the magnitude of the reference input at frequency ω0, and since
S(jω0) = 1 implies that the magnitude of the output is equal to the mag-
nitude of the disturbance input at frequency ω0. More generally, the fre-
quency response of T and S can be used as measures of stability robustness
with respect to modeling uncertainties, and hence it is sensible to compare
them to “desired shapes” that act as benchmarks.

Other domains also use dimensionless quantities. For example, in Elec-
trical Power Engineering it is common to measure currents, voltages, etc.,
as a fraction of the “rated” currents, voltages, etc., of the machine. This
system of units is commonly called a “per-unit” system. Similarly, in Fluid
Dynamics, it is often desirable to determine when two different flow sit-
uations are similar. It was shown by Osborne Reynolds (Reynolds, 1883)
that two flow scenarios are dynamically similar when the quantity

R =
ulρ

µ
,

3See Chapter 2 for more details.
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(now called the Reynolds number) is the same for both problems.4 The
Reynolds number is the ratio of inertial to viscous forces, and high values
of R invariable imply that the flow will be turbulent rather than laminar.
As can be seen from these examples, dimensionless quantities facilitate
the comparison of problems with critical (or benchmark) values.

The key question in scalar feedback control synthesis is how to find a
particular value for the design polynomials NK and DK in (1.3) so that the
feedback loop satisfies certain desired properties. For example, it is usu-
ally desirable (see Chapter 2) to have T(jω) = 1 at low frequencies and
S(jω) = 1 at high frequencies. These kinds of design goals are, of course,
important questions; but we seek deeper insights. Our aim is to examine
the fundamental and unavoidable constraints on T and S that hold irre-
spective of which controller K is used — provided only that the loop is
stable, linear, and time-invariant (actually, in the text we will relax these
latter restrictions and also consider nonlinear and time-varying loops).

In the linear scalar case, equations (1.5) and (1.4) encapsulate the key
relationships that lead to the constraints. The central observation is that
we require the loop to be stable and hence we require that, whatever value
for the controller transfer function we choose, the resultant closed loop
characteristic polynomial NGNK + DGDK must have its zeros in the open
left half plane.

A further observation is that the two terms NGNK and DGDK of the
characteristic polynomial appear in the numerator of T and S respectively.
These observations, in combination, have many consequences, for exam-
ple we see that

(i) S(s) + T(s) = 1 for all s (called the complementarity constraint);

(ii) if the characteristic polynomial has all its zeros to the left of −α,
where α is some nonnegative real number, then the functions S and
T are analytic in the half plane to the right of −α (called analyticity
constraint);

(iii) if q is a zero of the plant numerator NG (i.e., a plant zero), such that
Req > −α (here Re s denotes real part of the complex number s),
then T(q) = 0 and S(q) = 1; similarly, if p is a zero of the plant de-
nominatorDG (i.e., a plant pole), such that Req > −α, then T(p) = 1

and S(p) = 0 (called interpolation constraints).

The above seemingly innocuous constraints actually have profound im-
plications on the achievable performance as we will see below.

4Here � is a characteristic velocity,
�

a characteristic length, � the fluid density, and � the
viscosity.
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1.3 Time Domain Constraints

In the main body of the book we will carry out an in-depth treatment
of constraints for interconnected dynamic systems. However, to motivate
our future developments we will first examine some preliminary results
that follow very easily from the use of the Laplace transform formalism.
In particular we have the following result.

Lemma 1.3.1. LetH(s) be a strictly proper transfer function that has all its
poles in the half plane Re s ≤ −α, whereα is some finite real positive num-
ber (i.e.,H(s) is analytic in Re s > −α). Also, let h(t) be the corresponding
time domain function, i.e.,

H(s) = Lh(t) ,

where L· denotes the Laplace transform. Then, for any s0 such that Re s0 >
−α, we have ∫ �

0

e−s0th(t)dt = lim
s � s0

H(s) .

Proof. From the definition of the Laplace transform we have that, for all s
in the region of convergence of the transform, i.e., for Re s > −α,

H(s) =

∫ �

0

e−sth(t)dt .

The result then follows since s0 is in the region of convergence of the trans-
form. �

In the following subsection, we will apply the above result to examine
the properties of the step responses of the output and error in Figure 1.1.

1.3.1 Integrals on the Step Response
We will analyze here the impact on the step response of the closed-loop
system of open-loop poles at the origin, unstable poles, and nonminimum
phase zeros. We will then see that the results below quantify limits in per-
formance as constraints on transient properties of the system such as rise
time, settling time, overshoot and undershoot.

Throughout this subsection, we refer to Figure 1.1, where the plant and
controller are as in (1.3), and where e and y are the time responses to a
unit step input (i.e., r(t) = 1, d(t) = 0, ∀t).

We then have the following results relating open-loop poles and zeros
with the step response.

Theorem 1.3.2 (Open-loop integrators). Suppose that the closed loop in
Figure 1.1 is stable. Then,
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(i) for lims � 0 sG(s)K(s) = c1, 0 < |c1| < ∞, we have that

lim
t � � e(t) = 0 ,

∫ �

0

e(t)dt =
1

c1
;

(ii) for lims � 0 s
2G(s)K(s) = c2, 0 < |c2| < ∞, we have that

lim
t � �

e(t) = 0 ,

∫ �

0

e(t)dt = 0 .

Proof. Let E, Y, R and D denote the Laplace transforms of e, y, r and d,
respectively. Then,

E(s) = S(s)[R(s) −D(s)] , (1.6)

where S is the sensitivity function defined in (1.5), and R(s) −D(s) = 1/s

for a unit step input. Next, note that in case (i) the open-loop system GK

has a simple pole at s = 0, i.e.,G(s)K(s) = L̃(s)/s, where lims � 0 L̃(s) = c1.
Accordingly, the sensitivity function has the form

S(s) =
s

s+ L̃(s)
,

and thus, from (1.6),

lim
s � 0

E(s) =
1

c1
. (1.7)

From (1.7) and the Final Value Theorem (e.g., Middleton and Goodwin,
1990), we have that

lim
t � � e(t) = lim

s � 0
sE(s)

= 0 .

Similarly, from (1.7) and Lemma 1.3.1,
∫ �

0

e(t)dt = lim
s � 0

E(s)

=
1

c1
.

This completes the proof of case (i).
Case (ii) follows in the same fashion, on noting that here the open-loop

system GK has a double pole at s = 0. �
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Theorem 1.3.2 states conditions that the error step response has to sat-
isfy provided the open-loop system has poles at the origin, i.e., it has pure
integrators. The following result gives similar constraints for ORHP open-
loop poles.

Theorem 1.3.3 (ORHP open-loop poles). Consider Figure 1.1, and sup-
pose that the open-loop plant has a pole at s = p, such that Rep > 0.
Then, if the closed loop is stable,

∫ �

0

e−pte(t)dt = 0 , (1.8)

and ∫ �

0

e−pty(t)dt =
1

p
. (1.9)

Proof. Note that, by assumption, s = p is in the region of convergence of
E(s), the Laplace transform of the error. Then, using (1.6) and Lemma 1.3.1,
we have that

∫ �

0

e−pte(t)dt = E(p)

=
S(p)

p

= 0 ,

where the last step follows since s = p is a zero of S, by the interpolation
constraints. This proves (1.8). Relation (1.9) follows easily from (1.8) and
the fact that r = 1, i.e.,

∫ �

0

e−pty(t)dt =

∫ �

0

e−pt (r(t) − e(t)) dt

=

∫ �

0

e−pt dt

=
1

p
.

�

A result symmetric to that of Theorem 1.3.3 holds for plants with non-
minimum phase zeros, as we see in the following theorem.

Theorem 1.3.4 (ORHP open-loop zeros). Consider Figure 1.1, and sup-
pose that the open-loop plant has a zero at s = q, such that Req > 0.
Then, if the closed loop is stable,

∫ �

0

e−qt e(t)dt =
1

q
, (1.10)
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and ∫ �

0

e−qt y(t)dt = 0 . (1.11)

Proof. Similar to that of Theorem 1.3.3, except that here T(q) = 0. �

The above theorems assert that if the plant has an ORHP open-loop pole
or zero, then the error and output time responses to a step must satisfy in-
tegral constraints that hold for all possible controller giving a stable closed
loop. Moreover, if the plant has real zeros or poles in the ORHP, then these
constraints display a balance of exponentially weighted areas of positive
and negative error (or output). It is evident that the same conclusions
hold for ORHP zeros and/or poles of the controller. Actually, equations
(1.8) and (1.10) hold for open-loop poles and zeros that lie to the right
of all closed-loop poles, provided the open-loop system has an integra-
tor. Hence, stable poles and minimum phase zeros also lead to limitations in
certain circumstances.

The time domain integral constraints of the previous theorems tell us
fundamental properties of the resulting performance. For example, The-
orem 1.3.2 shows that a plant-controller combination containing a dou-
ble integrator will have an error step response that necessarily overshoots
(changes sign) since the integral of the error is zero. Similarly, Theo-
rem 1.3.4 implies that if the open-loop plant (or controller) has real ORHP
zeros then the closed-loop transient response can be arbitrarily poor (de-
pending only on the location of the closed-loop poles relative to q), as we
show next. Assume that the closed-loop poles are located to the left of −α,
α > 0. Observe that the time evolution of e is governed by the closed-loop
poles. Then as q becomes much smaller than α, the weight inside the in-
tegral, e−qt, can be approximated to 1 over the transient response of the
error. Hence, since the RHS of (1.10) grows as q decreases, we can imme-
diately conclude that real ORHP zeros much smaller than the magnitude
of the closed-loop poles will produce large transients in the step response
of a feedback loop. Moreover this effect gets worse as the zeros approach
the imaginary axis.

The following example illustrates the interpretation of the above con-
straints.

Example 1.3.1. Consider the plant

G(s) =
q− s

s(s+ 1)
,

where q is a positive real number. For this plant we use the internal model
control paradigm (Morari and Zafiriou, 1989) to design a controller in Fig-
ure 1.1 that achieves the following complementarity sensitivity function

T(s) =
q − s

q(0.2s + 1)2
.
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This design has the properties that, for every value of the ORHP plant
zero, q, (i) the two closed-loop poles are fixed at s = −5, and (ii) the er-
ror goes to zero in steady state. This allows us to study the effect in the
transient response of q approaching the imaginary axis. Figure 1.2 shows
the time responses of the error and the output for decreasing values of
q. We can see from this figure that the amplitude of the transients in-
deed becomes larger as q becomes much smaller than the magnitude of
the closed-loop poles, as already predicted from our previous discussion.
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FIGURE 1.2. Error and output time responses of a nonminimum phase plant.

◦

1.3.2 Design Interpretations
The results of the previous section have straightforward implications con-
cerning standard quantities used as figures of merit of the system’s ability
to reproduce step functions. We consider here the rise time, the settling time,
the overshoot and the undershoot.

The rise time approximately quantifies the minimum time it takes the
system to reach the vicinity of its new set point. Although this term has
intuitive significance, there are numerous possibilities to define it rigor-
ously (cf. Bower and Schultheiss, 1958). We define it by

tr , sup
δ

{
δ : y(t) ≤ t

δ
for all t in [0, δ]

}
. (1.12)

The settling time quantifies the time it takes the transients to decay below
a given settling level, say ε, commonly between 1 and 10%. It is defined
by

ts , inf
δ

{
δ : |y(t) − 1| ≤ ε for all t in [δ,∞)

}
. (1.13)

Here, the step response of the system has been normalized to have unitary
final value, which is also assumed throughout this section.
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Finally, the overshoot is the maximum value by which the output exceeds
its final set point value, i.e.,

yos , sup
t

{−e(t)} ;

and the undershoot is the maximum negative peak of the system’s output,
i.e.,

yus , sup
t

{−y(t)} .

Figure 1.3 shows a typical step response and illustrates these quantities.
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FIGURE 1.3. Time domain specifications.

Corollary 1.3.5 (Overshoot and real ORHP poles). A stable unity feed-
back system with a real ORHP open-loop pole, say at s = p, must have
overshoot in its step response. Moreover, if tr is the rise time defined by
(1.12), then

yos ≥
(ptr − 1)eptr + 1

ptr

≥ ptr

2
.

(1.14)

Proof. The existence of overshoot follows immediately from Theo-
rem 1.3.3, since e(t) cannot have a single sign unless it is zero for all t.
From the definition of rise time in (1.12) we have that y(t) ≤ t/tr for
t ≤ tr, i.e., e(t) ≥ 1 − t/tr. Using this, we can write from the integral
equality (1.8)

−

∫ �

tr

e−pte(t)dt ≥
∫tr

0

e−pt

(

1 −
t

tr

)

dt . (1.15)
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From (1.15) and the definition of overshoot, it follows that

yos
e−ptr

p
= yos

∫ �

tr

e−pt dt (1.16)

≥
∫tr

0

e−pt

(

1 −
t

tr

)

dt

=
(ptr − 1) + e−ptr

p2tr
. (1.17)

Equation (1.14) is then obtained from (1.16) - (1.17). �

Corollary 1.3.5 shows that if the closed-loop system is “slow”, i.e., it has
a large rise time, the step response will present a large overshoot if there
are open-loop unstable real poles5. Intuitively, we can deduce from this
result that unstable poles will demand a “fast” closed-loop system — or
equivalently, a larger closed-loop bandwidth — to keep an acceptable per-
formance. The farther from the jω-axis the poles are, the more stringent
this bandwidth demand will be.

An analogous situation is found in relation with real nonminimum
phase zeros and undershoot in the system’s response, as we see in the
next corollary.

Corollary 1.3.6 (Undershoot and real ORHP zeros). A stable unity feed-
back system with a real ORHP open-loop zero, say at s = q, must have
undershoot in its step response. Moreover, if ts and ε are the settling time
and level defined by (1.13),

yus ≥
1 − ε

eqts − 1
. (1.18)

Proof. Similar to Corollary 1.3.5, this time using (1.11) and the definition
of settling time and undershoot. �

The interpretation for Corollary 1.3.6 is that if the system has real non-
minimum phase zeros, then its step response will display large under-
shoots as the settling time is reduced, i.e., the closed-loop system is made
“faster”. Notice that this situation is quite the opposite to that for real un-
stable poles, for now real nonminimum phase zeros will demand a short
closed-loop bandwidth for good performance. Moreover, here the closer
to the imaginary axis the zeros are, the stronger the demand for a short
bandwidth will be.

Evidently from the previous remarks, a clear trade-off in design arises
when the open-loop system is both unstable and nonminimum phase,

5This is in contrast with the case of open-loop stable systems, where large overshoots
normally arise from short rise times.
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since, depending on the relative position of these poles and zeros, a com-
pletely satisfactory performance may not be possible. The following result
considers such a case.

Corollary 1.3.7. Suppose a stable unity feedback system has a real ORHP
open-loop zero at s = q and a real ORHP open-loop pole at s = p, p 6= q.
Then,

(i) if p < q, the overshoot satisfies

yos ≥
p

q− p
,

(ii) if p > q, the undershoot satisfies

yus ≥
q

p − q
.

Proof. For case (i) combine (1.8) and (1.10) to obtain
∫ �

0

(

e−pt − e−qt
)

[−e(t)]dt =
1

q
.

Using the definition of overshoot yields

1

q
≤ yos

∫ �

0

(

e−pt − e−qt
)

dt

= yos
q− p

pq
. (1.19)

The result then follows from (1.19) by using the fact that q > p.
Case (ii) can be shown similarly by combining (1.9) and (1.11) and using

the fact that q < p. �

In the following subsection, we illustrate the previous results by ana-
lyzing time domain limitations arising in the control of an inverted pen-
dulum. This example will be revisited in Chapter 3, where we study
frequency domain limitations in the context of feedback control, and in
Chapter 8, where we analyze frequency domain limitations from a filter-
ing point of view.

1.3.3 Example: Inverted Pendulum
Consider the inverted pendulum shown in Figure 1.4. The linearized
model for this system about the origin (i.e., θ = θ̇ = y = ẏ = 0) has
the following transfer function from force, u, to carriage position, y

Y(s)

U(s)
=

(s− q)(s + q)

Ms2(s − p)(s + p)
, (1.20)
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FIGURE 1.4. Inverted pendulum.

where

q =
√

g/` ,

p =

√

(M +m)g

M`
.

In the above definitions, g is the gravitational constant, m is the mass at
the end of the pendulum,M is the carriage’s mass, and ` is the pendulum’s
length.

We readily see that this system satisfies the conditions discussed in
Corollary 1.3.7, part (ii). Say that we normalize so that q = 1 and take
m/M = 0.1, so that p = 1.05. Corollary 1.3.7 then predicts an undershoot
greater than 20!
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FIGURE 1.5. Position time response of the inverted pendulum.
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To test the results, we designed an LQG-LQR controller6 that fixes the
closed-loop poles at s = −1,−2,−3,−4. Figure 1.5 shows the step re-
sponse of the carriage position for fixed q = 1, and for different values
of the mass ratio m/M (which imply, in turn, different locations of the
open-loop poles of the plant). We can see from this figure that (i) the lower
bound on the undershoot predicted by Corollary 1.3.7 is conservative (this
is due to the approximation −y ≈ yus implicitly used to derived this
bound), and (ii) the bound correctly predicts an increase of the undershoot
as the difference p− q decreases.

1.4 Frequency Domain Constraints

The results presented in §1.3 were expressed in the time domain using
Laplace transforms. However, one might expect that corresponding re-
sults hold in the frequency domain. This will be a major theme in the
remainder of the book. To give the flavor of the results, we will briefly
discuss constraints induced by zeros on the imaginary axis, or ORHP ze-
ros arbitrarily close to the imaginary axis. Analogous conclusions hold for
poles on the imaginary axis.

Note that, assuming closed-loop stability, then an open-loop zero on the
imaginary axis at jωq implies that

T(jωq) = 0, and S(jωq) = 1. (1.21)

We have remarked earlier that a common design objective is to have
S(jω) � 1 at low frequencies, i.e., for ω ∈ [0,ω1] for some ω1. Clearly,
if ωq < ω1, then this goal is inconsistent with (1.21). Now say that the
open-loop plant has a zero at q = ε + jωq, where ε is small and positive.
Then we might expect (by continuity) that |S(jω)| would have a tendency
to be near 1 in the vicinity of ω = ωq. Actually, it turns out to be possible
to force |S(jω)| to be small for frequencies ω ∈ [0,ω1] where ω1 > ωq.
However, one has to pay a heavy price for trying to defeat “the laws of na-
ture” by not allowing |S(jω)| to approach 1 near ωq. Indeed, it turns out
that the “price” is an even larger peak in |S(jω)| for some other value ofω.
We will show this using the continuity (analyticity) properties of functions
of a complex variable. Actually, we will see that many interesting proper-
ties of linear feedback systems are a direct consequence of the properties
of analytic functions.

6See e.g., Kwakernaak and Sivan (1972).
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1.5 A Brief History

Bode (1945) used analytic function theory to examine the properties of
feedback loops in the frequency domain. At the time, Bode was working
at Bell Laboratories. He used complex variable theory to show that there
were restrictions on the type of frequency domain response that could be
obtained from a stable feedback amplifier circuit. In particular, he showed
— mutatis mutandis — that the sensitivity function, S, (defined in (1.5) for
a particular case) must satisfy the following integral relation for a stable
open-loop plant ∫ �

0

log |S(jω)|dω = 0 . (1.22)

This result shows that it is not possible to achieve arbitrary sensitivity
reduction (i.e., |S| < 1) at all points of the imaginary axis. Thus, if |S(jω)| is
smaller than one over a particular frequency range then it must necessarily
be greater than one over some other frequency range.

Bode also showed that, for stable minimum phase systems, it was not
necessary to specify both the magnitude and phase response in the fre-
quency domain since each was determined uniquely by the other.

Horowitz (1963) applied Bode’s theorems to the feedback control prob-
lem, and also obtained some preliminary results for open-loop unstable
systems. These latter extensions turned out to be in error due to a missing
term, but the principle is sound.

Francis and Zames (1984) studied the feedback constraints imposed by
ORHP zeros of the plant in the context of H � optimization. They showed
that if the plant has zeros in the ORHP, then the peak magnitude of the
frequency response of S(jω) necessarily becomes very large if |S(jω)| is
made small over frequencies which exceed the magnitude of the zeros.
This phenomenon has become known as the “water-bed” or “push-pop”
effect.

Freudenberg and Looze (1985) brought many of the results together.
They also produced definitive results for the open-loop unstable case. For
example, in the case of an unstable open-loop plant, (1.22) generalizes to
(see Theorem 3.1.4 in Chapter 3)

1

π

∫ �

0

log |S(jω)|dω ≥
np∑

i=1

pi , (1.23)

where {pi : i = 1, . . . , np} is the set of ORHP poles of the open-loop plant.
Equality is achieved in (1.23) if the set {pi : i = 1, . . . , np} also includes all
the ORHP poles of the controller.

In addition, Freudenberg and Looze expressed the integral constraints
in various formats, both along the lines of Bode and in a different form
using the related idea of Poisson integrals. In particular, the Poisson inte-
grals permit the derivation of an insightful closed expression that displays
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the water-bed effect experienced by nonminimum phase systems. This ex-
pression, however, is not tight if the plant has more than one ORHP zero.

About the same time, O’Young and Francis (1985) used Nevanlinna-
Pick theory to characterize the smallest upper bound on the norm of the
multivariable sensitivity function over a frequency range, with the con-
straint that the norm remain bounded at all frequencies. This characteri-
zation can be used to show the water-bed effect in multivariable nonmin-
imum phase systems, and is tight for any number of ORHP zeros of the
plant. Yet, no closed expression is available for this characterization but
rather it has to be computed iteratively for each given plant.

In 1987, Freudenberg and Looze extended the Bode integrals to scalar
plants with time delays. In 1988 the same authors published a book that
summarized the results for scalar systems, and also addressed the multi-
variable case using singular values.

In 1990, Middleton obtained Bode-type integrals for the complemen-
tary sensitivity function T . For example, the result equivalent to (1.23), for
an open-loop system having at least two pure integrators, is (see Theo-
rem 3.1.5 in Chapter 3)

1

π

∫ �

0

log |T(jω)|
dω

ω2
≥ τ

2
+

nq∑

i=1

1

qi
, (1.24)

where {qi : i = 1, . . . , nq} is the set of ORHP zeros of the open-loop plant,
and τ is the plant pure time delay.

Comparing (1.24) with (1.10) we see that (perhaps not unexpectedly)
there is a strong connection between the time and frequency domain re-
sults. Indeed, this is reasonable since the only elements that are being used
are the complementarity, interpolation and analyticity constraints intro-
duced in §1.2.

Recent extensions of the results include multivariable systems, filter-
ing problems, periodic systems, sampled-data systems and, very recently,
nonlinear systems. We will cover all of these results in the remainder of
the book.

1.6 Summary

This chapter has introduced the central topic of this book. We are con-
cerned with fundamental limitations in the design of dynamical systems,
limitations that are imposed by structural and constitutive characteristics
of the system under study. As we have seen, fundamental limitations are
central to other disciplines; indeed, we have provided as examples the
Cramér-Rao Inequality of Estimation Theory, and the Shannon Theorem
of Communications.



1.6 Summary 21

We have presented, through an example of scalar feedback control, two
of the mappings that are central to this book, namely, the sensitivity and
complementarity sensitivity functions. These mappings are indicators of
closed-loop performance as well as stability robustness and, as such, it is
natural to require that they meet certain desired design specifications. We
argue that it is important to establish the limits that one faces when at-
tempting to achieve these specifications before any design is carried out.
For example, it is impossible for a stable closed-loop system to achieve
sensitivity reduction over a frequency range where the open-loop sys-
tem has a pure imaginary zero. More generally, ORHP zeros and poles
of the open-loop system impose constraints on the achievable frequency
response of the sensitivity and complementarity sensitivity functions.

As a further illustration of these constraints, we have studied the ef-
fect on the closed-loop step response of pure integrators and ORHP zeros
and poles of the open-loop system. We have seen, inter-alia, that a sta-
ble unity feedback system with a real ORHP open-loop zero must have
undershoot in its step response. A similar conclusion holds with ORHP
open-loop poles and overshoot in the step response. These limitations are
obviously worse for plants having both nonminimum phase zeros and
unstable poles; the inverted pendulum example illustrates these compli-
cations.

Finally, we have provided an overview of the published work that fo-
cuses on systems design limitations, the majority of which build on the
original work of Bode (1945).

Notes and References

Some of the studies of Bode seem to have been paralleled in Europe. For example,
some old books refer to the Bode gain-phase relationship as the Bayard-Bode gain-
phase relationship (e.g., Gille et al. (1959, pp. 154-155), Naslin (1965)), although
precise references are not given.

§1.3 is mainly extracted from Middleton (1991).
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2

Review of General Concepts

This chapter collects some concepts related to linear, time-invariant sys-
tems, as well as properties of feedback control systems. It is mainly in-
tended to introduce notation and terminology, and also to provide moti-
vation and a brief review of the background material for Part II. The in-
terested reader may find a more extensive treatment of the topics covered
here in the books and papers cited in the Notes and References section at
the end of the chapter.

Notation. As usual, � , � and � denote the natural, real and complex num-
bers, respectively. � 0 denotes the set � ∪ {0}. The extended complex plane is
the set of all finite complex numbers (the complex plane � ) and the point
at infinity, ∞. We denote the extended complex plane by � e = � ∪ {∞}.
The real and imaginary parts of a complex number, s, are denoted by Re s
and Im s respectively.

We will denote by � + and � − the open right and left halves of the com-
plex plane, and by � + and � − their corresponding closed versions. Some-
times, we will use the obvious acronyms ORHP, OLHP, CRHP, and CLHP.
Similarly, the symbols � and � c

denote the regions inside and outside the
unit circle |z| = 1 in the complex plane, and � and � c their corresponding
closed versions.

The Laplace and Z transforms of a function f are denoted by Lf and
Zf, respectively. In general, the symbol s is used to denote variables when
working with Laplace transforms, and zwhen working with Z transforms.
Finally, we use lower case letters for time domain functions, and upper
case letters for both constant matrices and transfer functions.
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2.1 Linear Time-Invariant Systems

A common practice is to assume that the system under study is linear
time-invariant (LTI), causal, and of finite-dimension.1 If the signals are as-
sumed to evolve in continuous time,2 then an input-output model for such
a system in the time domain has the form of a convolution equation,

y(t) =

∫ �

− �
h(t− τ)u(τ)dτ , (2.1)

where u and y are the system’s input and output respectively. The func-
tion h in (2.1) is called the impulse response of the system, and causality
means that h(t) = 0 for t < 0.

The above system has an equivalent state-space description

ẋ(t) = Ax(t) + Bu(t) ,

y(t) = Cx(t) +Du(t) ,
(2.2)

where A, B, C, D are real matrices of appropriate dimensions.
An alternative input-output description, which is of special interest

here, makes use of the transfer function,3 corresponding to system (2.1).
The transfer function, H say, is given by the Laplace transform of h in
(2.1), i.e.,

H(s) =

∫ �

0

e−sth(t)dt .

After taking Laplace transform, (2.1) takes the form

Y(s) = H(s)U(s) , (2.3)

where U and Y are the Laplace transforms of the input and output signals
respectively.

The transfer function is related with the state-space description as fol-
lows

H(s) = C(sI −A)−1B +D ,

which is sometimes denoted as

H
s
=

[

A B

C D

]

. (2.4)

1For an introduction to these concepts see e.g., Kailath (1980), or Sontag (1990) for a more
mathematically oriented perspective.

2Chapters 3 and 4 assume LTI systems in continuous time, Chapter 5 deals with period-
ically time-varying systems in discrete time, and Chapter 6 with sampled-data systems, i.e.,
a combination of digital control and LTI plants in continuous time.

3Sometimes the name transfer matrix is also used in the multivariable case.
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We next discuss some properties of transfer functions. The transfer func-
tion H in (2.4) is a matrix whose entries are scalar rational functions (due
to the hypothesis of finite-dimensionality) with real coefficients. A scalar
rational function will be said to be proper if its relative degree, defined as the
difference between the degree of the denominator polynomial minus the
degree of the numerator polynomial, is nonnegative. We then say that a
transfer matrix H is proper if all its entries are proper scalar transfer func-
tions. We say that H is biproper if both H and H−1 are proper. A square
transfer matrixH is nonsingular if its determinant, detH, is not identically
zero.

For a discrete-time system mapping a discrete input sequence, uk, into
an output sequence, yk, an appropriate input-output model is given by

Y(z) = H(z)U(z) ,

where U and Y are the Z transforms of the sequences uk and yk, and are
given by

U(z) =

�∑

k=0

uk z
−k , and Y(z) =

�∑

k=0

yk z
−k ,

and where H is the corresponding transfer matrix in the Z-transform do-
main. All of the above properties of transfer matrices apply also to transfer
functions of discrete-time systems.

2.1.1 Zeros and Poles
The zeros and poles of a scalar, or single-input single-output (SISO), transfer
function H are the roots of its numerator and denominator polynomials
respectively. Then H is said to be minimum phase if all its zeros are in the
OLHP, and stable if all its poles are in the OLHP. If H has a zero in the
CRHP, then H is said to be nonminimum phase; similarly, if H has a pole in
the CRHP, then H is said to be unstable.

Zeros and poles of multivariable, or multiple-input multiple-output
(MIMO), systems are similarly defined but also involve directionality
properties. Given a proper transfer matrix H with the minimal realiza-
tion4 (A,B,C,D) as in (2.2), a point q ∈ � is called a transmission zero5 of
H if there exist complex vectors x and Ψo such that the relation

[

x∗ Ψ∗
o

]

[

qI−A −B

−C −D

]

= 0 (2.5)

4A minimal realization is a state-space description that is both controllable and observ-
able.

5Since transmission zeros are the only type of multivariable zeros that we will deal with,
we will often refer to them simply as “zeros”. See MacFarlane and Karcanias (1976) for a
complete characterization.
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holds, where Ψ∗
oΨo=1 (the superscript ‘∗’ indicates conjugate transpose).

The vectorΨo is called the output zero direction associated with q and, from
(2.5), it satisfies Ψ∗

oH(q) = 0. Transmission zeros verify a similar property
with input zero directions, i.e., there exists a complex vector Ψi, Ψ∗

iΨi = 1,
such that H(q)Ψi = 0. A zero direction is said to be canonical if it has only
one nonzero component.

For a given zero at s = q of a transfer matrix H, there may exist more
than one input (or output) direction. In fact, there exist as many input (or
output) directions as the drop in rank of the matrix H(q). This deficiency
in rank of the matrixH(s) at s = q is called the geometric multiplicity of the
zero at frequency q.

The poles of a transfer matrix H are the eigenvalues of the evolution
matrix of any minimal realization of H. We will assume that the sets of
ORHP zeros and poles of H are disjoint. Then, as in the scalar case, H is
said to be nonminimum phase if it has a transmission zero at s = qwith q in
the CRHP. Similarly, H is said to be unstable if it has a pole at s = pwith p
in the CRHP. By extension, a pole in the CRHP is said to be unstable, and
a zero in the CRHP is called nonminimum phase.

It is known (e.g., Kailath, 1980, p. 467) that if H admits a left or right
inverse, then a pole of H will be a zero of H−1. In this case we will refer to
the input and output directions of the pole as those of the corresponding
zero of H−1.

With a slight abuse of terminology, the above notions of zeros and poles
will be used also for nonproper transfer functions, without of course the
state-space interpretation.

Finally, poles and zeros of discrete-time systems are defined in a simi-
lar way, the stability region being then the open unit disk instead of the
OLHP. In particular, a transfer function is nonminimum phase if it has ze-
ros outside the open unit disk, � , and it is unstable if it has poles outside

� .
For certain applications, it will be convenient to factorize transfer func-

tions of discrete systems in a way that their zeros at infinity are explicitly
displayed.

Example 2.1.1. A proper transfer function corresponding to a scalar discrete-
time system has the form

H(z) =
b0z

m + · · · + bm
zn + a1zn−1 + · · · + an

, (2.6)

where n ≥ m. Let δ = n−m be the relative degree ofH given above. Then
H can be equivalently written as

H(z) = H̃(z)z−δ , (2.7)
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where H̃ is a biproper transfer function, i.e., it has relative degree zero.
Note that (2.7) explicitly shows the zeros at infinity of H.6 ◦

2.1.2 Singular Values
At a fixed point s ∈ � , let the singular value decomposition (Golub and
Van Loan, 1983) of a transfer matrix H ∈ � n×n be given by

H(s) =

n∑

i=1

σi(H(s))v∗i (H(s))ui(H(s)) ,

where σi(H(s)) are the singular values ofH(s), and are ordered so that σ1 ≥
σ2 ≥ · · · ≥ σn. Each set of vectors vi and ui form an orthonormal basis of
the space � n and are termed the left and right singular vectors, respectively.
When the singular values are evaluated on the imaginary axis, i.e., for
s = jω, then they are called principal gains of the transfer matrix, and
the corresponding singular vectors are the principal directions. Principal
gains and directions are useful in characterizing directionality properties
of matrix transfer functions (Freudenberg and Looze, 1987).

It is well-known that the singular values ofH can be alternatively deter-
mined from the relation

σ2i (H(s)) = λi(H
∗(s)H(s)) , (2.8)

where λi(H∗H) denotes the i-th eigenvalue of the matrix H∗H. We will
denote the largest singular value of H by σ(H), and its smallest singular
value by σ(H).

2.1.3 Frequency Response
The frequency response of a stable system, is defined as the response in
steady-state (i.e., after the natural response has died out) to complex si-
nusoidal inputs of the form u = u0 e

jωt, where u0 is a constant vector. It
is well known that this response, denoted by yss, is given by

yss(t) = H(jω)u0 e
jωt .

Hence, the steady-state response of a stable transfer function H to a com-
plex sinusoid of frequency ω is given by the input scaled by a “complex
gain” equal to H(jω).

For scalar systems, note that H(jω) = |H(jω)|ej argH(jω). It is usual to
callH(jω) the frequency response of the system, and |H(jω)| and argH(jω)

6Note that the transfer function � ��� � has, including those at � , the same number of zeros
and poles, i.e., � . In fact, a rational function assumes every value the same number of times
(e.g., Markushevich, 1965, p. 163), � and � being just two particular values of interest.
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the magnitude and phase frequency responses, respectively. Note that the
magnitude frequency response gives the “gain” of H at each frequency,
i.e., the ratio of output amplitude to input amplitude. It is a common
practice to plot the logarithm of the magnitude response,7 and the phase
response versus ω on a logarithmic scale. These are called the Bode plots.

For multivariable systems, the extension of these concepts is not unique.
One possible characterization of the gain of a MIMO system is by means of
its principal gains, defined in §2.1.2. In particular, the smallest and largest
principal gains are of special interest, since

σ(H(jω)) ≤ |H(jω)u(jω)|

|u(jω)|
≤ σ(H(jω)) , (2.9)

where | · | denotes the Euclidean norm. Hence, the gain of H (understood
here as the ratio of output norm to input norm) is always between its
smallest and largest principal gains.

A useful measure of the gain of a system is obtained by taking the supre-
mum over all frequencies of its largest principal gain. Let H be proper
transfer function with no poles on the imaginary axis; then the infinity
norm of H, denoted by ‖H‖ � , is defined as

‖H‖ � = sup
ω

σ(H(jω)) . (2.10)

For scalar systems σ(H(jω)) = |H(jω)|, and hence the infinity norm is
simply the peak value of the magnitude frequency response.

2.1.4 Coprime Factorization
Coprime factorization of transfer matrices is a useful way of describing
multivariable systems. It consists of expressing the transfer matrix in ques-
tion as a “ratio” between stable transfer matrices. Due to the noncommu-
tativity of matrices, there exist left and right coprime factorizations. We
will use the notation “lcf” and “rcf” to stand for left and right coprime
factorization, respectively.

The following definitions are reviewed from Vidyasagar (1985).

Definition 2.1.1 (Coprimeness). Two stable and proper transfer matrices
D̃, Ñ (N, D) having the same number of rows (columns) are left (right)
coprime if and only if there exist stable and proper transfer matrices Ỹ, X̃
(X, Y) such that

ÑX̃ + D̃Ỹ = I . (XN + YD = I .)

◦
7Frequently in decibels (dB), where � ��� dB �

�
� log ����� ��� .
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Definition 2.1.2 (Lcf, Rcf). Suppose H is a proper transfer matrix. An or-
dered pair, (D̃, Ñ), of proper and stable transfer matrices is a lcf of H if D̃
is square and det(D̃) 6= 0, H = D̃−1Ñ, and D̃, Ñ are right coprime.

Similarly, an ordered pair (N,D), of proper and stable transfer matrices
is a rcf of H if D is square and det(D) 6= 0, H = ND−1, andN, D are right
coprime. ◦

Ñ andNwill be called the numerators of the lcf or rcf, respectively. Sim-
ilarly, D̃ andDwill be called the denominators of the lcf or rcf, respectively.

Every proper transfer matrix admits left and right coprime factoriza-
tions. Also, if H = D̃−1Ñ = ND−1, then (Kailath, 1980, Chapter 6)

• q is a zero of H if and only if N(s) (Ñ(s)) loses rank at s = q.

• p is a pole of H if and only if D(s) (D̃(s)) loses rank at s = p.

Note that all of the concepts defined above apply to both continuous
and discrete-time systems. In particular, for continuous-time systems, the
factorizations are performed over the ring of proper transfer matrices with
poles in the OLHP; on the other hand, for discrete-time systems, the fac-
torizations are performed over the ring of proper transfer matrices with
poles in the open unit disk.

2.2 Feedback Control Systems

Most of Part II is concerned with the unity feedback configuration of Fig-
ure 2.1, where the open-loop system, L, is formed of the series connection of
the plant, G, and controller, K, i.e.,

L = GK .

In broad terms, the general feedback control problem is to design the con-
troller for a given plant such that the output, y, follows the reference input,
r, in some specified way. This task has to be accomplished, in general,
in the presence of disturbances affecting the loop. Two common distur-
bances are output disturbances, d, and sensor or measurement noise, w. The
design generally assumes a nominal model for the plant, and then takes
additional precautions to ensure that the system continues to perform in
a reasonable fashion under perturbations of this nominal model.

We consider throughout the rest of this chapter that the (nominal) plant
and controller are continuous-time, linear, time-invariant systems, described
by transfer functionsG and K respectively. Some of these assumptions will
be relaxed in other chapters.
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FIGURE 2.1. Feedback control system.

2.2.1 Closed-Loop Stability
A basic requirement for a feedback control loop is that of internal stability,
or simply closed-loop stability, according to the following definition.

Definition 2.2.1 (Internal Stability). Let the open-loop system in Fig-
ure 2.1 be given by L = GK. Then the closed loop is internally stable if
and only if I+GK is nonsingular and the four transfer functions

[

(I+GK)−1 −(I +GK)−1G

K(I+GK)−1 I− K(I+GK)−1G

]

,

have all of their poles in the OLHP. ◦
We say that L is free of unstable hidden modes if there are no cancelations

of CRHP zeros and poles between the plant and controller whose cascade
connection forms L. In the multivariable case, cancelations involve both
location and directions of zeros and poles. For example, if the plant and
controller are expressed using coprime factorizations as

G = D̃−1
G ÑG = NGD

−1
G ,

K = D̃−1
K ÑK = NKD

−1
K ,

then L = GK has an unstable hidden mode if D̃G and ÑK share an ORHP
zero with the same input direction (Gómez and Goodwin, 1995). It is easy
to see that the closed loop is not internally stable if L has unstable hidden
modes.

For discrete-time systems, the above concepts apply with the correspond-
ing definition of the stability region.

2.2.2 Sensitivity Functions
From Figure 2.1 we see that

Y = D+ L[R −W − Y] .

Solving for Y we have

Y = (I + L)−1D+ L(I+ L)−1[R−W] . (2.11)
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The above expression suggests that two functions of central interest in the
design of feedback systems are the sensitivity function, S, and complemen-
tary sensitivity function, T , given respectively by

S(s) = [I+ L(s)]−1 , and T(s) = L(s) [I + L(s)]−1 . (2.12)

We see that S maps output disturbances to the output, and T maps both
reference and sensor noise to the output. It is also straightforward to check
that S also maps the reference input to the error in Figure 2.1.8 In fact, S
and T are intimately connected with closed-loop performance and robust-
ness properties, as we show in the following subsections.

2.2.3 Performance Considerations
If the closed loop is internally stable, S and T are stable transfer functions.
Then, the steady-state response of the system output to a disturbance d =

d0e
jωt, for d0 ∈ � n, is given by (cf. §2.1.3)

yd(t) = S(jω)d0e
jωt .

Thus, the response to d can be made small by requiring |S(jω)d0| � 1.
Clearly, from (2.9), the response of the system to output disturbances of
any direction and frequencyω can be made small if

σ(S(jω)) � 1 . (2.13)

A similar analysis for T shows that the response of the system to sensor
noise of any direction and frequencyω can be made small if

σ(T(jω)) � 1 . (2.14)

Recall that T also maps the reference input to the system output. It is
thus clear that the feedback loop will have poor performance unless the
frequency content of the reference input and the measurement noise are
disjoint. This shows that there is an inherent trade-off between reference
tracking and noise attenuation.

Another trade-off arises between attenuation of output disturbances
and sensor noise. Namely, the relationship S+T = I implies that the speci-
fications (2.13) and (2.14) cannot be both satisfied over the same frequency
range.

The above discussion suggests that a sensible design should focus on
achievable specifications. Consider, for example, the scalar case. If we as-
sume that the reference input has low frequency content (which is typi-
cally the case), then it is reasonable to require

|T(jω)| ≈ 1, ∀ω ∈ [0,ω1] ,

8In the following chapters, � and � in this figure are frequently set to zero; the reader is
asked to keep in mind that � and � also lead the output response to these signals.
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for some ω1. This is equivalent to

|S(jω)| � 1, ∀ω ∈ [0,ω1] . (2.15)

Note that the above specification implies that output disturbances having
frequency content in the range [0,ω1] will be attenuated at the system
output. However, making ω1 too large may result in large magnitudes
at the plant input. To see this, note that |S| = 1/|1 + L| can only be made
small by making the magnitude of the open-loop system L = GK large.
However, making the open-loop gain large over a frequency range where
the gain of the plant |G| is small requires a high controller gain; hence, the
response of the plant input to disturbances in this range will be very large,
usually leading to saturation. We conclude that the range of sensitivity
reduction (and thus of reference tracking) is limited by the plant’s input
response to disturbances.

It is then common to aim at a design that achieves specifications of the
form

|S(jω)| � 1, ∀ω ∈ [0,ω1] ,

|T(jω)| � 1, ∀ω ∈ [ω2,∞) ,

for some ω2 > ω1. Typical shapes for S and T satisfying specifications of
this kind are shown in Figure 2.2.
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If the above requirements are satisfied, then the peak values of S and T
will occur in the intermediate range (ω1,ω2). It is desirable to keep these
peaks as small as possible in order to avoid overly large sensitivity to dis-
turbances and excessive influence of sensor noise. A key point to emerge
later in the book, however, is that nonminimum phase zeros and unsta-
ble poles of the open-loop system impose lower limits on the achievable
peaks of the sensitivity and complementary sensitivity functions.
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2.2.4 Robustness Considerations
If the actual plant, G̃ say, differs from the nominal model G, then ad-
ditional requirements are needed to preserve stability and good perfor-
mance. The usual procedure is to consider a particular model for the al-
lowable perturbations (usually based on practical considerations), and then
to impose a condition on the design that will guarantee robust stability
(and/or performance) for all perturbed plants within the set of models
having the allowable perturbations.

Two common models used to describe plant uncertainty are divisive
and multiplicative perturbation models. The (input) divisive perturbation
model, or perturbation of the plant inverse, assumes that

G̃ = G(I+ ∆)−1 , (2.16)

where ∆ is a stable transfer function satisfying a frequency dependent
magnitude bound

σ(∆(jω)) ≤W(ω), ∀ω . (2.17)

The (output) multiplicative perturbation model assumes that

G̃ = (I+ ∆)G , (2.18)

where ∆ is a stable transfer function satisfying a frequency dependent
magnitude bound similar to (2.17). If this is the only information avail-
able about the uncertainty, then ∆ is termed unstructured uncertainty.

It turns out that the sensitivity and complementary sensitivity functions
each characterize stability robustness of the system against divisive and
multiplicative plant uncertainty respectively. Indeed, the feedback system
will be stable for all plants described by (2.16), (2.17), with ∆ stable, if and
only if the system is stable when ∆ = 0 and

σ(S(jω)) < 1/W(ω) , ∀ω , (2.19)

whereW is the bound in (2.17).
Similarly, if the nominal closed loop is stable, then the perturbed closed

loop will remain stable for all plants described by (2.18), (2.17), with ∆
stable, if and only if

σ(T(jω)) < 1/W(ω) , ∀ω . (2.20)

We remark that the same condition (2.19) is also necessary and sufficient
for robust stability against additive perturbations of the open-loop of the
form L̃ = L + ∆, where ∆ is stable and satisfies (2.17).

Note that specifications such as (2.19) and (2.20) give more insights into
the desirable shapes for S and T . For example, in the scalar case, a typical
bound W(ω) for multiplicative perturbation grows at high frequencies.9

9The multiplicative perturbation model is useful to describe high frequency modelling
inaccuracy, common in practice (Doyle and Stein, 1981).
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Thus, robust stability against multiplicative uncertainty requires that |T(jω)|

be small at high frequencies.
Finally, we briefly turn to performance robustness considerations. We

have seen in §2.2.3 that S and T are indicators of feedback system perfor-
mance. We will next consider how these functions are affected by plant
variations. We focus on the scalar case but similar conclusions hold, mu-
tatis mutandis, for multivariable systems.

Assume that the loop gain changes from its nominal value L to its actual
value L̃. It is not difficult to show that the relative changes in the sensitivity
and complementary sensitivity functions are given by

S̃ − S

S̃
= −T

L̃ − L

L
,

T̃ − T

T̃
= S

L̃ − L

L̃
.

These relations show that the sensitivity function will be robust with re-
spect to changes in the loop gain in those frequency ranges where the
nominal complementary sensitivity is small (typically at high frequen-
cies); conversely the complementary sensitivity will be robust with respect
to changes in the loop gain in those frequency ranges where the nominal
sensitivity is small (typically at low frequencies).

2.3 Two Applications of Complex Integration

In the previous section we discussed the importance of attaining a desired
shape for the frequency response of relevant transfer functions of feed-
back control loops. As we will see later, zeros and poles of the plant to be
controlled impose restrictions on the behavior of these functions at partic-
ular complex frequencies in the ORHP. A powerful tool exists by means
of which these restrictions in the ORHP can be transformed directly into
equivalent constraints on the frequency response. Indeed, the imaginary
axis can be looked upon as the boundary of the ORHP, which is the region
where the special restrictions on the transfer functions occur, so that the
broad mathematical problem is that of relating the behavior of a function
inside a region to its behavior on the boundary of the region. A mechanism
for this purpose is found in Cauchy’s theory of analytic functions and its
integrals around closed contours. The remainder of the book will make
extensive use of this theory, and a self-contained review of this theory is
given in Appendix A for convenience.

As a preliminary use of Cauchy’s theory of complex integration, we will
present two well-known applications. First we will establish the Nyquist
stability theorem. We treat the continuous-time case; however, similar ar-
guments apply to the discrete-time problem. As a second application, we
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will derive the Bode gain-phase relationship. The latter relationship will
also serve as an introduction to the constraints introduced by nonmini-
mum phase zeros on the achievable shape of the frequency response.

2.3.1 Nyquist Stability Criterion
The Nyquist criterion depends on a result known as the Principle of the
Argument. This result uses the residue theorem (Theorem A.9.1 in Ap-
pendix A) to obtain information about the number of zeros of an analytic
function (or about the number of zeros minus the number of poles of a
meromorphic function.10

Theorem 2.3.1 (Principle of the Argument). LetC be a closed simple con-
tour contained in a simply connected domain D. Let f be a meromorphic
function in D and suppose that f has no zeros or poles on C. Let nq be
the number of zeros and np the number of poles of f in the interior of C,
where a multiple zero or pole is counted according to its multiplicity. Then

∮

C

f ′(s)

f(s)
ds = j2π (nq − np) , (2.21)

where f ′ denotes the derivative of f, and integration in (2.21) is performed
in the counter-clockwise direction.

Proof. The only possible singularities of the meromorphic function f ′/f
inside C are the zeros and poles of f. Suppose that s0 represents a zero or
pole of f with multiplicity n. We can write

f(s) = (s− s0)
nf̃(s) , (2.22)

where f̃ is analytic in a neighborhood of s0 and f̃(s0) 6= 0. Hence

f ′(s)

f(s)
=

n

s− s0
+
f̃ ′(s)

f̃(s)
(2.23)

in a neighborhood of s0. Thus the residue of f ′/f at s0 is n (see §A.9.1 in
Appendix A). Note that n is positive if s0 is a zero of f, and n is negative if
s0 is a pole of f. Applying Theorem A.9.1 of Appendix A yields (2.21) and
completes the proof. �

We will next see why Theorem 2.3.1 is called the principle of the argu-
ment. Let the equation for C be s = s(ζ), with ζ in [a, b] and let ξ = f(s).
Consider now the image of C under f, C̃ say. Thus, the equation of C̃ in
the ξ plane is

ξ = f(s(ζ)) , ζ ∈ [a, b] .

10A function is meromorphic in a domain � if it is defined and analytic in � except for
poles.
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Since f is never zero on C, then the curve C̃ does not pass through the
origin of the ξ plane. Hence, it is possible to define a continuous logarithm

F(ζ) = log f(s(ζ))

on C̃. On any smooth portion of C, we have, by differentiation,

F ′(ζ) =
f ′(s(ζ))

f(s(ζ))
s ′(ζ) ,

and hence, by the fundamental theorem of calculus (cf. (A.18) in Appendix A),

∫b

a

f ′(s(ζ))

f(s(ζ))
s ′(ζ)dζ = log f(s(ζ))

∣

∣

∣

∣

b

a

.

This is equivalent to
∮

C

f ′(s)

f(s)
ds = log f(s)

∣

∣

∣

∣

C

= log |f(s)|

∣

∣

∣

∣

C

+ j arg f(s)
∣

∣

∣

∣

C

.

The first term on the right is zero since C is closed. Then, dividing by 2π
and using (2.21), we get

2π (nq − np) = arg f(s)
∣

∣

∣

∣

C

. (2.24)

That is, nq − np is the number of times the image curve C̃ winds around
the origin in the ξ plane, when C is traversed in the counter-clockwise
sense.

The principle of the argument finds immediate application in the Nyquist
stability criterion. Specifically, let L = GK be the open-loop transfer func-
tion of the feedback control system shown in Figure 2.1. Assume further
that L is scalar. We have seen in §2.2.1 that the closed loop is internally
stable if and only if there are no unstable cancelations in L, L(∞) 6= −1,
and all the zeros of the characteristic equation

1 + L(s) = 0 (2.25)

have negative real part.
Consider next the contourC shown in Figure 2.3, consisting of the imag-

inary axis and a semicircle of infinite radius into the ORHP. If L has poles
on the imaginary axis, then Cmust have small indentations to avoid them.
Such a contour is called Nyquist contour and its image through L(s) is
called the Nyquist plot of L.

A necessary and sufficient condition for closed-loop stability is furnished
by the following theorem.
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FIGURE 2.3. Nyquist contour.

Theorem 2.3.2 (Nyquist Stability Criterion). The feedback control sys-
tem of Figure 2.1 is internally stable if and only if L(∞) 6= −1 and the
number of counter-clockwise revolutions made by the Nyquist plot of the
open-loop transfer function L = GK around the point s = −1, is equal to
the number of unstable poles of G plus the number of unstable poles of K.

Proof. We apply Theorem 2.3.1 to the function f = 1+L using the Nyquist
contour, C in Figure 2.3 (note that now integration is in the clockwise di-
rection). Any pole or zero of 1+ L with positive real part will therefore lie
within this contour. Thus, closed-loop stability is equivalent to nq = 0 in
(2.21) or (2.24).

It follows from (2.24) that the phase-shift increment of 1 + L(s) as s tra-
verses the Nyquist contour is 2π (np−nq), where np is the number of un-
stable poles of L. But, since L and 1+L have the same poles, it is equivalent
to count revolutions of L(s) around the point (−1, 0). Thus the number of
counter-clockwise revolutions of the Nyquist plot of L = GK around the
point s = −1 is different from the number of unstable poles of G plus the
number of unstable poles of K if and only if there is an unstable cancela-
tion in L, or 1 + L is nonminimum phase (i.e., nq 6= 0). The result then
follows. �

Example 2.3.1. Let L in Figure 2.1 be a strictly proper transfer function.
Since L(Rejθ) vanishes as R becomes infinite, it follows that the phase-shift
of 1 + L(s) as s traverses the Nyquist contour is given by its phase-shift
when s moves on the imaginary axis. Moreover, since L has real coeffi-
cients, then it suffices to consider 2 times the phase-shift encountered as s
moves along the positive imaginary axis. Also, note that 1 + L(jω) is the
vector from the −1 point to the point on the Nyquist plot at frequencyω.

Now assume that L is strictly proper and has one unstable pole. Ac-
cording to the Nyquist stability criterion and the previous discussion, if
the closed loop is stable, then the vector 1 + L(jω) must rotate an angle
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of π (in the counter-clockwise sense) as ω goes from 0 to ∞. But, since L
is strictly proper, 1 + L(j∞) is the vector from the −1 point to the origin
of the complex plane. It thus follows that closed-loop stability requires
L(0) < −1. ◦

2.3.2 Bode Gain-Phase Relationships
As a further application of analytic function theory, we will review the
gain-phase relationships originally developed by Bode (1945), which es-
tablish that, for a stable minimum phase transfer function, the phase of
the frequency response is uniquely determined by the magnitude of the
frequency response and vice versa.

We begin by showing that the real and imaginary parts of a proper sta-
ble rational function with real coefficients are dependent of each other. We
consider this dependence at points of the imaginary axis.

Theorem 2.3.3 (Bode’s Real-imaginary Parts Relationship). 11 Let H be a
proper stable transfer function, and suppose that, at s = jω, H(s) can be
written as H(jω) = U(ω) + jV(ω), where U and V are real valued. Then
for any ω0

V(ω0) =
2ω0

π

∫ �

0

U(ω) −U(ω0)

ω2 −ω20
dω . (2.26)

Proof. Let C be the clockwise oriented contour shown in Figure 2.4, and
consisting of the imaginary axis, with infinitely small indentations at the
points +jω0 and −jω0 (C2 and C3 in Figure 2.4), and the semicircle C1,
which has infinite radius in the ORHP12.

Then the functions

H(s) −U(ω0)

s − jω0
and

H(s) −U(ω0)

s+ jω0

are analytic on and inside C. Hence, applying Cauchy’s integral theorem
(see §A.5.2 in Appendix A) to both functions and subtracting yields

∮

C

(

H(s) −U(ω0)

s − jω0
−
H(s) −U(ω0)

s+ jω0

)

ds = 0 . (2.27)

The integral above may be decomposed as

2ω0

∫ �

− �

H(jω) −U(ω0)

ω2 −ω20
dω+ I1 + I2 + I3 = 0 , (2.28)

11This is, in fact, one of the many real-imaginary relationships derived by Bode .
12This should be understood as follows: the indentations on the imaginary axis have radii

��� � , and the large semicircle in the ORHP has finite radius � . These are then considered
in the limit as ��� � and ��� � . In fact, the large semicircle is nothing but an indentation
around � .
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FIGURE 2.4. Contour used in Theorem 2.3.3.

where I1, I2, and I3 are the integrals over C1, C2, and C3 respectively. The
integral on the imaginary axis can be written as

2ω0

∫ �

− �

H(jω) −U(ω0)

ω2 −ω20
dω = 4ω0

∫ �

0

U(ω) −U(ω0)

ω2 −ω20
dω ,

since the real and imaginary parts of a transfer function evaluated at s =

jω are even and odd functions ofω respectively.
Next note that the integral I1 vanishes because H is proper.
Now consider the integral I2. Since the radius of C2 is infinitely small,

we can approximate H(s) on C2 by the constant H(jω0). We can also ne-
glect the contribution of the fraction 1/(s+ jω) in comparison with that of
1/(s − jω). Then

I2 =

∫

C2

H(jω0) −U(ω0)

s− jω0
ds

= jV(ω0)

∫

C2

1

s − jω0
ds

= −πV(ω0) ,

where the last step follows from (A.32) in Appendix A.
Similarly, we can show that the integral I3 equals −πV(ω0). Finally, sub-

stituting into (2.28) and rearranging gives the desired expression. �

The above theorem shows that values on the jω-axis of the imaginary
part of a stable and proper transfer function can be reconstructed from
knowledge of the real part on the entire jω-axis. Conversely, under the
assumption that the transfer function is strictly proper and stable, it can be
shown that the real part can be obtained from the imaginary part, i.e.,

U(ω0) = −
2

π

∫ �

0

ω [V(ω) − V(ω0)]

ω2 −ω20
dω , (2.29)
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which follows similarly by adding instead of subtracting in (2.27).
It is shown in §A.6 of Appendix A that the values of a function analytic

in a given region can be reconstructed from its values on the boundary.
Combining this with relations (2.26) and (2.29), we deduce that the val-
ues of a stable and strictly proper transfer function on the CRHP are com-
pletely determined by the real or imaginary part of its frequency response.

We will next show that the gain and the phase of the frequency response
of a stable, minimum phase transfer function are dependent on each other.

Theorem 2.3.4 (Bode’s Gain-phase Relationship). Let H be a proper, sta-
ble, and minimum phase transfer function, such that H(0) > 0. Then, at
any frequencyω0, the phase φ(ω0) , argH(jω0) satisfies

φ(ω0) =
1

π

∫ �

− �

d log |H(jω0e
u)|

du
log coth

∣

∣

∣

u

2

∣

∣

∣ du , (2.30)

where u = log(ω/ω0).

Proof. Consider

H(jω0) = U(ω0) + jV(ω0) , |H(jω0)| e
jφ(ω0) . (2.31)

Since H has no zeros in the CRHP, taking logarithms in (2.31) gives

logH(jω0) = log |H(jω0)| + jφ(ω0) , m(ω0) + jφ(ω0). (2.32)

Comparing (2.31) and (2.32) shows that the magnitude characteristicm(ω0)

and the phase φ(ω0) are related to logH(jω0) and to each other in the
same way that U(ω0) and V(ω0) are related to H(jω0) and each other.
Hence (2.29) and (2.26) immediately imply

m(ω0) = −
2

π

∫ �

0

ω [φ(ω) − φ(ω0)]

ω2 −ω20
dω , (2.33)

φ(ω0) =
2ω0

π

∫ �

0

m(ω) −m(ω0)

ω2 −ω20
dω . (2.34)

Note that the assumption that H has no zeros or poles in the CRHP guar-
antees the validity of the integrals above, since logH is analytic in the
finite CRHP. The singularity at ∞ arising from a strictly proper H is ruled
out in the chosen contour of integration (see footnote 12 on page 40). The
fact that | logH(s)|/|s| → 0 when |s| → ∞ eliminates the integral along the
large semicircle in the ORHP.

Next, consider (2.34). Changing variables to u = log(ω/ω0) and denot-
ing m̃(u) = m(ω) gives

φ(ω0) =
2

π

∫ �

− �

m̃(u) −m(ω0)

eu − e−u
du

=
1

π

∫ �

− �

m̃(u) −m(ω0)

sinh(u)
du .
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Dividing the complete range of integration into separate ranges above and
below u = 0 and integrating by parts yields

φ(ω0) =
1

π

∫0

− �

m̃(u) −m(ω0)

sinh(u)
du +

1

π

∫ �

0

m̃(u) −m(ω0)

sinh(u)
du

= −
1

π
[m̃(u) −m(ω0)] log coth

(

−u

2

)∣

∣

∣

∣

0

− �

+
1

π

∫0

− �

dm̃(u)

du
log coth

(

−u

2

)

du

−
1

π
[m̃(u) −m(ω0)] log coth

(u

2

)

∣

∣

∣

∣

�

0

+
1

π

∫ �

0

dm̃(u)

du
log coth

(u

2

)

du .

(2.35)

Near u = 0, the quantity m̃(u) − m(ω0) behaves proportionally to u,
whilst log coth(u/2) will vary as − log(u/2). Thus, at the limit u → 0, the
integrated portions of (2.35) behave as u logu, which is known to van-
ish as u → 0. As for the other limits, we have that limu � − � m̃(u) =

limω � 0m(ω) = m(0), which is finite since H is stable and minimum
phase; also limu � � m̃(u) log coth(u/2) = limω � � m(ω)2(ω0/ω) = 0.
Hence both integrated portions in (2.35) are equal to zero. The result then
follows on combining the remaining two integrals in (2.35). �

The implications of (2.30) can be easily appreciated using properties of
the weighting function appearing in (2.30), namely

log coth
∣

∣

∣

u

2

∣

∣

∣
= log

∣

∣

∣

∣

ω +ω0

ω −ω0

∣

∣

∣

∣

. (2.36)

This function is plotted in Figure 2.5.
As we can see from this figure, the weighting function becomes logarith-

mically infinite at the point ω = ω0. Thus, we conclude from (2.30) that
the slope of the magnitude curve in the vicinity of ω0, say c, determines
the phase φ(ω0):

φ(ω0) ≈
c

π

∫ �

− �
log coth

∣

∣

∣

u

2

∣

∣

∣
du =

c

π

π2

2
= c

π

2
.

Hence, for stable and minimum phase transfer functions, a slope of 20c
dB/decade in the gain in the vicinity of ω0 implies a phase angle of ap-
proximately c π/2 rad sec−1.

The above arguments lead classical designers to conclude that, to ensure
closed-loop stability, the slope of the open-loop gain characteristic, |L(jω)|,
should be in the range -20 to -30 dB/decade at the gain cross-over point
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FIGURE 2.5. Weighting function of the Bode gain-phase relationship.

(i.e., at the frequency at which |L| = 1 or 0 dB), since this would imply the
phase would be less than 180◦ i.e. the Nyquist plot would not encircle the
‘-1‘ point.

Example 2.3.2. Let us consider the X-29 aircraft design example discussed
in §1.1 of Chapter 1. This system is (approximately) modelled by a strictly
proper transfer function, G, which is unstable and nonminimum phase.
For one flight condition, the unstable pole is at 6 and the nonminimum
phase zero at 26. It is desired to use a stable, minimum phase controller in
series with G, such that the closed loop is stable and has a phase margin
of π/4. Consider the open-loop system formed by the cascade of plant and
controller and modeled by a transfer function, L say. This system is neither
stable nor minimum phase in open loop. However, we can associate with
L another transfer function, L̃, defined as follows

L(s) = −L̃(s)

(

s+ p

s− p

)(

s− q

s+ q

)

, (2.37)

where L̃ is stable, minimum phase, and such that L̃(0) > 0, and where p
and q correspond to the (real) ORHP pole and zero of G respectively.13

The negative sign in (2.37) is necessary to guarantee a stable closed loop
(see Example 2.3.1). We note that

|L̃(jω)| = |L(jω)| . (2.38)

Now from (2.37) we have that φ(ω0) , argL(jω0) is given by

φ(ω0) = arg L̃(jω0) − arg
p− jω0

p+ jω0
− arg

jω0 + q

jω0 − q
.

13Actually, the device used above to associate a stable, minimum phase transfer function
with an unstable, nonminimum phase one will be used repeatedly in subsequent chapters.
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Also, since L̃ is stable, minimum phase, and L̃(0) > 0, we can use (2.30) to
obtain

φ(ω0) =
1

π

∫ �

− �

d log |L̃(jω0e
u)|

du
log coth

∣

∣

∣

u

2

∣

∣

∣du−arg
(p−jω0)(jω0+q)

(p+jω0)(jω0−q)
.

Finally, using (2.38) we obtain

φ(ω0) =
1

π

∫ �

− �

d log |L(jω0e
u)|

du
log coth

∣

∣

∣

u

2

∣

∣

∣du−arg
(p−jω0)(jω0+q)

(p+jω0)(jω0−q)

=
1

π

∫ �

− �

d log |L(jω0e
u)|

du
log coth

∣

∣

∣

u

2

∣

∣

∣ du−2 arctan
ω0/q+p/ω0

1−p/q
.

Say that we want a slope of -10 dB/decade at the gain cross-over fre-
quency; then this means that the first term in the above expression is ap-
proximately −π/4. Now, the second term has its least negative value for
ω0 =

√
pq, and for p = 6, q = 26, we obtain

φ(ω0) ≤ (−π/4− 1.79)rad
= −147◦ .

Hence, the maximum possible phase margin in this case is 33◦.

2.4 Summary

In this chapter we have provided an overview of system properties, with
emphasis on the frequency response of LTI systems. We have considered
stability, performance and robustness of feedback control loops. We have
also shown that the sensitivity and complementary sensitivity functions
can be used to quantify important feedback properties.

In addition, we have given two applications of Cauchy’s integral the-
orems to systems theory, namely the Nyquist stability criterion and the
Bode gain-phase relationship.

Notes and References

This chapter is mainly oriented towards people with some background in con-
trol and systems theory. For a more extensive introduction see e.g., Kailath (1980),
Franklin et al. (1994) or Sontag (1990). The material included here was based on
the references below.

LTI Systems
See e.g., Francis (1991), Maciejowski (1991), Middleton and Goodwin (1990), Kailath
(1980) and Franklin et al. (1994).
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Feedback Control Systems
See e.g., Freudenberg and Looze (1988), Doyle and Stein (1981), Maciejowski (1991)
and Kwakernaak (1995).

A different approach to the concept of gains for multivariable systems is found
in Postlethwaite and MacFarlane (1979), where emphasis is placed on the (fre-
quency dependent) eigenvalues of the transfer matrix.

§2.3 is mainly based on Bode (1945).
Example 2.3.2 is taken from Åström (1996), where additional limitations on the

achievable phase margin are also discussed.
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SISO Control

In this chapter we present results on performance limitations in linear
single-input single-output control systems. These results are the corner-
stones of classical design. We focus on the sensitivity and complementary
sensitivity functions, S and T . Although this chapter is based on contri-
butions by many authors, mainly during the 80’s, they may be seen with
justice as direct descendants of the many ideas contained in Bode (1945).

3.1 Bode Integral Formulae

Bode’s book (Bode, 1945) mainly dealt with analysis and design of feed-
back amplifiers, but it settled the mathematical foundation for what is
now known as classical control theory. Bode’s methods had a deep and
lasting impact in systems science, and many of his results still have reper-
cussions. From his analysis, for example, it can be concluded (see §3.1.2)
that, if the open-loop system is a stable rational function with relative de-
gree at least two, then, provided the closed-loop system is stable, the sen-
sitivity function must satisfy the following integral relation:

∫ �

0

log |S(jω)|dω = 0 . (3.1)

This integral establishes that the net area subtended by the plot of |S(jω)|

on a logarithmic scale is zero. Hence, the contribution to this area of those
frequency ranges where there is sensitivity amplification (|S(jω)| > 1)



48 3. SISO Control

must equal that of those ranges where there is sensitivity attenuation (|S(jω)| <

1). This trade-off is illustrated in Figure 3.1. This demonstrates that there
is a compromise between sensitivity magnitudes in different frequency
ranges. Moreover, since the sensitivity function quantifies (amongst other
things) a system’s ability to reject disturbances, the area constraint estab-
lishes that it is impossible to achieve arbitrary rejection at all frequencies.

�

log � �������	�
�

� � � � 


� � ��� 


FIGURE 3.1. Area balance of the sensitivity integral.

Due to the aforementioned balance of areas, the relation (3.1) is some-
times called the area formula. As a matter of fact, (3.1) is a control sys-
tem interpretation due to Horowitz (1963) of the original results of Bode
(1945). These results dealt with the application of Cauchy’s integral the-
orem (Theorem A.5.3 in Appendix A) to the real and imaginary parts of
analytic functions (some of them have already been discussed in §2.3.2 of
Chapter 2). In the following subsection we review the original formula of
Bode that inspired (3.1).

3.1.1 Bode’s Attenuation Integral Theorem
The theorem that we present in this section further develops the relation-
ship between real and imaginary components of analytic functions. More
specifically, it provides an expression for the behavior of the imaginary
part at high frequencies, in terms of the integral of the real part, of a func-
tion H that satisfies the following conditions:

(i) H(jω) = P(ω) + jQ(ω) = H(−jω), where P and Q are real-valued
functions ofω;

(ii) H(s) is analytic at s = ∞ and in the CRHP except possibly for singu-
larities s0 = jω0 on the finite imaginary axis that satisfy lims � s0

(s−

s0)H(s) = 0.
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Bode called the real and imaginary parts, P andQ, attenuation and phase,
respectively, since he studied functions of the form H = logµ, where µ
represented characteristics of an electrical network. This suggested the
name of the theorem.

Before presenting Bode’s Attenuation Integral Theorem, we discuss a
different interpretation of Theorem 2.3.3 in Chapter 2 that serves as mo-
tivation. Recall that Theorem 2.3.31 gave an expression of the imaginary
part of H at any frequency ω0 in terms of the integral of the complete
frequency response of the real part of H. In the proof of Theorem 2.3.3,
the function H was manipulated in order to create poles at s = jω0 and
s = −jω0 in the integrand of (2.27). This led to the result that the inte-
grand had residues of value jQ(ω0) at each of these poles, and thus the
real-imaginary parts relation (2.26) can be alternatively interpreted as an
expression for the residue at a finite frequency. There is no reason why the
same procedure cannot be applied to evaluate the residue at infinity of H,
denoted by Ress= � H(s) (see §A.9.1 in Chapter A). This is the essential
format of Bode’s Attenuation Integral Theorem.

Theorem 3.1.1 (Bode’s Attenuation Integral Theorem). Let H be a func-
tion satisfying conditions (i) and (ii). Then, for H(jω) = P(ω) + jQ(ω),

∫ �

0

[P(ω) − P(∞)]dω = −
π

2
Res
s= �

H(s) . (3.2)

Proof. Since H is analytic at infinity, it follows from Example A.8.4 of Ap-
pendix A that it has a Laurent series expansion of the form

H(s) = · · · + c−k

sk
+ · · · + c−1

s
+ c0 , (3.3)

which is uniformly convergent in R ≤ |s| < ∞, for some R > 0. In view
of the assumption (i) on H, it follows that the coefficients {ck} are real and
that c0 = P(∞).

Consider next the contour of integration shown in Figure 2.3 of Chap-
ter 2, where the small indentations correspond to possible singularities of
H on the imaginary axis, and where the large semicircle has radius larger
than R. Denote this semicircle by CR. Then, according to Cauchy’s integral
theorem ∮

[H(s) − P(∞)]ds = 0 . (3.4)

The contribution of the integrals on the small indentations on the imag-
inary axis can be shown (see the proof of Lemma A.6.2 in Appendix A)
to tend to zero as the indentations vanish, due to the particular type of

1Theorem 2.3.3 was proven for proper and stable transfer functions, but the result also
holds for any function � satisfying conditions (i) and (ii).
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singularities characterized in (ii). The integral on the large semicircle of
the terms in sk, k ≤ 2, of (3.3) tends to zero as the radius becomes infinite
(see Example A.4.1 in Appendix A). Hence, taking limits as R → ∞, (3.4)
reduces to

0 =

∫ �

− �
[P(ω) + jQ(ω) − P(∞)] jdω+ lim

R � �

∫

CR

c−1

s
ds

= 2j

∫ �

0

[P(ω) − P(∞)]dω− jπc−1 ,

where the second line is obtained using the symmetry properties of P and
Q, and Example A.5.1 of Appendix A. Equation (3.2) then follows using
Ress= � H(s) = −c−1 (see (A.80) in Appendix A). �

Note that, from (3.3), Q(ω) = ImH(jω) = −c−1/ω + c−3/ω
3 + · · · .

Hence (3.2) can also be written as
∫ �

0

[P(ω) − P(∞)]dω = −
π

2
lim
ω � � ωQ(ω) .

This gives an expression for the behavior at infinity of the imaginary com-
ponent of H.

A formula parallel to (3.2) but applicable at zero frequency is easily ob-
tained from the above result using the fact that H is analytic at zero. This
is established in the following corollary.

Corollary 3.1.2. Let H be a function such that H(1/ξ) satisfies conditions
(i) and (ii). Then

∫ �

0

[P(ω) − P(0)]
dω

ω2
=
π

2
lim
s � 0

dH(s)

ds
. (3.5)

Proof. Since H is analytic at zero it has a power series expansion of the
form

H(s) = a0 + a1s+ · · · + aksk + · · · , (3.6)

which is uniformly convergent in |s| ≤ r, for some r > 0. Consider the
function H(1/ξ), which is analytic at infinity and admits — from (3.6) — a
Laurent series expansion of the form

H(1/ξ) = · · · + ak

ξk
+ · · · + a1

ξ
+ a0 ,

which is uniformly convergent in |ξ| ≥ 1/r. Then, using (3.2), we have
∫ �

0

[P(1/ν) − P(0)]dν =
π

2
a1 .

The proof is completed on making the change of variable of integration
ω = 1/ν and noting that a1 = lims � 0[dH(s)/ds]. �
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The theorem and corollary given above, as well as Theorem 2.3.3 in
Chapter 2, give examples of the great variety of formulae that can be
obtained via a judicious choice of contour of integration and integrand
in Cauchy’s theorems. Bode collected a number of such formulae in his
book; see, for example, the table at the end of Chapter 13 of Bode (1945).
Our choice of the relations presented so far is justified by their immediate
application in systems theory. Otherwise, to quote Bode,

“. . . it is extremely difficult to organize all the possible relations
in any very coherent way. In a purely mathematical sense most
of the formulae are related to one another by such obvious
transformations and changes of variable that there is no good
reason for picking out any particular set as independent. Basi-
cally they are merely reflections of Cauchy’s theorem. Thus the
expressions which one chooses to regard as distinctive must be
selected for their physical meaning for the particular problem
in hand.”

3.1.2 Bode Integrals for S and T
This subsection starts this book’s main journey through results concerning
complementary mappings, by which we mean mappings relating signals of
the loop and such that their sum is a constant mapping. We consider here
the sensitivity function, S, and the complementary sensitivity function,
T , of the classical unity feedback configuration of linear feedback control
theory, represented in Figure 3.2.

b i b- - -
6

�

�

� �
� ��� �

�

FIGURE 3.2. Feedback control system.

These two mappings satisfy the complementarity constraint

S(s) + T(s) = 1 . (3.7)

This represents an algebraic trade-off (Freudenberg and Looze, 1985), since
it constrains the properties of the closed-loop system at each frequency.
It implies, for example, that the magnitudes of S and T cannot both be
smaller than 1/2 at the same frequency (Doyle et al., 1992).

Assuming minimality, S has zeros at the unstable open-loop plant poles
and T has zeros at the nonminimum phase open-loop plant zeros. These
are generally known as interpolation constraints. More precisely, let the open-
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loop system be L and assume that it is free of unstable hidden modes2.
Then, the sensitivity and complementary sensitivity functions have the
forms

S(s) =
1

1 + L(s)
, and T(s) =

L(s)

1 + L(s)
. (3.8)

The following lemma formalizes the interpolation constraints that S and
T must satisfy at the CRHP poles and zeros of L.

Lemma 3.1.3 (Interpolation Constraints). Assume that the open-loop sys-
tem L is free of unstable hidden modes. Then S and T must satisfy the
following conditions.

(i) If p ∈ � + is a pole of L, then

S(p) = 0, and T(p) = 1. (3.9)

(ii) If q ∈ � + is a zero of L, then

S(q) = 1, and T(q) = 0. (3.10)

Proof. Follows immediately from (3.8). �

This result states that the CRHP zeros of S and T are determined by
those of L−1 and L. We introduce for convenience the following notation
for the ORHP zeros of S and T .3

ZS , {s ∈ � + : S(s) = 0} ,

ZT , {s ∈ � + : T(s) = 0} .
(3.11)

Lemma 3.1.3 then establishes the fact that ZS is the set of ORHP poles of L
and ZT is the set of ORHP zeros of L. In other words, we have translated
the open-loop characteristics of instability and “nonminimum phaseness”
into properties that the functions S and T must satisfy in the CRHP. In par-
ticular, note that if the open-loop system is formed by the cascade of the
plant, G, and the controller, K, i.e., L = GK, then the constraints imposed
by CRHP poles and zeros ofG hold irrespective of the choice of K, provided
that L has no unstable zero-pole cancelation.

As a first extension of Bode’s results to integrals on sensitivity functions,
we will derive Horowitz’s formula (3.1) and a complementary result for T
using Theorem 3.1.1 and Corollary 3.1.2.

2Recall from Chapter 2 that � is free of unstable hidden modes if there are no cancela-
tions of CRHP zeros and poles between the plant and controller whose cascade connection
forms � .

3In the sequel, when defining a set of zeros of a transfer function, the zeros are repeated
according to their multiplicities.
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Example 3.1.1 (Horowitz’s formula for S). Suppose that L is a proper ratio-
nal function without poles in the ORHP. Assume that the closed-loop system
is stable (i.e., the numerator of 1 + L is Hurwitz and L(∞) 6= −1) and con-
sider the corresponding sensitivity function S. It follows that ZS in (3.11)
is empty and that the function H = log S satisfies assumptions (i) and (ii)
of §3.1.1. Thus, we can apply Theorem 3.1.1 to the real part, log |S(jω)|, to
obtain

∫ �

0

[log |S(jω)| − log |S(j∞)|]dω = −
π

2
Res
s= �

log S(s) .

If we further assume that the open-loop plant has relative degree two or
more, then4 S(j∞) = 1 and Ress= � log S(s) = 0. This recovers Horowitz’s
area formula given in (3.1). ◦

Example 3.1.2 (Horowitz’s formula for T ). Assume that L(s) is a minimum
phase rational function such that L(0) 6= 0. Then, if we consider the comple-
mentary sensitivity function T , we have that ZT in (3.11) is empty. Next,
notice that the function T(1/ξ) can be written as

T(1/ξ) =
1

1 + 1/L(1/ξ)
. (3.12)

Then, under the assumption of closed-loop stability (which implies L(0) 6=
−1), the function H(1/ξ) = log T(1/ξ) satisfies conditions (i) and (ii) of
§3.1.1. We thus obtain, from Corollary 3.1.2,

∫ �

0

[log |T(jω)| − log |T(0)|]
dω

ω2
=
π

2

1

T(0)
lim
s � 0

dT(s)

ds
.

If we further assume that L has at least two integrators then T(0) = 1 and
lims � 0 dT(s)/ds = 0, which yields

∫ �

0

log |T(jω)|
dω

ω2
= 0 .

◦
It is instructive at this point to reflect on the complementarity of these

formulae for S and T , as well as the hypotheses required on the open-loop
system L to derive them. Under appropriate conditions, S and T exhibit
symmetry with respect to frequency inversion (Kwakernaak, 1995). For
example, the condition that L be proper and L(j∞) 6= −1 (or alternatively,
that L be strictly proper) imply the analyticity of S and log S at infinity. On
the other hand, the requirement that L(0) 6= {0,−1} (or that L has poles at
zero) gives the analyticity of T and log T at zero.

4See Example A.9.2 in Appendix A.
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The extensions to unstable open-loop plants and to plants with time de-
lay were derived by Freudenberg and Looze 1985; 1987. The complemen-
tary result for T was obtained by Middleton and Goodwin (1990). These
two area formulae will be given next under the name of the Bode Integrals
for S and T . We choose these names since the results are natural extensions
of Bode’s integral (3.2) to the sensitivity and complementary sensitivity
functions.

Theorem 3.1.4 (Bode Integral for S). Let S be the sensitivity function de-
fined by (3.8). Let {pi : i = 1, . . . , np} be the set of poles in the ORHP of the
open-loop system L. Then, assuming closed-loop stability,

(i) if L is a proper rational function,

∫ �

0

log
∣

∣

∣

∣

S(jω)

S(j∞)

∣

∣

∣

∣

dω =
π

2
lim
s � �

s[S(s) − S(∞)]

S(∞)
+ π

np∑

i=1

pi ; (3.13)

(ii) if L(s) = L0(s)e
−sτ, where L0(s) is a strictly proper rational function

and τ > 0,
∫ �

0

log |S(jω)|dω = π

np∑

i=1

pi . (3.14)

Proof. Consider the contour of Figure 3.3, where the indentations C1, C2,
. . . , Cnp

into the right half plane avoid the branch cuts of log S corre-
sponding to the zeros of S (see Figure A.19 in Appendix A). Let C0 consist
of the remaining portions of the imaginary axis and let CR be the semicir-
cle of radius R.

� �

�
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� ���
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�

FIGURE 3.3. Contour for Bode Sensitivity Integral.

Since log[S(s)/S(∞)] is analytic on and inside the total contour, denoted
by C, then, by Cauchy’s integral theorem,

lim
ε � 0
R � �

∫

C

log
S(s)

S(∞)
ds = 0 .
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Note that the computation of the portions of the integral on the imaginary
axis and on the indentations is the same for both cases (i) and (ii) (the only
distinction being that in (ii) we have that S(∞) = 1). However, the integral
on the large semicircle requires a different analysis in each case.

The portion of the integral on C0 gives5

lim
ε � 0
R � �

∫

C0

log
S(s)

S(∞)
ds = 2j

∫ �

0

log
∣

∣

∣

∣

S(jω)

S(j∞)

∣

∣

∣

∣

dω .

For the integral on the branch cut indentations we have, using (A.85) of
Appendix A,

np∑

i=1

∫

Ci

log
S(s)

S(∞)
ds = −j2π

np∑

i=1

Repi = −j2π

np∑

i=1

pi ,

where the last equality follows since complex zeros must appear in conju-
gate pairs.

It remains to compute the integral on CR for each of the cases (i) and (ii).

(i) If L is a proper rational function, the assumption of closed-loop sta-
bility guarantees that the function log S(s) is analytic at infinity. We
can then use Example A.9.2 of Appendix A to compute the integral
on CR in the limit when R → ∞ as

lim
R � �

∫

CR

log
S(s)

S(∞)
ds = jπ Res

s= �
log

S(s)

S(∞)

= jπ
1

S(∞)
lim
s � � s[S(∞) − S(s)] ,

(3.15)

where we have used (A.84) from Appendix A.

(ii) If L = L0e
−sτ, with τ > 0 and L0 strictly proper, we have that there

is an r > 0 such that, for all s with Re s ≥ 0 and |s| > r, the modulus
of L(s) satisfies |L(s)| < 1. Then, a similar use of the expansion of
log(1 + s) as in Example A.9.2 of Appendix A yields

log S(s) = −L0(s)e
−sτ +

L20(s)e
−2sτ

2
+ · · · ,

in {s : |s| > r and Re s ≥ 0}. Since L0 has relative degree at least one,
then the above expansion has the form

log S(s) =
c−1

s
e−sτ + · · · , in {s : |s| > r and Re s ≥ 0} .

5Under the convention that the phase of a negative real number is equal to � for � ≥ �
and ��� for � � � .
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Then, using the result in Example A.4.3 of Appendix A, we finally
have that

lim
R � �

∫

CR

log S(s)ds = 0 .

The result then follows by combining the integrals over all portions of
the total contour for each of the cases (i) and (ii). �

Theorem 3.1.4 shows that the presence of open-loop unstable poles fur-
ther restricts the compromise between areas of sensitivity attenuation and
amplification imposed by the integral. Specifically, since the term

∑np

i=1 pi
is nonnegative, the contribution to the integral of those frequencies where
|S(jω)| < 1 is clearly reduced if L has unstable poles. Moreover, the farther
from the jω-axis the poles are, the worse will be their effect.

The first term on the RHS of (3.13) appears only if the plant has relative
degree 0 or 1 and no time delay, and admits an interpretation in terms of
the time response of L. Indeed, if l(t) denotes the response of the plant to
a unitary step input, we can alternatively write

lim
s � �

s[S(s) − S(∞)]

S(∞)
= lim
s � � s

[

L(∞) − L(s)

1 + L(s)

]

= −
l̇(0+)

1 + L(∞)
,

where the last step follows from the Initial Value Theorem of the Laplace
transform (e.g., Franklin et al., 1994). Thus, l̇(0+) is the initial slope of l(t),
as illustrated in Figure 3.4.

� ��� �

� � � �

�

� � � �

�
� arctan ˙� � ��� �

FIGURE 3.4. Step response of a plant of relative degree
�
.

If the plant has relative degree 0 or 1, a large positive value for l̇(0+) will
ameliorate the integral constraint for S. This, as we will see in more detail
in §3.1.3, is justified by the fact that a larger value for l̇(0+) is associated
with larger bandwidth of the system.
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If the plant has relative degree greater than 1, then l̇(0+) vanishes, and
(3.13) reduces to (3.14). We will see in §3.1.3, however, that larger band-
width still alleviates the trade-offs induced by this integral constraint.

Naturally, an equivalent relation holds for the complementary sensitiv-
ity function, as stated in the following theorem.

Theorem 3.1.5 (Bode Integral for T ). Let T be the complementary sensi-
tivity function defined by (3.8). Let {qi : i = 1, . . . , nq} be the set of zeros
in the ORHP of the open-loop system L, and suppose that L(0) 6= 0. Then,
assuming closed-loop stability,

(i) if L is a proper rational function

∫ �

0

log
∣

∣

∣

∣

T(jω)

T(0)

∣

∣

∣

∣

dω

ω2
=
π

2

1

T(0)
lim
s � 0

dT(s)

ds
+ π

nq∑

i=1

1

qi
; (3.16)

(ii) if L(s) = L0(s)e
−sτ, where L0(s) is a strictly proper rational function

and τ > 0,

∫ �

0

log
∣

∣

∣

∣

T(jω)

T(0)

∣

∣

∣

∣

dω

ω2
=
π

2

1

T(0)
lim
s � 0

dT(s)

ds
+ π

nq∑

i=1

1

qi
+
π

2
τ . (3.17)

Proof. The proof follows along the same lines as that of Theorem 3.1.4 with
inverted symmetry in the roles played by the points s = 0 and s = ∞. The
interested reader may find the details in Middleton (1991). �

It is interesting to note that the integral for T is in fact the same as that
for S under frequency inversion. Indeed, by letting ν = 1/ω, we can alter-
natively express

∫ �

0

log
∣

∣

∣

∣

T(jω)

T(0)

∣

∣

∣

∣

dω

ω2
=

∫ �

0

log
∣

∣

∣

∣

T(1/jν)

T(0)

∣

∣

∣

∣

dν .

Accordingly, as seen in (3.16) and (3.17), nonminimum phase zeros of L
play for T an entirely equivalent role to that of unstable poles for S; i.e.,
they worsen the integral constraint. In this case, zeros in the ORHP that
are closer to the jω-axis will pose a greater difficulty in shaping T .

The first term on the RHSs of (3.16) and (3.17) has an interpretation in
terms of steady-state properties of the plant. Consider the feedback loop
shown in Figure 3.5. The Laplace transform of the error signal e = r− y is
given by

E(s) =

[

1 −
T(s)

T(0)

]

R(s) .

Hence, if r is a unitary ramp, i.e., R(s) = 1/s2, then the corresponding
steady-state value of e(t) (see Figure 3.6) can be computed using the Final
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FIGURE 3.5. Type-1 feedback system.

Value Theorem (e.g., Franklin et al., 1994) and L’Hospital’s rule (p. 260
Widder, 1961, e.g., ) as

ess = lim
t � � e(t)

= lim
s � 0

sE(s)

= lim
s � 0

1 −
T(s)

T(0)

s

= −
1

T(0)
lim
s � 0

dT(s)

ds
.

Thus the constant 1/T(0)dT/ds|s=0 plays a role similar to that played by
the reciprocal of the velocity constant in a Type-1 feedback system (e.g.,
Truxal, 1955, p. 286). Consequently, the corresponding term on the RHSs
of (3.16) and (3.17) can ameliorate the severity of the design trade-off only
if the steady-state error to a ramp input is large and positive, so that the
output lags the reference input significantly.

�

� � � �
� 
�


FIGURE 3.6. Steady-state error to ramp.

Finally, the last term on the RHS of (3.17) shows that the trade-off also
worsens if the plant has a time delay. In a sense this is not surprising, since
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a time delay may be approximated by nonminimum phase zeros6, which
already appear in connection with the Bode integral for T .

In the following section we will discuss more detailed design implica-
tions of the integral constraints given by Theorem 3.1.4 and Theorem 3.1.5.

3.1.3 Design Interpretations
As discussed in §3.1, the integral constraint (3.1) tells us that, if the feed-
back loop is designed to hold |S(jω)| smaller than one over a given fre-
quency range, then it will be larger than one in another range. In the case
of open-loop unstable plants, the constraint (3.14) shows that the trade-off
is worsened since the integral must be positive in this case.

Heuristically, this effect can be seen from the Nyquist plot of the open-
loop transfer function, L, as follows. Consider first that L is a stable rational
function of relative degree two or more; then L(jω) will ultimately have
phase lag of at least −π. This situation is depicted on the left of Figure 3.7
for L(s) = 1.5/(1+s)2. Note that S−1(jω) = 1+L(jω) is the vector from the
−1 point to the point on the Nyquist plot corresponding to the frequency
ω. Thus, we see that there is a portion of the plot where |S(jω)| is less
than one and another portion where |S(jω)| increases above one. A similar
situation occurs for strictly proper plants with time delay, as shown on
the right of Figure 3.7 for L(s) = 1.5e−3s/(s + 2). In this case, however,
the Nyquist plot alternates between areas of sensitivity attenuation and
amplification infinitely many times.
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FIGURE 3.7. Graphical interpretation of the area formula.

The possibility of achieving a negative value of the integral in (3.13) for
stable open-loop systems having relative degree one can also be deduced
from Figure 3.7. Indeed, these systems will exhibit an asymptotic phase
lag of −π/2, and hence their Nyquist plot can be kept largely outside the
region of sensitivity increase.

6This is evident in the Padé approximations of ���

��

(e.g., Middleton and Goodwin, 1990).
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Example 3.1.3. Let L = K/(s + 1), K > 0, i.e., a first order plant cascaded
with a proportional controller. Then

S(s) =
s + 1

s+ 1 + K
.

The value of the integral in (3.13) is −K (which is minus the initial slope
of the step response of L). The Nyquist plot of L lies entirely in the forth
quadrant, and therefore there is no area of sensitivity amplification. ◦

Despite the area balance effect, one cannot immediately conclude from
either (3.1) or (3.14) that a peak that is significantly greater than one will
occur outside the frequency range over which sensitivity reduction has
been achieved. Actually, it is possible that area of sensitivity reduction
over some finite range of frequencies may be compensated by an area
where |S| is allowed to be slightly greater than one over an arbitrarily large
range of frequencies.

Any practical design, however, is affected by bandwidth constraints.
Indeed, several factors such as undermodeling, sensor noise, plant band-
width, etc., lead to the desirability of decreasing the open-loop gain at high
frequencies, thus putting a limit on the bandwidth of the closed loop. It is
reasonable to assume, then, that the open-loop gain satisfies a design spec-
ification of the type

|L(jω)| ≤ δ
(ωc

ω

)1+k

, ∀ω ≥ ωc , (3.18)

where δ < 1/2 and k > 0. Note that k,ωc and δ can be adjusted to provide
upper limits to the slope of magnitude roll-off, the frequency where roll-
off starts and the gain at that frequency, respectively.

By convention, the bandwidth of the closed-loop system in Figure 3.2 is
defined (e.g., Franklin et al., 1994) as the frequency of a sinusoidal input, r,
at which the output y is attenuated to a factor of 1/

√
2. From the definition

of T in (3.8), the bandwidthωb is the frequency at which |T(jωb)| = 1/
√
2.

It is possible to approximate ωb by a factor (generally between 1 and 2)
of the crossover frequency,ω0, defined as the lowest frequency at which the
magnitude of the open-loop system is one, i.e., |L(jω0)| = 1 (e.g., Franklin
et al., 1994). Since ωc in (3.18) is such that |L(jωc)| < 1/2, it follows that
ω0 < ωc and hence the bandwidth ωb can be roughly taken asωb ≈ ωc.

The following result shows that a condition such as (3.18) on the open-
loop gain puts an upper limit on the area of sensitivity increase that can
be present at frequencies greater than ωc.

Corollary 3.1.6. Suppose that L is a rational function of relative degree
two or more and satisfying the bandwidth restriction (3.18). Then

∣

∣

∣

∣

∫ �

ωc

log |S(jω)|dω

∣

∣

∣

∣

≤ 3δωc

2k
. (3.19)
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Proof. We use the fact that if |s| < 1/2, then | log(1 + s)| ≤ 3|s|/2 (See
Example A.8.6 in Appendix A). Then

∣

∣

∣

∣

∫ �

ωc

log |S(jω)|dω

∣

∣

∣

∣

≤
∫ �

ωc

|log |S(jω)|| dω

≤
∫ �

ωc

|log S(jω)| dω

=

∫ �

ωc

|log[1 + L(jω)]| dω

≤ 3δω1+kc

2

∫ �

ωc

1

ω1+k
dω

=
3δωc

2k
.

�

The above result shows that the area of the tail of the Bode sensitivity in-
tegral over the infinite frequency range [ωc,∞) is limited. Hence, any area
of sensitivity reduction must be compensated by a finite area of sensitiv-
ity increase, which will necessarily lead to a large peak in the sensitivity
frequency response before ωc. To see this, suppose that S is required to
satisfy the following reduction condition

|S(jω)| ≤ α < 1 , ∀ω ≤ ω1 < ωc . (3.20)

Now, using (3.14) and the bounds (3.18) and (3.20), it is easy to show that

sup
ω∈(ω1,ωc)

log |S(jω)| ≥ 1

ωc −ω1



π
∑

p∈ZS

p +ω1 log
1

α
−
3δωc

2k



 .

(3.21)
The bound (3.21) shows that any attempt to increase the area of sensitiv-
ity reduction by requiring α to be small and/or ω1 to be close to ωc will
necessarily result in a large sensitivity peak in the range (ω1,ωc). Hence,
the Bode sensitivity integral (3.14) imposes a clear design trade-off when
natural bandwidth constraints are assumed for the closed-loop system.
Notice, however, that this trade-off is alleviated if the closed-loop band-
width is large, i.e., largeωc in (3.18).

Example 3.1.4. The inequality (3.21) can be used to derive a lower bound
on the closed-loop bandwidth in terms of the sum of open-loop unstable
poles. Indeed, suppose that the frequency ω1 in (3.20) is taken to be a
fraction of the bandwidth, say

ω1 = k1ωc ,
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and assume that we desire that the peak sensitivity on the LHS of (3.21)
be less than or equal to a number Sm > 1. Then, necessarily, the lower
bound on the RHS of (3.21) must be less than or equal to Sm. Imposing
this condition yields the following lower bound on the bandwidth, which
we take as ωb = ωc,

ωb ≥ B(Sm)
∑

p∈ZS

p , (3.22)

where B(Sm) is

B(Sm) ,
π

(1 − k1)(Sm + 1.5 δ/k + k1 logα)
.

The factor B(Sm) is plotted in Figure 3.8 as a function of the desired peak
sensitivity Sm, for δ = 0.45, k = 1, k1 = 0.7 and α = 0.5.
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FIGURE 3.8. Lower bound on the bandwidth as a function of the peak sensitivity.

We may conclude from this figure, for example, that an open-loop un-
stable system having relative degree two requires a bandwidth of at least
6.5 times the sum of its ORHP poles if it is desired that |S| be smaller
than 1/2 over 70% of the closed-loop bandwidth while keeping the lower
bound on the peak sensitivity smaller than Sm =

√
2. ◦

3.2 The Water-Bed Effect

The Bode sensitivity and complementary sensitivity integrals represent
a constraint imposed by nonminimum phase zeros and unstable poles
of the open-loop system. We have just seen in §3.1.3 that these integral
constraints, in conjunction with a further requirement on the closed-loop
bandwidth, lead to a quantifiable trade-off in design. Indeed, from the
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comment at the end of §3.1.3, we see that an arbitrary reduction of sensi-
tivity over a range of frequencies necessarily implies an arbitrarily large
increase at other frequencies. This kind of phenomenon has been referred
to as a push-pop or water-bed effect (e.g., Shamma, 1991; Doyle et al., 1992).

The water-bed effect was first recognized by Francis and Zames (1984),
who showed that a similar trade-off exists with respect to sensitivity min-
imization over a frequency interval when the open-loop system has a zero
in the ORHP. This will be established below. As opposed to the previous
results, which were based on the Cauchy integral theorem, the result that
follows relies on an application of the maximum modulus principle (The-
orem A.10.2 in Appendix A).

Theorem 3.2.1 (Water-Bed Effect). Let S be the sensitivity function de-
fined by (3.8). Assume that S is proper and stable. Then, if the open-loop
plant L has a zero in the ORHP, there exists a positive numberm such that

sup
ω∈[ω1,ω2]

|S(jω)| ≥ 1/‖S‖m� ,

where
‖S‖ � = sup

ω

|S(jω)|

is the infinity norm of S.

Proof. Let q be a zero of L in the ORHP. It follows from (3.7) that S(q) = 1.
Consider the mapping from the CRHP onto the unit disk given by

z =
q − s

q + s
, s =

q − qz

1 + z
.

Then the interval {s = jω : ω ∈ [ω1,ω2]} is mapped onto the arc

{z = ejθ : θ ∈ [θ1, θ2]} . (3.23)

Let R be the following function,

R(z) , S

(

q − qz

1 + z

)

.

It follows that R is analytic in |z| < 1, R(0) = 1, and moreover

sup
θ∈[θ1,θ2]

∣

∣R
(

ejθ
)∣

∣ = sup
ω∈[ω1,ω2]

|S(jω)| ,

and
sup
θ

∣

∣R
(

ejθ
)∣

∣ = ‖S‖ � .
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Now let φ be the angle φ = |θ2 − θ1| and let n be any integer greater
than 2π/φ. Define the auxiliary function P as

P(z) ,

n−1∏

k=0

R
(

z ej2πk/n
)

. (3.24)

Then P is also analytic in |z| < 1, and P(0) = 1. Since the angle 2π/n is less
than φ, at least one of the points z ej2πk/n, k = 0, · · · , n − 1, lies on the
arc (3.23) for each z on the unit circle. Thus, from (3.24) and the maximum
modulus principle

1 = |P(0)|

≤ sup
θ

∣

∣P
(

ejθ
)∣

∣

≤
[

sup
θ

∣

∣R
(

ejθ
)∣

∣

]n−1

sup
θ∈[θ1,θ2]

∣

∣R
(

ejθ
)∣

∣

= ‖S‖n−1
� sup

ω∈[ω1,ω2]

|S(jω)| .

The result then follows by assigning m = n − 1. �

This result shows the water-bed effect for linear nonminimum phase
systems: the magnitude of S can be made arbitrarily small over a fre-
quency interval only at the expense of having the magnitude arbitrarily
large off this interval (Francis and Zames, 1984). We will next obtain al-
ternative expressions for the sensitivity trade-offs using Poisson integral
formula. In section §3.3.2, these results will be used to give a more explicit
form for the water-bed trade-off.

3.3 Poisson Integral Formulae

Consider again the feedback control configuration of Figure 3.2 and the
sensitivity and complementary sensitivity functions defined in (3.8). In
§3.1.2 we discussed the algebraic trade-off imposed by the complementar-
ity constraint (3.7), which, for example, precludes the possibility of having
both small |S(jω)| and |T(jω)| at the same frequency. We will see in this sec-
tion that it is particularly revealing to evaluate this algebraic constraint at
the nonminimum phase zeros and unstable poles of the open-loop trans-
fer function L. Indeed, with the aid of the Poisson integral formula for the
half plane (see §A.6.1 in Appendix A), we will show that this algebraic
constraint actually leads to integral constraints on the overall frequency
responses of S and T .
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3.3.1 Poisson Integrals for S and T
Before deriving the Poisson integral theorems for S and T , we need some
preliminary notation. Recall that, if L is free of unstable hidden modes,
the ORHP poles and zeros of L become zeros of S and T , as stated in
Lemma 3.1.3. Let qi, i = 1, . . . , nq, be the zeros of L in the ORHP, and
pi, i = 1, . . . , np, be the poles of L in the ORHP, all counted with mul-
tiplicities. Following the notation introduced in (3.11), we then have that
the ORHP zeros of S and T are given by

ZS = {pi : i = 1, . . . , np} ,

ZT = {qi : i = 1, . . . , nq} .
(3.25)

We next introduce the Blaschke products of the ORHP zeros of S and T ,
given by (see also (2.37) in Chapter 2)

BS(s) =

np∏

i=1

pi − s

pi + s
, and BT (s) =

nq∏

i=1

qi − s

qi + s
. (3.26)

Blaschke products are “all-pass” functions, since their magnitude is con-
stant and equal to one on the jω-axis. Using BS and BT , we factorize L
as

L(s) = L̃(s)B−1
S (s)BT (s)e−sτ , (3.27)

where τ ≥ 0 is a possible time delay in the open-loop system, and where
the factor L̃(s) is a proper rational function having no poles or zeros in the
ORHP. Then S and T in (3.8) can be factored as

S(s) = S̃(s)BS(s) ,

T(s) = T̃(s)BT (s)e−sτ .
(3.28)

Note that S̃ and T̃ have no zeros in the finite ORHP since the factors BS
and BT remove the finite zeros of S and T . Also, if the closed-loop sys-
tem is stable, both S̃ and T̃ have no poles in the finite CRHP. The point
s = ∞ requires some more care. If τ = 0 and L̃ is proper, then both S̃ and
T̃ are analytic at infinity. On the other hand, if τ > 0 and L̃ is proper, S
and T have an essential singularity at infinity (see Example A.8.3 in Ap-
pendix A). However, both functions log S̃ and log T̃ are of class R, i.e., their
growth at infinity in the CRHP is restricted.7

The above discussion suggests that we can apply the Poisson integral
formula — more specifically Corollary A.6.3 in Appendix A — to the func-
tions log S̃ and log T̃ , as we show next.

7Recall that a function � is of class � if lim � � � � �
�

sup �
∈ � ����� �	� ��� ��
 � � � � �
� � � � � �

(§A.6.1 in Appendix A). Since � is proper and the closed-loop system is stable, it is not diffi-
cult to see that ˜� is bounded on the CRHP by a constant, ��� say. Then log � ˜� � ≤ log ��� on
the CRHP and hence log � ˜� � � � � � as ��� � . A similar argument shows that ˜� is of class
� .
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Theorem 3.3.1 (Poisson Integral for S). Let S be the sensitivity function
defined by (3.8). Assume that the open-loop system L can be factored as in
(3.27) and let q = σq+ jωq be an ORHP zero of L. Then, if the closed-loop
system is stable,

∫ �

− �
log |S(jω)|

σq

σ2q + (ωq −ω)2
dω = π log

∣

∣B−1
S (q)

∣

∣ . (3.29)

Proof. We will apply Corollary A.6.3 of Appendix A to the function log S̃.
Since the closed-loop system is stable and in view of the factorization
(3.28), then S̃ has no zeros or poles in the ORHP (see comments after (3.28))
and hence log S̃ is analytic there. If τ > 0 then log S̃ has an essential sin-
gularity at infinity, but these are allowed by Corollary A.6.3. Then, since
log S̃ is of class R (see footnote on page 65), (A.48) in Corollary A.6.3 can
be used with with f = log S̃ and s0 = q. The constraint (3.29) then fol-
lows on noting that |S̃(jω)| = |S(jω)| (since |BS(jω)| = 1, ∀ω) and that
S̃(q) = B−1

S (q) (since S(q) = 1). �

The corresponding result for T is as follows.

Theorem 3.3.2 (Poisson Integral for T ). Let T be the complementary sen-
sitivity function defined by (3.8). Assume that the open-loop system L can
be factored as in (3.27) and let p = σp + jωp be an ORHP pole of L. Then,
if the closed-loop system is stable,

∫ �

− �
log |T(jω)|

σp

σ2p + (ωp −ω)2
dω = π log

∣

∣B−1
T (p)

∣

∣+ πσpτ . (3.30)

Proof. We will apply Corollary A.6.3 of Appendix A to the function log T̃ .
Since the closed-loop system is stable and in view of the factorization
(3.28), T̃ has no zeros or poles in the ORHP (see comments after (3.28)).
If L̃ is strictly proper, and/or if τ > 0, then log T̃ has a singularity at infin-
ity, but these are allowed by Corollary A.6.3. Then, since log T̃ is of class R

(see footnote on page 65), (A.48) in Corollary A.6.3 can be used with with
f = log T̃ and s0 = p. The constraint (3.29) then follows on noting that
|T̃(jω)| = |T(jω)| (since

∣

∣BS(jω)e−jωτ
∣

∣ = 1, ∀ω) and that T̃(p) = B−1
T (p)

(since T(p) = 1). �

Note that, as was the case for Corollary A.6.3 in Appendix A, Theorems
3.3.1 and 3.3.2 still hold when L has poles or zeros on the imaginary axis.
Also, if the ORHP zero q in Theorem 3.3.1 has multiplicity m > 1, addi-

tional integral constraints on the firstm− 1 derivatives of log S̃ can be ob-
tained. These, however, do not seem to be as insightful as (3.29). A similar
comment is in order in the case of multiple ORHP poles in Theorem 3.3.2.

Similar to the Bode integral formulae of §3.1.2, the Poisson integral con-
straints (3.29) and (3.30) represent a balance between areas of sensitivity
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or complementary sensitivity attenuation and amplification. To see this
notice: first that, for s0 = σ0 + jω0, σ0 > 0, the weighting function

Ws0
(ω) ,

σ0

σ20 + (ω0 −ω)2
(3.31)

is positive for all ω, and second that the RHSs of both equations are non-
negative since, for a Blaschke product B, we have that

∣

∣B−1(s)
∣

∣ ≥ 1 for s
in the ORHP.

The area balance implied by the Poisson integrals, however, differs from
that of the Bode integrals. Indeed, the presence of the weighting function
(3.31) in the Poisson integrals precludes the possibility of compensating
an area of sensitivity reduction over a finite range of frequencies by an
area where |S| (or |T |) is allowed to be slightly greater than one over an
arbitrarily large range of frequencies. This is because the weighted area of
the imaginary axis is finite and equal to π, as seen from integrating (3.31).
More insights into the properties of the weighting function will be given
in the following section.

The case where the open-loop system is both unstable and nonmini-
mum phase is even more problematic. Indeed, note that both RHSs are
positive if the open-loop system has at least one ORHP zero and one
ORHP pole. If this is the case the weighted area of sensitivity increase
must be larger than the area of sensitivity reduction. Moreover, sinceB−1

T (p)

in (3.29) has poles at p = qi, i = 1, . . . , nq (similarly, B−1
S (q) in (3.30) has

poles at q = pi, i = 1, . . . , np), the constraints are aggravated if there is an
approximate pole-zero cancelation in the ORHP.

In the following section we will discuss design trade-offs implied by
Theorems 3.3.1 and 3.3.2 with respect to sensitivity and complementary
sensitivity minimization over a frequency interval.

3.3.2 Design Interpretations
In §3.1.3 we gave a graphical interpretation of the area balance implied by
(3.1) using the Nyquist plot of the open-loop transfer function. It was seen
in Figure 3.7 that, as long as the phase of the open-loop system surpasses
−π, the plot must enter the area of sensitivity increase. It is well known
that ORHP zeros introduce additional phase lag8 to the open-loop system,
which is evident from the fact that each factor of BT in (3.26) satisfies

arg
qi − jω

qi + jω
→ −π as ω → ∞. (3.32)

8By additional phase lag introduced by an ORHP zero we mean the difference between
the phase of the system with the ORHP zero and that of a system where the ORHP zero is
replaced by its reflection in the OLHP.
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Hence the trade-off between areas of sensitivity attenuation and amplifi-
cation can also be observed in the Nyquist plot of a nonminimum phase
open-loop system. As an example, Figure 3.9 shows the Nyquist plot of
the function L(s) = (1 − s)/(1 + s)2 together with its minimum phase
counterpart L̃(s) = 1/(1 + s). It can be seen from this figure that the area
balance is apparent for the nonminimum phase system whilst the Nyquist
plot of the minimum phase system can be kept inside the area of sensitiv-
ity reduction save, of course, at infinite frequency.

�
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FIGURE 3.9. Area balance for a nonminimum phase system.

From the expression T = 1/(1+ 1/L), it is evident that a similar graphic
analysis can be done for the complementary sensitivity function by study-
ing the Nyquist plot of 1/L. Hence, the additional “phase lag” introduced
by ORHP poles (of L) to the function 1/L are now seen to be the cause of
the need to balance the weighted areas where |T(jω)| < 1 and |T(jω)| > 1.

The weighting function (3.31) — or Poisson kernel for the right half
plane — in the integral constraints (3.29) and (3.30) takes explicit account
of the effect of the additional phase lag introduced by ORHP zeros or
poles.9 To see this, given an interval [−ω1,ω1], ω1 > 0, consider the inte-
gral of the weighting function (3.31), i.e.,

Θs0
(ω1) ,

∫ω1

−ω1

Ws0
(ω)dω

=

∫ω1

−ω1

σ0

σ20 + (ω0 −ω)2
dω

= arctan
ω1 −ω0

σ0
+ arctan

ω1 +ω0

σ0
.

(3.33)

It is then easy to see that, for a real zero s0 = q = σq, we have

Θq(ω1) = − arg
σq − jω1

σq + jω1
,

9Since the poles are here seen as zeros of

 � � , we will use the word “zeros” in the discus-

sion about the weighting function.
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whereas for a pair of complex conjugate zeros s0 = q and q, we have

Θq(ω1) = −
1

2

[

arg
q − jω1

q + jω1
+ arg

q − jω1

q + jω1

]

. (3.34)

Note that Θs0
(ω1) represents the weighted length (by the ORHP zero s0)

of the frequency interval [−ω1,ω1]; thus, the weighted length of such an
interval is equal to minus the additional phase lag introduced by the real
ORHP zero (or to minus half the additional phase lag introduced by the
pair of complex conjugate zeros) at the upper endpoint of the interval.

The above interpretation of the weighted length of the frequency in-
terval is useful in quantifying trade-offs implied by the Poisson integrals
relative to the location of the ORHP zero. As an example, we will next re-
visit the water-bed effect of §3.2. We view it here in the light of the integral
constraint (3.29).

Suppose, as in §3.1.3, that the feedback loop has been designed to achieve

|S(jω)| ≤ α1 < 1 , ∀ω ∈ Ω1 , [−ω1,ω1] . (3.35)

Let q be an ORHP zero of L and consider the weighted length of the inter-
val Ω1, i.e., Θq(ω1) as in (3.33). Then the infinity norm of the sensitivity
function has a lower bound as shown in the following result.

Corollary 3.3.3. Let S be the sensitivity function defined by (3.8) and sup-
pose that the open-loop system L can be factored as in (3.27). Assume that
the closed-loop system is stable and that the goal (3.35) has been achieved.
Then, for each ORHP zero of L, q, we have

‖S‖ � ≥
(

1

α1

)

Θq(ω1)

π−Θq(ω1) ∣
∣B−1
S (q)

∣

∣

π
π−Θq(ω1) , (3.36)

where Θq(ω1) is as in (3.33) with s0 = q.

Proof. Dividing the range of integration in (3.29), and using the inequali-
ties (3.35) and |S(jω)| ≤ ‖S‖ � , ∀ω, we have

logα1 Θq(ω1) + log ‖S‖ � [π−Θq(ω1)] ≥ π log
∣

∣B−1
S (q)

∣

∣ . (3.37)

The result then follows by exponentiating both sides. �

It is immediate from (3.36) that the lower bound on the sensitivity peak
is strictly greater than one. Indeed, this follows from the fact that

∣

∣B−1
S (q)

∣

∣ ≥
1, α1 < 1 and Θq(ω1) < π. Note also that if the open-loop system is both
nonminimum phase and unstable, then the sensitivity peak is greater than
one even if there is no region of sensitivity reduction.
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Remark 3.3.1. Corollary 3.3.3 provides another interpretation for the water-
bed effect of Theorem 3.2.1: if the open-loop system is nonminimum phase,
then requiring |S(jω)| to be small over a range of frequencies will neces-
sarily lead to a large sensitivity peak outside that range. In this new form,
however, the lower bound on the sensitivity peak exhibits an explicit de-
pendence on the location of the ORHP zero of the open-loop system. In-
deed, recall from our previous discussion that Θq(ω1) is equal to minus
the additional phase lag introduced by the real ORHP zero q (or to minus
half the additional phase lag introduced by the pair of complex conjugate
zeros q and q) at the frequency ω1. Thus, if at ω = ω1 the ORHP zero
contributes with a significant amount of lag (Θq(ω1) close to π, say) the
first term on the LHS of (3.37) will be large (and negative) and hence will
require a large value of ‖S‖ � to satisfy the lower bound on the RHS. On
the other hand, if the lag introduced by the zero at ω1 is small then the
trade-off implied by (3.36) will not be severe.

Observe that, since |S(jω)| ≤ α1 < 1 implies |L(jω)| ≥ 1/α1 − 1, a de-
sirable feedback design objective would be to roll-off the open-loop gain
well before the phase lag introduced by the ORHP zero becomes signifi-
cant. This confirms a well-known rule of thumb used in classical feedback
control design. ◦

A result parallel to Corollary 3.3.3 for the complementary sensitivity
function can be easily obtained if we assume that the following goal has
been achieved (e.g., for robustness purposes)

|T(jω)| ≤ α2 < 1 , ∀ω ∈ Ω2 , [−∞,−ω2] ∪ [ω2,∞] . (3.38)

We then have the following result.

Corollary 3.3.4. Let T be the sensitivity function defined by (3.8) and sup-
pose that the open-loop system L can be factored as in (3.27). Assume that
the closed-loop system is stable and that the goal (3.38) has been achieved.
Then, for each ORHP pole of L, p, we have

‖T‖ � ≥
(

1

α2

)

π−Θp(ω2)

Θp(ω2) ∣

∣B−1
T (p)eσpτ

∣

∣

π
Θp(ω2) , (3.39)

where Θp(ω1) is as in (3.33) with s0 = p.

Proof. Similar to the proof of Corollary 3.3.3, using the bound (3.38). �

Notice that, according to the definition of closed-loop bandwidth in
§3.1.3,ω2 in (3.38) is equal to the bandwidthωb if α2 is taken to be 1/

√
2.

In view of this observation, Corollary 3.3.4 can be used to obtain bounds
on the closed-loop bandwidth, as shown in the following example.

Example 3.3.1. Consider the feedback system of Figure 3.2, and assume,
for simplicity, that the open-loop system L has a real ORHP pole p = σp,
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is minimum phase and has no time delay, i.e., q = 0 and τ = 0 in (3.27).
Assume that the closed-loop system is stable and satisfies (3.38) for α2 =

1/
√
2 (and hence ω2 = ωb). Then

‖T‖ � ≥
√
2

π−Θp(ωb)

Θp(ωb) .

Suppose further that we impose the condition that the RHS of the above
expression be less than or equal to Tm, which is necessary if we require that
the peak complementary sensitivity (i.e., the LHS of the above expression)
be less than or equal to Tm. Using this additional requirement we obtain
the following lower bound on the closed-loop bandwidth

ωb ≥ p tan

(

π

2 + 2 log Tm/ log
√
2

)

. (3.40)

We conclude from (3.40), for example, that an open-loop system having a
real ORHP pole, p, requires a bandwidth at least equal to p if it is desired
to keep the lower bound on the peak complementary sensitivity smaller
than Tm =

√
2.

Notice that the lower bounds on the bandwidth given by (3.22) and
(3.40) are not directly comparable, since (3.22) was obtained from require-
ments on S while (3.40) follows from specifications on T . ◦

A more realistic design will require both (3.35) and (3.38) to be satisfied.
Note that (3.38) implies |S(jω)| ≤ 1 + α2, ∀ω ∈ Ω2. Figure 3.10 represents
the combined shape specifications on |S(jω)|.

�

� � � � �

� �������	�
�

� �

� �

FIGURE 3.10. Frequency specifications for � .



72 3. SISO Control

Using this additional information as in the proof of Corollary 3.3.3 we
obtain

‖S‖ � ≥
(

1

α1

)

Θq(ω1)

Θq(ω2)−Θq(ω1)
(

1

1 + α2

)

π−Θq(ω2)

Θq(ω2)−Θq(ω1)

×
∣

∣B−1
S (q)

∣

∣

π
Θq(ω2)−Θq(ω1) .

(3.41)

The following example examines the severity of constraint (3.41).

Example 3.3.2. Suppose that we desire to control a plant with a single
nonminimum phase zero q > 0. We assume for simplicity that the plant
is open-loop stable. We desire for the closed-loop system a sensitivity re-
duction of at least α1 within the interval of frequencies [0,ω1], where ω1
is chosen to be three quarters of the desired closed-loop bandwidth fre-
quency ωb, i.e., the specification (3.35) holds with ω1 = 0.75ωb.

Following the definition of closed-loop bandwidth on page 60, we can
write the requirement of bandwidth by setting ω2 = ωb and α2 = 1/

√
2

in (3.38) (see also Example 3.3.1).
Figure 3.11 plots the lower bound (3.41) on ‖S‖ � versus the position of

the nonminimum phase zero (relative to the desired bandwidth), and for
different values of sensitivity reduction.

0 0.5 1 1.5 2
0

1

2

3

4

5

q/ωb

α1=0.8 0.6 0.4 0.2

FIGURE 3.11. Lower bound (3.41) on ‖ � ‖ � .

As anticipated in Remark 3.3.1, the picture shows that the constraints
imposed by a nonminimum phase zero worsen the more the zero is within
the desired closed-loop bandwidth, which manifests as higher peaks in
|S(jω)|. Since, as seen in Chapter 2, large peaks in |S(jω)| are associated
with poor sensitivity and robustness properties, then a nonminimum phase
zero imposes a trade-off in design that limits the achievable closed-loop
bandwidth of the system. The same conclusion holds for complex non-
minimum phase zeros. ◦
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Notice that the bound (3.41) is satisfied with equality for an “ideal” sen-
sitivity function that is sectionally constant and equal to α1 inΩ1, to ‖S‖ �

in [−ω2,−ω1] ∪ [ω1,ω2], and to 1 + α2 in Ω2. Hence, the lower bound
given by (3.41) is in fact conservative. The closer the actual sensitivity is to
the “ideal” function, the tighter the bound (3.41) is.10 Although, in theory,
this sectionally constant function can be arbitrarily approximated by a ra-
tional function, there exist a number of practical limitations in achieving
this result. For example, a restriction on the complexity of the controller
would mean that the ideal case cannot be achieved.

Finally, if the plant has more than one ORHP zero, bounds similar to
(3.36) or (3.41) hold for each of them, which, in general, will provide dif-
ferent information. Thus, since each of these bounds may not be tight if
considered alone, it will be necessary to analyze them in combination to
obtain the overall trade-offs imposed by the set of ORHP zeros. However,
this will not be as insightful and simple as in the case of a single zero,
which shows a limitation of the approach. A different technique, based
on Nevanlinna-Pick theory, has been described by O’Young and Francis
(1985). This technique provides an iterative procedure to compute “hard”
bounds on the sensitivity function for multivariable plants with several
ORHP zeros.

3.3.3 Example: Inverted Pendulum
Consider again the inverted pendulum shown in Figure 3.12, studied in
§1.3.3 of Chapter 1 in the time domain.

�

�

���

�

�

FIGURE 3.12. Inverted pendulum.

It was seen in §1.3.3 that the linearized model for this system has a trans-
fer function from u to y of the form

Y(s)

U(s)
=

(s− q)(s + q)

Ms2(s − p)(s + p)
;

10Less conservative bounds can be also derived from these integral constraints by consid-
ering more realistic shape specifications; see for example Middleton (1991) or Middleton and
Goodwin (1990, Chapter 13).
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i.e., it has one nonminimum phase zero and one unstable pole. Assume
that the parameters in the model are chosen as in §1.3.3, i.e., so that the
ORHP zero is q = 1 and the pole is moved according to four different
values of the mass ratio m/M. For example, for m/M = 1, the pole is
p =

√
2. Using Corollary 3.3.3 and Corollary 3.3.4 with the latter values

of p and q, and assuming no particular range of sensitivity reduction (i.e.,
taking ω1 = 0 in (3.35) and ω2 = ∞ in (3.38)), then the peak sensitivity
and complementary sensitivity satisfy

‖S‖ � ≥ 5.8284, and ‖T‖ � ≥ 5.8284. (3.42)

Figure 3.13 shows log |S(jω)| and log |T(jω)| achieved by the same LQG-
LQR design used in §1.3.3, for m/M = 0.1, 0.2, 0.4, 1. These figures corre-
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FIGURE 3.13. log � �������	�
� and log � ����� �	�
� for the inverted pendulum.

spond to the output time response plotted in Figure 1.5 of Chapter 1. Note
that the actual peaks are much larger than predicted, which is due to the
fact that the bounds (3.42) assume |S| and |T | flat and equal to their infinity
norms. Tighter bounds can be obtained by assuming that |S| has a section-
ally constant shape as in (3.41), or using more sophisticated shapes as in
Middleton (1991). Note, however, that the bounds derived in this chapter
are valid for any design methodology, and hence it is expected that they
will be conservative for some particular design choices.

3.4 Discrete Systems

This section describes the extension of the Poisson and Bode integral re-
lations to discrete-time feedback control systems. We again focus on sen-
sitivity and complementary sensitivity functions of feedback control sys-
tems, but the transfer functions are here complex functions of the variable
z, i.e., they represent the Z-transform of impulse responses of discrete-time
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systems. We will see that the continuous-time results extend in a straight-
forward fashion to discrete time by means of the Poisson integral formula
for the unit disk, treated in §A.6.2 of Appendix A. We will also see, how-
ever, that in general, the discrete constraints are more demanding since
the sensitivity trade-offs must be achieved on the finite frequency interval
[0, π].

The results in this section apply to systems (plant and controller) whose
original description is in discrete time; if the original description of the
plant is in continuous time and the controller is digital, we call the over-
all system a sampled-data system, and the analysis is more adequately per-
formed in continuous time. Sampled-data control systems are discussed
in Chapter 6.

3.4.1 Poisson Integrals for S and T
Consider the feedback control loop of Figure 3.14, where the open-loop
system, L, is a proper transfer function of the complex variable z.

b i b- - -
6

� ��� �
�

� � � �

FIGURE 3.14. Discrete-time feedback control system.

As in (3.8), the sensitivity and complementary sensitivity functions of
the loop in Figure 3.14 are defined as

S(z) =
1

1 + L(z)
and T(z) =

L(z)

1 + L(z)
, (3.43)

respectively. In common with the continuous-time case, the sensitivity and
complementary sensitivity functions for the discrete case satisfy interpo-
lations constraints imposed by zeros and poles of the open-loop system.
Indeed, if L is free of unstable pole-zero cancelations,11 then S has zeros

at the unstable open-loop plant poles and T has zeros at the nonminimum
phase open-loop plant zeros; i.e., Lemma 3.1.3 holds with � + replaced by
the region outside the open unit disk, which we denote by � c.

11Recall from Chapter 2 that, for discrete-time systems, a transfer function is nonminimum
phase if it has zeros outside the open unit disk,

�
, and it is unstable if it has poles outside

�
. Thus, � is free of unstable pole-zero cancelations if there are no cancelations of zeros and

poles outside
�

between the plant and controller whose cascade connection form � .
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For the purpose of deriving Poisson integral constraints, we need to
extract from S and T all the zeros outside the closed12 unit disk — denoted
by � c

. Let qi, i = 1, . . . , nq, be the zeros of L in � c
, and pi, i = 1, . . . , np,

be the poles of L in � c
, all counted with multiplicities. It follows from our

previous discussion that the qi’s are the zeros of T in � c
, and the pi’s are

the zeros of S in � c
. We introduce the discrete Blaschke products of the zeros

of S and T , given by

BS(z) =

np∏

i=1

pi

|pi|

z − pi

1 − piz
, and BT (z) =

nq∏

i=1

qi

|qi|

z − qi

1 − qiz
. (3.44)

We will define BS(z) = 1 if L is stable, and BT (z) = 1 if L is minimum
phase. Similar to their continuous-time counterpart, the discrete Blaschke
products are “all-pass” functions, since their magnitude is constant and
equal to one on the unit circle |z| = 1. Using (3.44), and extracting the
zeros at infinity in a similar fashion as was done in (2.7) in Chapter 2, we
can factor the open-loop transfer function, L, as

L(z) = B−1
S (z)BT (z) L̃(z) z−δ , (3.45)

where L̃ is a stable, minimum-phase transfer function, having relative de-
gree zero. It is then easy to see that S and T in (3.43) can be factored as

S(z) = S̃(z)BS(z) ,

T(z) = T̃(z)BT (z)z−δ ,
(3.46)

where S̃ and T̃ have no zeros in the region outside the closed unit disk (in-
cluding infinity). Note that here the zeros at infinity of T (which are branch
points of log T , see §A.9.2 in Appendix A) have to be factored explicitly
since they will contribute to the value of the Poisson integral of log T on
the unit circle. This is because the point at infinity is an interior point of
the region “encircled” by the unit circle, � c

, and thus it should be treated
as any other finite singularity of log T in � c

. Note that this is not the case
for continuous-time systems, i.e., the singularities at infinity of log T aris-
ing from a strictly proper L do not add to the value of the Poisson integral
of log T on the imaginary axis (see Corollary A.6.3 in Appendix A, and the
proof of Theorem 3.3.2).

Assuming stability of the closed-loop system, and since, as just seen, S̃
and T̃ in (3.46) have no zeros in � c

, then the functions log S̃ and log T̃ are
analytic in � c

. The real parts of these functions are harmonic in � c
, and

12Recall that, in the continuous-time case, only the zeros and poles of the plant in the
ORHP impose integral constraints. Those on the imaginary axis do not contribute to the
value of the integrals (see Lemma A.6.2 and Corollary A.6.3 in Appendix A).
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they thus satisfy the conditions of Corollary A.6.5 in Appendix A. We then
obtain the following results.

Theorem 3.4.1 (Poisson Integral for S). Let S be the discrete sensitivity
function defined by (3.43). Assume that the open-loop system L can be
factored as in (3.45) and let q = rqe

jθq be a zero of L in � c
. Then, if the

closed-loop system is stable,

∫π

−π

log |S(ejθ)|
r2q − 1

1 − 2rq cos(θ−θq) + r2q
dθ = 2π log

∣

∣B−1
S (q)

∣

∣ . (3.47)

Proof. Under the assumptions of the theorem, S can be factored as in (3.46),
where S̃ is a stable, minimum-phase transfer function, having relative de-
gree zero. It follows that the function log |S̃| is harmonic in � c

. Using
Corollary A.6.5 in Appendix A with u = log |S̃| and s0 = q, and noting
that |S̃(ejθ)| = |S(ejθ)| (since

∣

∣BS(e
jθ)
∣

∣ = 1, ∀θ) and that S̃(q) = B−1
S (q)

(since S(q) = 1), yields the desired result. �

The corresponding result for T is as follows.

Theorem 3.4.2 (Poisson Integral for T ). Let T be the complementary sen-
sitivity function defined by (3.43). Assume that the open-loop system L

can be factored as in (3.45) and let p = rpe
jθp be a pole of L in � c

. Then, if
the closed-loop system is stable,

∫π

−π

log |T(ejθ)|
r2p − 1

1 − 2rp cos(θ−θp) + r2p
dθ = 2π log

∣

∣B−1
T (p)

∣

∣ + 2πδ log |p| .

(3.48)

Proof. The proof uses Corollary A.6.5 in Appendix A with u = log |T̃ |,
where T̃ is given in (3.46), and s0 = p. Then (3.48) follows by similar argu-
ments to those used in the proof of Theorem 3.4.1. �

As in the continuous-time case, two technical comments are in order.
We first note that Theorems 3.4.1 and 3.4.2 still hold when L has poles
or zeros on the unit circle. Second, if the zeros and/or poles of L outside
the unit disk have multiplicities greater than one, then additional integral
constraints on the derivatives of log S̃ and of log T̃ can be derived.

Also similar to the Poisson integral constraints for continuous-time sys-
tems, the relations (3.47) and (3.48) represent a balance between weighted
areas of sensitivity or complementary sensitivity attenuation and ampli-
fication. This is because: (i) for z0 = r0e

jθ0 with r0 > 1, the weighting
function (or Poisson kernel for the unit disk)

Wz0
(θ) ,

r20 − 1

1 − 2r0 cos(θ − θ0) + r20
(3.49)
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is positive for all θ, and (ii) the RHSs of both equations are nonnegative
since, for a discrete Blaschke product B, we have that

∣

∣B−1(z)
∣

∣ ≥ 1 for
|z| > 1. These facts imply that the weighted area of sensitivity increase
must be, at least, as large as the weighted area of sensitivity reduction.
This situation is aggravated if the open-loop system is both unstable and
nonminimum phase, since in this case both

∣

∣B−1
S (q)

∣

∣ and
∣

∣B−1
T (p)

∣

∣ on the
RHSs of (3.47) and (3.48) are strictly greater than one. Moreover, the closer
the unstable zeros and poles are to each other, the larger the RHSs of both
equations become.

Note also the similarities between Theorem 3.4.2 and its counterpart for
continuous-time systems, Theorem 3.3.2. In particular, the term due to the
relative degree of the plant in the discrete case in (3.48) is analogous to
that due to a pure time delay in (3.30). Hence, the constraints imposed
on T by open loop time delays and unstable poles are also present in the
discrete case, and again, the “more unstable” the pole, and the larger the
time delay, the worse these constraints will be.

In the following section we will discuss some of the design trade-offs
implied by Theorems 3.4.1 and 3.4.2.

3.4.2 Design Interpretations
The Poisson integrals of Theorem 3.4.1 and Theorem 3.4.2 can be used
to derive lower bounds on the infinity norms of the discrete sensitivity
functions. As in the continuous-time case, these lower bounds exhibit the
water-bed effect experienced by nonminimum phase plants when sensi-
tivity reduction is required over some frequency range.

To analyze the water-bed effect, we require the weighted length of an
interval on the unit disk by the kernel (3.49) (cf. the corresponding for the
weighting function for the half plane, given by (3.33)), i.e.,

Θz0
(θ1) , 1

2

∫θ1

−θ1

Wz0
(θ)dθ

= arctan
[

r0 + 1

r0 − 1
tan

θ1 − θ0

2

]

+ arctan
[

r0 + 1

r0 − 1
tan

θ1 + θ0

2

]

,

(3.50)

where the interval of interest is Θ1 = [−θ1, θ1], θ1 < π. It is possible to
show that Θz0

(θ1) is equal to minus half the sum of the phases of the dis-
crete Blaschke products corresponding to z0 and its conjugate, evaluated
at z = ejθ1 , i.e.,

Θz0
(θ1) = −

1

2

[

arg
z0

r0

ejθ1 − z0

1 − z0ejθ1
+ arg

z0

r0

ejθ1 − z0

1 − z0ejθ1

]

.
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This was also the case for the weighted length of an interval on the imagi-
nary axis by the Poisson kernel for the right half plane, as can be seen from
equation (3.34).

Suppose next that the discrete feedback control loop has been designed
to achieve the goal

|S(ejθ)| ≤ α < 1 , ∀θ ∈ Θ1 , [−θ1, θ1] , θ1 < π . (3.51)

Let q be a zero of L in � c
and consider the weighted length of the inter-

val Θ1, i.e., Θq(θ1) as in (3.50). Then the infinity norm of the sensitivity
function has a lower bound as shown in the following result.

Corollary 3.4.3. Let S be the sensitivity function defined by (3.43) and sup-
pose that the open-loop system L can be factored as in (3.45). Assume that
the closed-loop system is stable and that the goal (3.51) has been achieved.
Then, for each zero of L in � c

, q = rqe
jθq ,

‖S‖ � ≥
(

1

α

)

Θq(θ1)

π−Θq(θ1) ∣
∣B−1
S (q)

∣

∣

π
π−Θq(θ1) , (3.52)

where Θq is the function defined in (3.50).

Proof. The proof follows that of Corollary 3.3.3. �

Similar comments to those following Corollary 3.3.3 are also relevant
here. In particular, we note that the lower bound on the RHS of (3.52) is
strictly greater than one and it becomes larger when the open-loop system
has both zeros and poles in � c

. Also, parallel lower bounds can be derived
for the complementary sensitivity function, as well as bounds arising from
combined specifications for S and T . The interested reader is encouraged
to restate the results in §3.3.2 for the discrete-time case.

3.4.3 Bode Integrals for S and T
In this section we obtain Bode integral constraints for the discrete-time
sensitivity and complementary sensitivity functions. Recall that, in Theo-
rems 3.1.4 and 3.1.5, we established the corresponding results for continuous-
time systems by direct contour integration. We will not follow the same
procedure here, but instead we will derive the Bode integrals from the
Poisson integral formula for the disk. This is done in the following results.

Theorem 3.4.4 (Bode Integral for S). Let S be the sensitivity function de-
fined by (3.43). Assume that the open-loop system, L, is strictly proper
and let {pi : i = 1, . . . , np} be the set of poles of L in � c

. Then, assuming
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closed-loop stability,

∫π

0

log |S(ejθ)|dθ = π

np∑

i=1

log |pi| . (3.53)

Proof. As in the proof of Theorem 3.4.1, we use the factorization (3.46) and
apply Corollary A.6.5 in Appendix A with u = log |S̃| and s0 = r, r > 1.
This yields

1

2π

∫π

−π

log |S(ejθ)|
r2 − 1

1 − 2r cos θ+ r2
dθ = log |S̃(r)|

= log
∣

∣B−1
S (r)

∣

∣+ log |S(r)| . (3.54)

Next, we take limits as r → ∞ on both sides of (3.54). Using the uniform
convergence theorem to take limits inside the integral (Levinson and Red-
heffer, 1970, p. 335), and the fact that |S(e−jθ)| = |S(ejθ)|, we have that the
LHS in (3.54) tends to

1

π

∫π

0

log |S(ejθ)|dθ .

As for the RHS, note that limr � � log |S(r)| = 0, since L is strictly proper,
and

lim
r � � log

∣

∣B−1
S (r)

∣

∣ = lim
r � � log

np∏

i=1

∣

∣

∣

∣

1 − pir

r− pi

∣

∣

∣

∣

=

np∑

i=1

log |pi| .

The result (3.53) then follows. �

The parallel result for T is given in the following theorem.

Theorem 3.4.5 (Bode Integral for T ). Let T be the complementary sensi-
tivity function defined by (3.43). Assume that the open-loop system L can
be factored as in (3.45) and let {qi : i = 1, . . . , nq} be the set of zeros of L in

� c
. Suppose further that L(1) 6= 0. Then, assuming closed-loop stability,

∫π

0

log
∣

∣

∣

∣

T(e−jθ)

T(1)

∣

∣

∣

∣

dθ

1 − cos θ
=

π

T(1)
lim
z � 1

dT(z)

dz
+ π

nq∑

i=1

|qi|
2 − 1

|qi − 1|2
+ πδ ,

(3.55)
where δ is the relative degree of L.

Proof. From the factorization (3.46), we write the Poisson Integral formula
(Corollary A.6.5) for log(T̃/T(1)) evaluated at a real point r > 1 (note that
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T(1) 6= 0 since L(1) 6= 0 by assumption). This gives

∫π

0

log
∣

∣

∣

∣

T̃(ejθ)

T(1)

∣

∣

∣

∣

r2 − 1

1 − 2r cos(θ) + r2
dθ = π log

∣

∣

∣

∣

T(r)

T(1)

∣

∣

∣

∣

+ π log
∣

∣B−1
T (r)

∣

∣ + πδ log r . (3.56)

Next, we divide both sides of (3.56) by (r− 1) and take limits as r → 1. We
compute each term in turn. First, by the uniform convergence theorem,
the limit on the LHS of (3.56) can be brought inside the integral, and then,
using the fact that |T̃(ejθ)| = |T(ejθ)|, it is easy to check that the LHS of
(3.55) is obtained.

Then consider the first term on the RHS of (3.56). We have

π lim
r � 1

1

(r− 1)
log
∣

∣

∣

∣

T(r)

T(1)

∣

∣

∣

∣

=
π

2
lim
r � 1

1

(r − 1)
log
(

T(r)

T(1)

)2

(3.57)

=
π

T(1)
lim
z � 1

dT(z)

dz
, (3.58)

which follows by applying L’Hospital’s rule. This is the first term on the
RHS of (3.55). The second term on the RHS of (3.55) is also obtained from
a straightforward application of L’Hospital’s rule to the following limit

lim
r � 1

1

(r − 1)
log
∣

∣B−1
T (r)

∣

∣ = lim
r � 1

1

2(r − 1)

nq∑

i=1

log
(1 − rqi)(1 − rqi)

(r− qi)(r − qi)
.

Finally, the proof is concluded by noting that

lim
r � 1

πδ log r
r− 1

= πδ .

�

We see in (3.55) that Theorem 3.4.5 is entirely analogous to its continuous-
time counterpart, Theorem 3.1.5. Indeed, the first term on the RHS of (3.55)
is precisely minus the reciprocal of the velocity constant of a discrete-time
system equivalent to that in Figure 3.5. The effect of nonminimum phase
zeros of L is also equivalent to that in continuous-time, and so is the effect
of the relative degree of L, which corresponds to a time delay of δ discrete
units. Hence, the same interpretations that were given for Theorem 3.1.5
apply to Theorem 3.4.5 for discrete-time systems.

Nevertheless, an important difference between these integrals in the
continuous- and discrete-time cases is that the latter involves restrictions
over a finite interval. We see this in more detail in the following subsection,
where we study the design trade-offs induced by Bode’s discrete sensitiv-
ity integral.
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3.4.4 Design Interpretations
Bode integral formulae, both in the discrete and continuous-time case, in-
dicate that there is a balance of areas of sensitivity reduction and increase.
In the continuous-time case, however, the Bode integral formula does not
imply a direct trade-off in design if additional bandwidth constraints are
not imposed (see §3.1.3). Indeed, since integration is performed over an in-
finite range, the area of sensitivity reduction over a finite range of frequen-
cies may be compensated by an area where |S| is allowed to be slightly
greater than one over an arbitrarily large range of frequencies.

On the other hand, in the discrete-time case, the Bode integral implies
a nontrivial sensitivity trade-off even if no bandwidth constraint is as-
sumed. This is seen from the following immediate corollary.

Corollary 3.4.6. Suppose that the conditions of Theorem 3.4.4 hold. As-
sume further that the goal (3.51) has been achieved. Then necessarily

‖S‖ � ≥
(

1

α

)

θ1

π−θ1

∣

∣

∣

∣

∣

np∏

i=1

pi

∣

∣

∣

∣

∣

π
π−θ1

. (3.59)

Proof. The proof follows by splitting the range of integration in (3.53) and
using the bounds (3.51) and |S(ejθ)| ≤ ‖S‖ � , ∀θ. �

Similar results can be derived from Theorem 3.4.5 for the discrete com-
plementary sensitivity function, showing that discrete nonminimum phase
zeros and time delays induce design trade-offs even if no bandwidth con-
straints are imposed on the discrete system.

However, the above conclusions might be irrelevant to the real design
problem if the discrete system corresponds to the discretization of a continuous-
time system where the controller is implemented digitally. This is dis-
cussed in the following remark.

Remark 3.4.1. Consider the discrete system shown in Figure 3.15. In this
system, Kd is a digital controller and (GH)d denotes the discrete equiv-
alent of the cascade of a hold, H, and a continuous-time plant, G. This
discretized plant is depicted in Figure 3.16, and usually arises in the analy-
sis and design of continuous-time systems where the controller is imple-
mented digitally.13

The signals in Figures 3.15 and 3.16 represent discrete-time signals, where
{uk} is the discrete output of the digital controller, and {rk}, {yk} are the
sampled values of the continuous-time reference and output signals, re-
spectively.

13We give a more thorough treatment of these systems in Chapter 6, to which we refer for
further details.
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FIGURE 3.15. Discrete-time representation of a sampled-data control system.

If we define L as the product of discrete controller and discretized plant,
L = (GH)dKd, then the system may be studied by analyzing the corre-
sponding discrete sensitivity and complementary sensitivity functions S
and T defined in (3.43). The model of the system obtained by discretiza-
tion is LTI, due to the periodicity of the sampling process, which greatly
simplifies the analysis. However, a limitation of this method is that such
models fail to represent the full response of the system, since intersample
behavior is inherently lost or hidden.14
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FIGURE 3.16. Discrete equivalent of the cascade of hold and plant.

It is well known that the poles of the discretized plant are determined
by those of the continuous-time plant via the mapping z = esτ, where τ
is the sampling period (e.g., Middleton and Goodwin, 1990). The discrete
zeros of (GH)d, however, bear no simple relation to those of G and, in
fact, may be arbitrarily assigned by suitable choice of the hold device (Åström
and Wittenmark, 1990, p. 74).

From this observation, it may be tempting to conclude that design lim-
itations due to nonminimum phase zeros of the analogue plant may be
circumvented by assigning the zeros of the discretized plant to be mini-
mum phase.

Unfortunately, as we will see in Chapter 6, the difficulties imposed by
nonminimum phase zeros of the analogue plant remain when the con-
troller is implemented digitally and, moreover, are independent of the
type of hold used. It is important that the intersample behavior be ex-
amined if the problems are to be detected, since analyzing the system re-
sponse only at the sampling instants may be misleading. ◦

14Some intersample information can still be handled in a discrete model by using the mod-
ified � -transform. However, this line of work will not be pursued here.
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3.5 Summary

In this chapter, we have considered both continuous and discrete-time
scalar systems in unity feedback control loops. For these systems, we have
presented integral relations on the frequency response of the sensitivity
and complementary sensitivity functions. These integrals — of the Bode
and Poisson type — follow from applications of Cauchy’s integral rela-
tions, and reveal constraints on the closed-loop system imposed by ORHP
open-loop poles and zeros. One can use these constraints to study funda-
mental limitations on the achievable performance of the closed loop. For
example, it is possible to show that, if the open-loop system is nonmini-
mum phase, then requiring |S(jω)| to be small over a range of frequencies
will necessarily lead to a large sensitivity peak outside that range. More-
over, the relations allow one to quantify this peak in terms of parameters
of the open-loop plant. Thus, it is possible to use the results presented
here to establish bounds on the achievable frequency responses for S and
T , which hold for all possible controller designs.

Notes and References

Bode Integral Formulae
§3.1.1 is taken mainly from Bode (1945); §3.1.2 is based on results of Horowitz
(1963), Freudenberg and Looze 1985; 1987, Middleton and Goodwin (1990) and
Middleton (1991). §3.1.3 follows Freudenberg and Looze (1988), but it is also pos-
sible to obtain similar results assuming functional bounds, as was done in Middle-
ton (1991).

The Water-Bed Effect
This result was first discussed by Francis and Zames (1984), and then revisited by
Freudenberg and Looze 1987 and Doyle et al. (1992). The result presented here is
the one given in Francis and Zames (1984).

Poisson Integral Formulae
This section is largely taken from Freudenberg and Looze 1985; 1988.

For an interesting discussion on the complementarity of � and � see Kwaker-
naak (1995).

Discrete Systems
§3.4 is based on Sung and Hara (1988). A unification of both continuous and
discrete-time results has been made in Middleton (1991), where the Bode integral
for � is also derived.
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This chapter investigates sensitivity limitations in multivariable linear con-
trol. There are different ways of extending the scalar results to a multivari-
able setting. We follow here two approaches, namely, one that considers
integral constraints on the singular values of the sensitivity functions, and a
second that develops integral constraints on sensitivity vectors. These ap-
proaches complement each other, in the sense that they find application
in different problems, and hence both are needed to obtain a general view
of multivariable design limitations imposed by ORHP zeros and poles. In
order to avoid repetition, we use the first approach to derive the multi-
variable version of Bode’s integral theorems, whilst the second approach
is taken to obtain the multivariable extension of the Poisson integrals. Both
approaches emphasize the multivariable aspects of the problem by taking
into account, in addition to location, the directions of zeros and poles.

4.1 Interpolation Constraints

Consider the unity feedback configuration of Figure 4.1, where the open-
loop system, L, is a square (i.e., n×n), proper transfer matrix. As in Chap-
ter 3, let the sensitivity and complementary sensitivity functions be given
by

S(s) = [I + L(s)]−1 , and T(s) = L(s) [I + L(s)]−1 . (4.1)
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FIGURE 4.1. Feedback control system.

We will assume that the open-loop system is formed by the cascade of
the plant, G, and the controller, K, i.e.,

L = GK .

The sensitivities in (4.1) are defined at the plant output. A similar pair of
sensitivities can be defined at the plant input. In this chapter we will focus
on the sensitivities given in (4.1), but we point out that parallel results can
be derived for the sensitivities defined at the plant input.

In the sequel, we will impose the following assumption, which pre-
cludes the possibility of hidden pole-zero cancelations in the open-loop
system.1

Assumption 4.1. The sets of frequency locations of CRHP zeros and poles
of the open-loop system L are disjoint. ◦

Let the plant and controller have the following coprime factorizations
over the ring of proper and stable transfer matrices:

G = D̃−1
G ÑG = NGD

−1
G ,

K = D̃−1
K ÑK = NKD

−1
K .

(4.2)

It then follows from Chapter 2 that q is a zero ofG if and only if there exist
vectors Ψi, Ψo ∈ � n such that ÑG(q)Ψi = 0 and Ψ∗

oNG(q) = 0. Ψi and
Ψo are the input and output zero directions associated with q, and can be
normalized to be unitary vectors, i.e., such that Ψ∗

iΨi = 1 and Ψ∗
oΨo = 1.

Similarly, p is a pole ofG if and only if there exist vectorsΦi, Φo ∈ � n such
that D̃G(p)Φi = 0 andΦ∗

oDG(p) = 0;Φi andΦo are the input and output
pole directions associated with p.2 Recall that a zero (pole) direction is said
to be canonical if it has only one nonzero component.

Using the factorizations of plant and controller given in (4.2), the sensi-
tivity and complementary sensitivity functions (4.1) can be expressed as

S = DK(D̃GDK + ÑGNK)−1D̃G ,

T = NG(ÑKNG + D̃KDG)−1ÑK .
(4.3)

Note that the zeros of S and T are easily identified from (4.3). This is for-
malized in the following lemma.

1A relaxed form of this requirement will be considered in §4.3.5.
2Note that if

�
is invertible, then � is a zero of

�
�
�
.
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Lemma 4.1.1 (Interpolation Constraints). Under Assumption 4.1, the sen-
sitivity and complementary sensitivity functions must satisfy the follow-
ing conditions.

(i) If p ∈ � + is a pole of Gwith input directionΦ ∈ � n, then

S(p)Φ = 0, and T(p)Φ = Φ. (4.4)

(ii) If q ∈ � + is a zero of Gwith output direction Ψ ∈ � n, then

Ψ∗S(q) = Ψ∗, and Ψ∗T(q) = 0. (4.5)

(iii) If p ∈ � + is a pole of Kwith output directionΦ ∈ � n, then

Φ∗S(p) = 0, and Φ∗T(p) = Φ∗.

(iv) If q ∈ � + is a zero of Kwith input direction Ψ ∈ � n, then

S(q)Ψ = Ψ, and T(q)Ψ = 0.

Proof. Note first that Assumption 4.1 guarantees that there is no pole-zero
cancelation in S and T . Next, let p ∈ � + be a pole ofGwith input direction
Φ ∈ � n. Then D̃G(p)Φ = 0 and (4.4) thus holds from (4.3). The proof of
the other cases if similar. �

Lemma 4.1.1 is the multivariable generalization of Lemma 3.1.3 in Chap-
ter 3 and, as was the case with the latter lemma, it translates the open-loop
characteristics of instability and nonminimum phaseness into properties
that the functions S and T must satisfy in the CRHP. In the multivariable
version, these properties also involve directions of zeros and poles. Note
that the constraints given in (4.4) and (4.5) depend only on poles and zeros
of the plant and hence hold irrespective of the controller design.

In §4.2 and §4.3 we will use Lemma 4.1.1 to derive integral constraints
of the Bode and Poisson type, respectively.

4.2 Bode Integral Formulae

In this section we will derive Bode integral formulae for the singular val-
ues of the sensitivity function. An important obstacle in extending the
scalar integral constraints to the multivariable case lies in the fact that the
singular values of an analytic transfer matrix are not themselves analytic.
A notable step towards the multivariable results was taken by Boyd and
Desoer (1985), who established inequality versions of the Bode and Pois-
son integral formulae. These inequalities use the fact that the logarithm
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of the largest singular value of an analytic transfer matrix is a subhar-
monic function.3 By restricting the class of systems under consideration
— to those for which the multiplicity of the singular values of S is constant
in the CRHP — Chen (1995) established equality versions of the Bode and
Poisson integral formulae. These relations were derived using Green’s for-
mula for functions of two real variables (see §A.5.1 in Appendix A), which
holds for arbitrary functions having continuous second derivatives over a
region. Bode’s integral formulae for the singular values of S will be given
in §4.2.2, after some preliminary definitions and results.

4.2.1 Preliminaries
Given a unitary vector Φ ∈ � n, we call the one-dimensional subspace
spanned by Φ the direction of Φ. The angle between the directions of two
unitary vectors Φ1 and Φ2 is defined to be the principal angle (Björck and
Golub, 1973) between the two corresponding subspaces spanned by the
two vectors. This angle, denoted by ∠(Φ1, Φ2), is given by

cos∠(Φ1, Φ2) , |Φ∗
1Φ2| .

As discussed in Björck and Golub (1973) and Golub and Van Loan (1983),
the principal angle between two subspaces serves as a distance measure,
and it quantifies how well the two subspaces are aligned.

Our aim in the following subsection is to apply Green’s formula to the
logarithm of the singular values of S. It is thus necessary to extract from
S all its ORHP zeros. It is well known that a nonminimum phase transfer
function H admits a factorization that consists of a minimum phase part
and an all-pass factor.4 This factorization can be obtained by the following
sequential procedure, which amounts to repeated use of a formula devel-
oped in Wall, Jr. et al. (1980). Let qi ∈ � +, i = 1, · · · , nq, be the ORHP
zeros of H. Then, H can be factorized as H = H1 B1, where

B1(s) = I−
2Re q1
(s+ q1)

Φ1Φ
∗
1 ,

and Φ1 is the input direction of q1. Note that after this factorization, q1
is no longer a zero of the transformed transfer matrix H1. This procedure
can be continued to obtain Hi−1 = Hi Bi, where Bi(s) = I − 2Reqi/(s +

qi)ΦiΦ
∗
i , and Φi, satisfying Φ∗

iΦi = 1, is obtained as if it were the direc-
tion of qi but is computed from Hi−1 rather than H. As such, Φi need not
coincide with the input direction of qi; however, it is easy to see that it is a

3Recall (cf. §A.3.1 in Appendix A) that a continuous function � is subharmonic if its Lapla-
cian ∇

� � ��� � � � � � ��� � � � � � � �
is nonnegative.

4An all-pass transfer function is a stable transfer function such that the magnitude of its
largest singular value equals one at all points on the imaginary axis.



4.2 Bode Integral Formulae 89

linear combination of the zero directions. By repeating this procedure, we
obtain a factorization of the form

H = H̃

nq∏

i=1

Bi ,

where H̃ is minimum phase and Bi, obtained as described above, is an
all-pass factor corresponding to qi.

Let pi, i = 1, . . . , np, be the poles of the open-loop system L in the
ORHP, repeated according to their geometric multiplicities.5 Under As-
sumption 4.1, it follows from Lemma 4.1.1 and the factorization described
above that S can be expressed as

S = S̃

np∏

i=1

Bi , (4.6)

where S̃ is minimum phase and Bi is the all-pass factor corresponding to
pi, given by

Bi(s) = I −
2Repi
(s+ pi)

ΨiΨ
∗
i . (4.7)

We note that the all-pass factors in the factorization (4.6) can be constructed
independently of the controller if the controller is stable. In particular, suppose
that Assumption 4.1 holds and that the plant and controller are expressed
as in (4.2). Assume further that the controller denominator DK has no
ORHP zeros. Then, it is clear from the expression for S in (4.3) that the
all-pass factors of the factorization (4.6) can be computed from D̃G alone.
This will be relevant in the following section when the interest is to ob-
tain performance limitations that can be computed before selecting any
particular controller design.

In the remaining of §4.2, we make the following assumption.

Assumption 4.2.

(i) The closed-loop system of Figure 4.1 is stable.

(ii) lim
R � �

sup
s∈ � +

|s|≥R

Rσ(L(s)) = 0.

(iii) The singular values of S̃ in (4.6), i.e., σi(S̃(s)), i = 1, · · · , n, have
continuous second order derivatives for all s ∈ � +.

◦

5Recall that the geometric multiplicity of a pole of � � ˜� �
� ˜�

is equal to the deficiency
in rank of ˜� at the frequency of the pole.
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Assumption 4.2-(i) is the same as for the SISO case, and amounts to
the analyticity of S in the CRHP. Assumption 4.2-(ii) states that the largest
singular value of the open-loop transfer function has a roll-off rate of more
than one pole-zero excess. It will hold, for example, if each entry of L has
relative degree larger than one.6 Assumption 4.2-(iii) is necessary for the
use of Green’s theorem. A sufficient condition for this assumption to hold
is that the multiplicity of σi(S̃(s)), i = 1, · · · , n, be constant for all s ∈

� + (Chen, 1995) — which in fact guarantees that σi(S̃) has continuous
derivatives of all orders in the CRHP.

It is important to note that, even if S is analytic in the CRHP and the
singular values of S̃ have continuous derivatives of all orders in the CRHP,
the function σi(S̃(s)) is not, in general, a harmonic function (Boyd and
Desoer, 1985; Freudenberg and Looze, 1987). This precludes the use of
Cauchy’s and Poisson’s formulae, which apply to analytic and harmonic
functions.

We end this subsection with a technical lemma that will prove useful in
the subsequent analysis.

Lemma 4.2.1. For any s ∈ � + such that s 6= qi, we have that

σ(B−1
i (s)) =

∣

∣

∣

∣

s+ qi
s− qi

∣

∣

∣

∣

, (4.8)

σj(B
−1
i (s)) = 1 , j = 2, · · · , n , (4.9)

where Bi is given by (4.7).

Proof. Using the matrix inversion lemma (Golub and Van Loan, 1983), we
have, for s 6= qi,

B−1
i (s) =

(

I−
2Re qi
(s + qi)

ΦiΦ
∗
i

)−1

= I+
2Re qi
(s + qi)

ΦiΦ
∗
i

1

1 − 2ReqiΦ∗
iΦi/(s + qi)

= I+
2Re qi
s− qi

ΦiΦ
∗
i .

Consider next the matrix Υi, such that [Φi, Υi] form an orthonormal basis
of � n. Then I = ΦiΦ

∗
i + ΥiΥ

∗
i , and

B−1
i (s) = ΦiΦ

∗
i + ΥiΥ

∗
i +

2Re qi
s− qi

ΦiΦ
∗
i

=
[

Φi Υi
]





s + qi
s − qi

0

0 I





[

Φ∗
i

Υ∗
i

]

.

6This follows from the inequality � ��� �
≤ � max � ≤ � � � ≤ � � � � � � , which holds for any � ��

� � �
�
∈ � � × � (see e.g., Golub and Van Loan, 1983).
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Thus

σj(B
−1
i (s)) = σj









s+ qi
s− qi

0

0 I







 ,

and the result follows. �

4.2.2 Bode Integrals for S
In this section we will state the Bode integral theorem for the logarithm of
the singular values of the sensitivity function. The proof involves the use
of Green’s formula and a careful computation of contour integrals. Since
it is rather long and tedious, we defer it to §B.1 of Appendix B.

The main result of the section is the following.

Theorem 4.2.2 (Bode Integral for S). Let S be factored as in (4.6). Then,
under Assumption 4.2,

∫ �

0

log σj(S(jω)) dω = Fj + Kj , (4.10)

where

Fj =
1

2

∫∫

� +

σ∇2 logσj(S̃(σ + jω))dσdω , and

Kj = lim
R � �

∫π/2

−π/2

R logσj

(

np∏

i=1

B−1
i (Rejθ)

)

cos θdθ .

Proof. The proof follows by applying Green’s formula (A.30) in Appendix A
for Ω equal to the typical semicircular domain of radius R into the ORHP,
and the choices of functions f(s) = log σj(S̃(s)) and g(s) = log(|η+ s|/|η−

s|), where η > R. The details are given in §B.1 of Appendix B. �

Note that Fj and Kj are functions of the particular factorization of S
given in (4.6). As discussed before, this factorization will, in general, de-
pend on the choice of controller. It is possible, however, to derive an in-
equality that is independent of the controller as long as the controller is
stable. This is stated in the following corollary.

Corollary 4.2.3. Let the plant be given by G = D̃−1
G ÑG, and assume that

the controller K is stable. Let S be factorized as in (4.6), where the all-pass
factors are computed from D̃G alone. Then, under Assumption 4.2,

∫ �

0

logσ(S(jω))dω ≥ lim
R � �

∫π/2

−π/2

R logσ

(

np∏

i=1

B−1
i (Rejθ)

)

cos θdθ .

(4.11)
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Proof. If the controller is stable, then it is possible to factorize S as in (4.6),
where the all-pass factors are computed from D̃G alone. Consider next
(4.10) for j = 1, i.e., focusing on the largest singular value of S. Then the
function σ(S̃) is subharmonic in � + (Boyd and Desoer, 1985; Freuden-
berg and Looze, 1987). This implies that ∇2 logσ(S̃) ≥ 0 and hence F1 ≥ 0.
Inequality (4.11) then follows. �

The integral constraint given in (4.10) is an extension of Bode’s integral
given previously for scalar systems in Theorem 3.1.4 of Chapter 3. Note
that for SISO systems, the singular values, σj(S̃), all collapse into |S̃|. Since,
S̃ is analytic in the CRHP it follows that log |S̃| is harmonic in the CRHP.
Hence ∇2 log |S̃| = 0 in � +, giving Fj = 0 in (4.10). We next focus on Kj
in (4.10). Note that for SISO systems, the all-pass factor in (4.7) have the
form Bi(s) = (s − pi)/(s + pi). Using the uniform convergence theorem
(Levinson and Redheffer, 1970, p. 335), and Example A.8.7 of Appendix A,
Kj in (4.10) can be written as

Kj =

np∑

i=1

∫π/2

−π/2

lim
R � �

R log
∣

∣

∣

∣

Rejθ + pi
Rejθ − pi

∣

∣

∣

∣

cos θdθ

=

np∑

i=1

∫π/2

−π/2

Re lim
R � �

[

R log
(

1+
pie

−jθ

R

)

−R log
(

1−
pie

−jθ

R

)]

cos θdθ

=

np∑

i=1

∫π/2

−π/2

Re(pie
−jθ + pie

−jθ) cos θdθ

= 2

np∑

i=1

Repi
∫π/2

−π/2

cos2 θdθ

= π

np∑

i=1

Repi .

Hence, for scalar systems, (4.10) reduces to (3.13) (particularized to the
case S(∞) = 1).

We next discuss the terms Fj and Kj in (4.10) for the general multivari-
able case. It is easy to see from the proof of Theorem 4.2.2 (see §B.1 in
Appendix B) that Fj will be present for both stable and unstable open-
loop systems. In particular, for j = 1, i.e., focusing on the largest singu-
lar value of S, we have seen in the proof of Corollary 4.2.3 that F1 ≥ 0.
We thus conclude that, even for open-loop stable systems (satisfying As-
sumption 4.2), the Bode integral of the largest singular value of S has a
nonnegative value.

It is also clear from the proof of Theorem 4.2.2 that the terms Kj com-
pletely quantify the effect of open-loop unstable systems on the Bode in-
tegrals for S. It is easy to see that Kj ≥ 0. Indeed, this follows from the
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inequality

σj

(

np∏

i=1

B−1
i (Rejθ)

)

≥
np∏

i=1

σ
(

B−1
i (Rejθ)

)

,

and the fact that the RHS above equals 1 by Lemma 4.2.1. Thus, open-loop
unstable poles contribute an additional nonnegative term, which has the
potential for additional limitations upon sensitivity properties.

In order to obtain a better understanding of the multivariable nature
of the result in Theorem 4.2.2, we will focus on some particular cases, for
which the term Kj has a simpler explicit expression and bound. It is in-
structive to first examine two extreme cases. The first case corresponds to
Ψ∗
iΨj = 0 for all i, j = 1, · · · , np, i 6= j, and the second case corresponds

to Ψ1 = Ψ2 = · · · = Ψnp
. For simplicity, we assume that np ≤ n. We then

have the following result.

Proposition 4.2.4. Let S be factorized as in (4.6) and assume, without loss
of generality, that Rep1 ≥ · · · ≥ Repnp

. Also, let np ≤ n. Then, under
Assumption 4.2,

(i) if Ψ∗
iΨj = 0 for all i, j = 1, · · · , np, i 6= j, we have that
∫ �

0

log σj(S(jω))dω = πRepj + Fj , j = 1, · · · , np , (4.12)

and
∫ �

0

logσj(S(jω))dω = Fj , j = np + 1, · · · , n ; (4.13)

(ii) if Ψi = Ψ for all i = 1, · · · , np, we have that

∫ �

0

logσ(S(jω))dω = π

np∑

i=1

Repi + F1 , (4.14)

and ∫ �

0

log σj(S(jω))dω = Fj , j = 2, · · · , n . (4.15)

Proof. In case (i), it is easy to show that

np∏

i=1

B−1
i (s) = I+

np∑

i=1

2Repi
s − pi

ΨiΨ
∗
i .

Consider next the matrix Υ, such that [Ψ1, · · · , Ψnp
, Υ] form an orthonor-

mal basis of � n. Then I =
∑np

i=1 ΨiΨ
∗
i + ΥΥ∗, and by a similar argument
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to that used in the proof of Lemma 4.2.1, it follows that

σj

(

np∏

i=1

B−1
i (s)

)

= σj





































s+ p1
s− p1

. . .
s+ pnp

s− pnp

In−np





































.

It is then clear from (4.10) and the above relation that (4.13) holds. As for
(4.12), a straightforward manipulation shows that for s ∈ � + and |s| ≥ R

with R being sufficiently large, the inequality
∣

∣

∣

∣

s + p1
s − p1

∣

∣

∣

∣

≥
∣

∣

∣

∣

s + p2
s − p2

∣

∣

∣

∣

holds if Rep1 ≥ Rep2, as was assumed. Then, as R → ∞

σj

(

np∏

i=1

B−1
i (s)

)

=

∣

∣

∣

∣

s+ pj

s− pj

∣

∣

∣

∣

, j = 1, · · · , np .

This gives Kj in (4.10) equal to πRepj, thus showing (4.12).
For case (ii), one can construct a matrix Υ whose columns form an or-

thonormal basis of � n together with Ψ. This leads to the expression

np∏

i=1

B−1
i (s) =

[

Ψ Υ
]







np∏

i=1

s+ pi
s− pi

In−1







[

Ψ∗

Υ∗

]

,

and the rest of the proof is similar to that of case (i). �

Proposition 4.2.4 suggests that the limitations imposed by open-loop
unstable poles in multivariable systems are related not only to the location
in frequency, but also to the directions of poles (or rather a linear combina-
tion of such directions) and further to the relative geometric configuration of
these directions. Case (i) corresponds to the situation where the pole di-
rections are mutually orthonormal, for which the integral pertaining to each
singular value is related solely to one unstable pole (with a corresponding
distance to the imaginary axis), as if each “channel” of the system is de-
coupled from the others. Case (ii) corresponds to the situation where all
the pole directions are parallel, for which the unstable poles affect only the
integral of the largest singular value, as if the channel corresponding to
this singular value contains all unstable poles.

The following result — stated without proof — specializes Theorem 4.2.2
to the case of two open-loop unstable poles, and it further shows that the
relative geometry of the directions of these poles is indeed crucial in the
study of sensitivity limitations.
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Theorem 4.2.5 (Chen, 1995). Let np = 2 and let the conditions of Theo-
rem 4.2.2 hold. Then

∫ �

0

log σ(S(jω))dω = a(1, 2) + F1 , (4.16)
∫ �

0

logσ2(S(jω))dω = b(1, 2) + F2 , (4.17)

and ∫ �

0

logσj(S(jω))dω = Fj , j = 3, · · · , n , (4.18)

where

a(i, j) ,
π

2

(

Re(pi+pj)+

√

[Re(pi−pj)]2+4Repi Repj cos2 ∠(Ψi, Ψj)

)

,

b(i, j) ,
π

2

(

Re(pi+pj)−

√

[Re(pi−pj)]2+4Repi Repj cos2 ∠(Ψi, Ψj)

)

.

◦
The above result fully characterizes the limitation imposed by a pair

of open-loop unstable poles on the sensitivity reduction properties. This
limitation depends, not only on the distances of the poles to the imaginary
axis, but also on the principal angle between the pole directions.

Using similar arguments as in the proof of Theorem 4.2.5, Chen (1995)
obtained the following lower bounds for the Bode integral of the largest
singular value of the sensitivity function.

Corollary 4.2.6 (Chen, 1995). Let the conditions of Theorem 4.2.2 hold.
Then, for anyΦ ∈ � n satisfying Φ∗Φ = 1, we have

∫ �

0

logσ(S(jω))dω ≥ π
np∑

i=1

Repi cos2 ∠(Φ,Ψi) + F1 , (4.19)

and, in particular, for any j = 1, · · · , np,

∫ �

0

log σ(S(jω))dω ≥ π
np∑

i=1

Repi cos2 ∠(Ψi, Ψj) + F1 . (4.20)

◦
From Theorem 4.2.2 and Corollary 4.2.6, it can be inferred that there will

exist a frequency range over which the largest singular value of the sensi-
tivity function exceeds one if it is to be kept below one at other frequen-
cies. We will further see in §4.2.3 below that, in the presence of bandwidth
constraints, this will result in a sensitivity trade-off in different frequency
ranges. The above results also show unique features of multivariable feed-
back systems. First, owing to the fact that log σ(S̃(jω)) is a subharmonic
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function in the CRHP, the results show (via the terms Fj) that design lim-
itations due to bandwidth constraints are, in a sense, more stringent than
in scalar systems.7 Moreover, how stringent these limitations are depends
on the Laplacian of log σ(S̃(jω)). The second multivariable feature high-
lighted by the results, is that the additional cost associated with open-loop
unstable poles (captured in the terms Kj) is a function not only of the posi-
tion of the poles but also of the pole directions. Moreover, Proposition 4.2.4
and Theorem 4.2.5 show that the relative geometry of the pole directions
is also important.

A multivariable version of the Poisson integral for the largest singular
value of the sensitivity function can be used to study the effect of open-
loop nonminimum phase zeros upon sensitivity limitations. This result
was given in Chen (1995), who developed an extension of the Poisson in-
tegral formula for real functions f : � → � with continuous derivatives
of all orders in � +, but that are not necessarily harmonic functions. As
expected, this new formula has an additional term involving the Lapla-
cian of f. Accordingly, the Poisson integral theorem for the largest singular
value of the sensitivity function displays a term depending on the Lapla-
cian of logσ(S̃(jω)). This Poisson integral also shows that the sensitivity
reduction ability of the system may be severely limited if the system has
both open-loop unstable poles and nonminimum phase zeros, especially
when these poles and zeros are close to each other and the principal angle
between their directions are small. More discussion on this version of the
Poisson integral for multivariable systems can be found in Chen (1995).

As a final comment, we remark that using standard modifications to
the proof of Theorem 4.2.2, similar to the ones used in the proof of The-
orem 3.1.4 of Chapter 3, it is possible to show that open-loop poles on
the imaginary axis do not contribute to the values of the Bode and Pois-
son integrals. Also, parallel results can be obtained for the complementary
sensitivity function.

4.2.3 Design Interpretations
In this section we briefly show the utility of the integral constraint (4.10)
to study design trade-offs imposed on sensitivity reduction by open-loop
unstable poles in conjunction with bandwidth constraints. These trade-
offs are similar to those obtained in §3.1.3 of Chapter 3 for scalar systems.
For the purpose of illustration, we will consider limitations related to the
largest singular value of S, which we have seen in Chapter 2 has relevance
in quantifying feedback properties of the closed-loop system of Figure 4.1.

7This conclusion holds if the multivariable problem is approached from a singular value
perspective. Yet we will see in §4.3 that, when studying integral constraints on sensitivity
vectors, the trade-offs appear to be alleviated with respect to the scalar case.
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Following §3.1.3, we will assume that the largest singular value of the
open-loop system satisfies the bound

σ(L(jω)) ≤ δ

ωk+1
≤ ε < 1 , ∀ω ∈ [ωc,∞] , (4.21)

where δ > 0 and k > 0 are given constants. A bandwidth constraint like
(4.21) may be necessary to ensure robust stability against uncertainty in
the plant model (see Chapter 2). Note that a different upper bound of the
form (4.21) may hold for each singular value.

Next, assume that the feedback loop of Figure 4.1 has been designed to
achieve the following reduction specification

σ(S(jω)) ≤ α , ∀ω ∈ [−ω1,ω1] , (4.22)

where ω1 < ωc and α > 0 is a given small constant. The following re-
sult shows that the reduction specification (4.22), together with the band-
width constraint (4.21), can be achieved only at the expense of sensitivity
increase over the range [ω1,ωc].

Corollary 4.2.7. Let the conditions of Theorem 4.2.2 hold. In addition,
suppose that (4.21) and (4.22) are satisfied for some ω1 and ωc such that
ω1 < ωc. Then,

sup
ω∈(ω1,ωc)

logσ(S(jω)) ≥ 1

ωc−ω1

[

F1 + K1 +ω1 log
1

α
+ωc log(1−ε)

]

.

(4.23)

Proof. The proof is similar to that of (3.21) in §3.1.3, and follows using
(4.10) together with the bounds (4.21) and (4.22), and the observation that
for ω ≥ ωc

σ(S(jω)) =
1

σ(I+ L(jω))

≤ 1

1 − σ(L(jω))

≤ 1

1 − δ/ωk+1
.

�

Similar to its scalar counterpart, given in (3.21) in Chapter 3, the bound
(4.23) shows that any attempt to increase the area of sensitivity reduction,
by requiring α to be small and/orω1 to be close toωc, will necessarily re-
sult in a large sensitivity peak in the range (ω1,ωc). Note that the constant
K1 — which is the multivariable version of the term π

∑
Repi in (3.21) —

can be precisely evaluated for some particular cases as shown in Proposi-
tion 4.2.4 and Theorem 4.2.5. In the general case K1 is nonnegative, thus
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potentially increasing the sensitivity peak. The main multivariable feature
appears in the term F1. As we have seen, the constant F1 is also nonneg-
ative, leading to an additional possibility of an increase in the sensitivity
peak.

We remark that similar trade-offs can be analyzed by means of the Pois-
son integral formula for the largest singular value of the sensitivity func-
tion (Chen, 1995).

4.3 Poisson Integral Formulae

In this section, we use the approach of Gómez and Goodwin (1995) to
obtain integral constraints — of the Poisson type — on columns of the sen-
sitivity function. These constraints are useful in the study of performance
limitations in multivariable feedback problems where structural features
— such as diagonalization, triangularization, etc.— are of interest. The re-
sult uses the Poisson integral formula developed in §A.6.1 of Appendix A.
Similar integral constraints can be obtained on rows of the complementary
sensitivity function. The interested reader is referred to Gómez and Good-
win (1995) for this latter analysis.

4.3.1 Preliminaries
In this subsection we introduce some preliminary notions. We denote by
Sik, the element in the i-row and k-column of the n × n square trans-
fer matrix S. If Ψ is a vector in � n, we denote its elements by ψi, i =

1, . . . , n, i.e., Ψ = [ψ∗
1, ψ

∗
2, . . . , ψ

∗
n]∗. Also, we introduce the index set IΨ ,

{i ∈ � : ψi 6= 0} as the set of indices of the nonzero elements of Ψ.
As in Chapter 3, given a set Zk = {si, i = 1, . . . , nk} of complex numbers

in the ORHP, we define its Blaschke product as the function

Bk(s) =

nk∏

i=1

s − si

s + s̄i
.

If Zk is empty, we define Bk(s) = 1, ∀s.
In the remainder of §4.3, we make the following assumption.

Assumption 4.3.

(i) The closed-loop system of Figure 4.1 is stable.

(ii) The open-loop system L is a proper transfer matrix.
◦

Assumption 4.3-(i) is the same as for the Bode integral given in §4.2.
Assumption 4.3-(ii) is necessary to restrict the behavior at infinity of the
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sensitivity function, and is more relaxed than Assumption 4.2-(ii) used to
derive the Bode integral.

Next, let Ψ ∈ � n, Ψ 6= 0, be the output direction of an ORHP zero of
the plant G, as described in Lemma 4.1.1 (ii). Consider the vector func-
tion Ψ∗S : � → � n, whose n elements are proper, stable, scalar rational
functions. Pick one of these elements, say

ρk(s) ,

n∑

i=1

ψ∗
iSik(s) , (4.24)

where k is in IΨ, and let Bk be the Blaschke product of the zeros of ρk in
the ORHP. Then, the function ρ̃k(s) , B−1

k (s)ρk(s) is proper, stable, and
minimum phase, which implies that log ρ̃k(s) is analytic in the ORHP and
satisfies the conditions of the Poisson integral formula (see Theorem A.6.1
in Appendix A). In the following subsection we will use this information
to derive Poisson integrals for S.

4.3.2 Poisson Integrals for S
In the following theorem, we translate the interpolation constraint given
in (4.5) into Poisson integrals on the columns of S.

Theorem 4.3.1 (Poisson Integral for S). Let q = σq + jωq, σq > 0, be
a zero of the plant G, and let Ψ ∈ � n, Ψ 6= 0, be its output direction, as
described in Lemma 4.1.1 (ii). Then, under Assumption 4.3, for each index
k in IΨ,

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω = log |B−1

k (q)| , (4.25)

where Bk is the Blaschke product of the ORHP zeros of ρk in (4.24).

Proof. The proof is an application of the Poisson integral formula, as in
Theorem 3.3.1 in Chapter 3, to the scalar elements ρk of the vector function
Ψ∗S : � → � n, which, under Assumption 4.3, are proper, stable, rational
functions.

Let ρk in (4.24), where k is in IΨ, be one of these elements, and let Bk
be the Blaschke product of the zeros of ρk in the ORHP. As noted before,
we can then apply the Poisson integral formula to the function log ρ̃k(s),
where ρ̃k(s) , B−1

k (s)ρk(s). Evaluating this integral at s = q, and using
the fact that |ρ̃k(jω)| = |ρk(jω)| yields

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
iSik(jω)

∣

∣

∣

∣

∣

σq

σ2q+(ωq−ω)2
dω = log

∣

∣

∣

∣

∣

B−1
k (q)

n∑

i=1

ψ∗
iSik(q)

∣

∣

∣

∣

∣

= log |B−1
k (q)| + log |ψ∗

k| ,

(4.26)
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where the last step follows from the interpolation condition Ψ∗S(q) = Ψ∗

given in (4.5) (notice that ψk 6= 0 by assumption). Since

1

π

∫ �

− �

σq

σ2q + (ωq −ω)2
dω = 1 ,

subtracting log |ψ∗
k| from both sides of (4.26) yields (4.25), thus completing

the proof. �

Note that the result in Theorem 4.3.1 depends on the particular choice
of controller. This is due to the presence of the Blaschke product Bk of
ORHP zeros of ρk on the RHS of (4.25). Indeed, ρk in (4.24) is formed
by combining entries of S, which clearly are functions of both plant and
controller. However, the following corollary establishes a constraint that
holds for any controller, and can therefore be used to identify, a priori,
design limitations imposed by plant characteristics.

Corollary 4.3.2. Under the conditions of Theorem 4.3.1, the sensitivity
function S satisfies, for each index k in IΨ,

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω ≥ 0. (4.27)

Proof. The proof follows from (4.25), on noting that |B−1
k (s)| ≥ 1 at any

point s in � +, and so log |B−1
k (q)| ≥ 0. �

Theorem 4.3.1 and Corollary 4.3.2 establish that, for each nonminimum
phase zero of the plant, q, there is a set of integral constraints that limit
the values of S on the jω-axis in an intrinsically vectorial fashion. Observe
that, depending on the number of nonzero elements of the output direc-
tion Ψ associated with the zero of the plant — i.e., the number of nonzero
elements in the index set IΨ — up to n integral constraints of the form
(4.25) can be stated, each corresponding to a column of S. Moreover, if ν
is the geometric multiplicity of the ORHP zero of the plant, i.e., the di-
mension of the (left) null space of the matrix N(q), then up to ν integral
constraints of the form (4.25) arise for each column of S. Since the compo-
nents of the null space are linearly independent, it is expected that each
integral constraint will give different information. Hence, it is reasonable
to expect that, the greater the drop in rank caused by a particular zero, the
more restrictive the constraint becomes.8

Note that, if the zero direction happens to be canonical, i.e., the index
set IΨ has only one element, k say, then the constraints reduce to those

8If the geometric multiplicity of a zero is greater than one, then there is no unique way of
choosing a basis for the corresponding null space. Each choice of basis, in principle, gener-
ates alternative constraints. However, these constraints are interrelated and do not provide
independent information regarding performance limitations.
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of the SISO case for the element Skk. This is seen more clearly from the
following corollary.

Corollary 4.3.3. Under the conditions of Theorem 4.3.1, the diagonal ele-
ments, Skk, of the sensitivity function satisfy, for each index k in IΨ,

∫ �

− �
log |Skk(jω)|

σq

σ2q + (ωq −ω)2
dω ≥

∫ �

− �
log
∣

∣

∣

∣

ψ∗
k Skk(jω)

∑n
i=1ψ

∗
i Sik(jω)

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω .

(4.28)

Proof. The LHS of (4.27) can be alternatively written as

∫ �

− �
log

∣

∣

∣

∣

∣

∣

∣

Skk






1 +

n∑

i=1
i6=k

ψ∗
i Sik

ψ∗
k Skk







∣

∣

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω =

∫ �

− �
log |Skk|

σq

σ2q+(ωq−ω)2
dω+

∫ �

− �
log

∣

∣

∣

∣

n∑

i=1

ψ∗
i Sik

∣

∣

∣

∣

|ψ∗
k Skk|

σq

σ2q+(ωq−ω)2
dω ,

from which (4.28) follows. �

As discussed before, if the zero direction is canonical, then the index
set IΨ has only one element, k say. In this particular case, Corollary 4.3.3
gives,

∫ �

− �
log |Skk(jω)|

σq

σ2q + (ωq −ω)2
dω ≥ 0 ,

which is the same constraint that would hold for a scalar system having
a nonminimum phase zero at s = q and a sensitivity function equal to
Skk. Corollary 4.3.3 also shows that, if the zero direction is not canonical,
i.e., the set IΨ has more than one element, then additional degrees of free-
dom arise in multivariable systems, which can potentially be exploited to
reduce the cost associated with nonminimum phase zeros. This will be
analyzed further in the following two sections.

It is clear from the previous discussion that the results given above dis-
play the essential multivariable nature of the problem, in the sense that the
constraints stress the importance of directions of ORHP open-loop zeros
and poles in connection with spatial — i.e., related to the structure of the
transfer matrix — sensitivity allocation. In the following section we ana-
lyze design implications and trade-offs induced by the integral constraints
just given.
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4.3.3 Design Interpretations
As in the case of scalar systems, Theorem 4.3.1 and Corollary 4.3.2 can be
used to give insights into the frequency domain trade-offs in sensitivity.
A straightforward corollary of these results emphasizes the vectorial na-
ture of the associated trade-offs. Let Ω1 , [0,ω1] denote a given range
of frequencies of interest, and assume that the k-column of S satisfies the
following design specifications:

|Sik(jω)| ≤ αik forω in [−ω1,ω1], i = 1, . . . , n , (4.29)

where αik, i = 1, . . . , n, are small positive numbers. Let Θq(ω1) be the
weighted length of the interval [−ω1,ω1], as defined in (3.33) in Chap-
ter 3, which can be expressed as

Θq(ω1) =

∫ω1

0

σq

σ2q + (ωq −ω)2
+

σq

σ2q + (ωq +ω)2
dω.

We then have the following corollary.

Corollary 4.3.4. Assume that all the conditions of Theorem 4.3.1 hold.
Then, if the k-column of S, where k is in IΨ, achieves the specifications
given in (4.29), the following inequality must be satisfied,

‖Skk‖ � +

n∑

i=1
i6=k

∣

∣

∣

∣

ψ∗
i

ψ∗
k

∣

∣

∣

∣

‖Sik‖ � ≥







1

αkk +
∑n
i=1
i6=k

∣

∣

∣

ψ∗

i

ψ∗

k

∣

∣

∣αik







Θq(ω1)

π−Θq(ω1)

.

(4.30)

Proof. Dividing the range of integration and using the weighted length of
the interval [−ω1,ω1], the inequality (4.27) implies

log max
ω∈[−ω1,ω1]

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∣

∣

∣

∣

∣

Θq(ω1)+

log

∥

∥

∥

∥

∥

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∥

∥

∥

∥

∥

�

[π−Θq(ω1)] ≥ 0 .

Exponentiating both sides above yields
[

max
ω∈[−ω1,ω1]

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∣

∣

∣

∣

∣

]Θq(ω1) ∥
∥

∥

∥

∥

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∥

∥

∥

∥

∥

[π−Θq(ω1)]

�

≥ 1 .

Using the specifications (4.29) and the triangular inequality, we have





αkk+

n∑

i=1
i6=k

∣

∣

∣

∣

ψ∗
i

ψ∗
k

∣

∣

∣

∣

αik







Θq(ω1)




‖Skk‖ � +

n∑

i=1
i6=k

∣

∣

∣

∣

ψ∗
i

ψ∗
k

∣

∣

∣

∣

‖Sik‖ �







[π−Θq(ω1)]

≥ 1 ,
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from which (4.30) follows immediately. �

As in the SISO case, the above corollary shows that integral relation
(4.25) implies lower bounds on the infinity norm of elements of S. Notice
that the exponent on the RHS of (4.30) is a positive number and its base is
likely to be larger than one if the coefficients αik are small enough; hence,
the more demanding the specifications, the larger these lower bounds are.

If the zero direction is not canonical, an important difference in the
MIMO case is that the lower bounds apply to a combination of norms of el-
ements, which somehow relaxes the constraint over the SISO case (where
there is only one element). Also, the lower bounds are smaller than in the
SISO case due to the presence of extra positive terms in the denominator of
the RHS of (4.30). As a consequence, when the zero direction is not canon-
ical, there is an alleviation of the cost associated with the corresponding
zero as compared with the scalar case. To gain further insight into these
ideas, we will next consider the special case of a diagonally decoupled
design.

4.3.4 The Cost of Decoupling
Multivariable systems are, by their intrinsic nature, subject to coupling
between different outputs and inputs. This means that, in general, one in-
put affects more than one output and, conversely, one output is affected
by more than one input. A natural approach to tackle the additional de-
sign difficulty arising from this interaction is to devise methodologies that
translate — or approximate — the MIMO problem into a collection of
SISO problems. There are alternative ways to do this, but they all involve
achieving special structures for the closed-loop transfer matrices in such
a way that the coupling is eliminated or is easier to handle. Examples of
these decoupling methodologies include diagonalization, triangulariza-
tion, diagonal dominance, etc., which have been frequently reported in
the literature (e.g., Hung and Anderson, 1979; Rosenbrock, 1969; Weller
and Goodwin, 1993; Desoer and Gündes, 1986).

In all of the above references, limitations imposed by nonminimum phase
zeros are discussed as an additional complication. Desoer and Gündes
(1986) have made this more precise by showing that, in order to achieve
diagonal decoupling, the multiplicity of nonminimum phase zeros may
need to be increased. This, in turn, is associated with performance penal-
ties such as increased undershoot and rise times.

Following Gómez and Goodwin (1995), we next study the cost of de-
coupling in the context of integral constraints. Note that, for a diagonally
decoupled system, the elements Sik, for i 6= k, are zero. It then follows
from Corollary 4.3.3 that, for each k in IΨ, the diagonal element Skk satis-
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fies the integral constraint

∫ �

− �
log |Skk(jω)|

σq

σ2q + (ωq −ω)2
dω ≥ 0 . (4.31)

Also, if the sensitivity function is diagonal, and the diagonal element Skk,
where k is in IΨ, is designed to satisfy |Skk(jω)| ≤ αkk forω ∈ [−ω1,ω1],
Corollary 4.3.4 gives

‖Skk‖ � ≥
(

1

αkk

)

Θq(ω1)

π−Θq(ω1)

. (4.32)

To investigate the cost of diagonal decoupling, we compare the constraint
(4.28) with (4.31), and the lower bound (4.30) with (4.32).

We first study the case where the dimension of the null space corre-
sponding to the zero at s = q is one. In this case we note that, if the zero
direction Ψ has more than one nonzero element, then it seems feasible to
achieve a negative value for the RHS of (4.28) by making off-diagonal ele-
ments in the sensitivity function nonzero. Comparing this with the result
in (4.31), where the RHS is zero, indicates that when Ψ has more than one
nonzero element, it is possible to exploit nondiagonal sensitivity entries
so as to ameliorate the constraints on the diagonal element. Thus, if Ψ has more
than one nonzero element, it is possible to have a joint spatial (i.e., non-
diagonal) and frequency trade-off in sensitivity allocation. Similar remarks
apply to the bounds on ‖Skk‖ � shown in (4.30) and (4.32). In the latter
case, nondiagonal decoupling allows αik, for i 6= k, to be greater than
zero and again, provided the vectorΨ has more than one nonzero element,
then the RHS of (4.30) can be made less than the RHS of (4.32). Moreover,
as already noted in §4.3.3, the LHS of (4.30) also contains positive terms
related to the norms of the off-diagonal elements, which do not appear in
(4.32). In this way, the cost induced by the ORHP zero is somehow shared
among various elements of the column.

Interestingly, having more than one nonzero entry in the zero direction
Ψ means that the particular nonminimum phase zero in question has its
effects associated with a linear combination of more than one output. Con-
versely, ifΨ is canonical, i.e., it has only one nonzero element, then the zero
affects only one output. In the latter case, one might expect that it is un-
helpful to make the sensitivity nondiagonal and this is precisely the point
made above.

The preceding arguments have focused on the case where the dimen-
sion of the null space is one. For cases where the dimension of the null
space is greater than one, then the issue arises as to whether or not there
exists a basis for the null space that is canonical, i.e., it uses only unit vec-
tors with only one nonzero entry. In cases where such a canonical basis



4.3 Poisson Integral Formulae 105

exists,9 it would seem, by extension of the arguments used above for the
one dimensional case, that there is no apparent benefit to be gained by
exploiting spatial sensitivity trade-offs.

As a final remark, note that the inequality (4.32) is the same as for the
scalar case (see §3.3.2 in Chapter 3), and can be used to describe the water-
bed effect for nonminimum phase systems: reducing the sensitivity in one
frequency range causes it to rise in other ranges. However, (4.30) shows
that, if decoupling is removed as a constraint, then spatial as well as fre-
quency trade-offs are possible. Thus, the water-bed effect on the diagonal ele-
ments of the sensitivity function may be ameliorated by allowing off-diagonal
elements to be nonzero. Nevertheless, this requires directional conditions
(noncanonical zero directions) so that the cost associated with the integral
constraints can be shared by different outputs.

4.3.5 The Impact of Near Pole-Zero Cancelations
Cancelations of ORHP zeros and poles between plant and controller of the
feedback loop of Figure 4.1 is highly undesirable because it leads to loss of
internal stability (cf. §2.2.1 in Chapter 2). In the multivariable case, these
cancelations involve not only frequency locations of zeros and poles, but
also their directions. For example, if the plant and controller are expressed
as in (4.2), then the closed loop will not be internally stable if D̃G and ÑK
share an ORHP zero with the same input direction (Gómez and Goodwin,
1995). It is easy to see that, if this is the case, then D̃G and ÑK are not
right coprime. Loss of internal stability also occurs if ÑG and D̃K are not
right coprime, if NG and DK are not left coprime, and if DG and NK are
not left coprime (Vidyasagar, 1985). All these four cases are multivariable
extensions of unstable pole-zero cancelations. Note that Assumption 4.1
precludes any of these cancelations by not allowing even frequency coin-
cidence of zeros and poles.

Approximate unstable cancelations are also problematic. Indeed, we
have seen in Chapter 3 that, for scalar systems, severe sensitivity peaks
arise if there exist open-loop zeros and poles at near frequencies. This can
be seen clearly from the values of the Poisson integral constraints (3.29)
and (3.30) in §3.3, where the Blaschke products on the RHSs tend to in-
finity as ORHP zeros approach ORHP poles. We will see next that similar
conclusions hold in the multivariable case regarding approximate unsta-
ble cancelations — keeping in mind that these cancelations involve both
frequency and directions. To analyze the effect of these unstable multivari-
able cancelations, we consider separately the case where the directions are

9One instance for the left null space of the plant to have a canonical basis is when the � -
interactor (Weller and Goodwin, 1993) associated with the zero � is diagonal (Gómez and
Goodwin, 1995).
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the same but the poles and zeros are close in frequency, and the case where
the locations of poles and zeros are the same but the directions are close.

Let q ∈ � + be a zero of G with output direction Ψ ∈ � n. It follows
from Theorem 4.3.1 that, under Assumption 4.3, the sensitivity function
satisfies the integral constraint (4.25). Consider first the case that the vector
Ψ is also an output direction of a zero q1 6= q ofDK, i.e., the controller has
a pole at s = q1 such that Ψ∗DK(q1) = 0. Inspection of the expression for
S in (4.3) clearly shows that s = q1 is a zero of the vector function Ψ∗S,
i.e., each of its elements ρk defined in (4.24) has a zero at s = q1. Thus, the
Blaschke product of zeros of ρk, Bk, can be expressed as

Bk(s) =

(

s− q1

s+ q1

)nk

B̃k(s) ,

where nk ≥ 1, and where B̃k(s) is the Blaschke product of the remain-
ing zeros of ρk. Using the above expression in (4.25), and the fact that
|B̃−1
k (s)| ≥ 1 at any point s in � +, we have that

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(jω)

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω ≥ nk log

∣

∣

∣

∣

q + q1
q − q1

∣

∣

∣

∣

,

(4.33)
for each k in IΨ, i.e., such that ψk 6= 0. We can conclude from (4.33) that,
similar to the scalar case, the lower bound on the RHS becomes arbitrarily
large when q1 approaches q. This, in turn, would lead to high peaks on
the magnitudes of the elements of S (and of T since S + T = I) on the
k-column. Similar arguments apply when an unstable pole of the plant
has the same direction as a nonminimum phase zero of the controller. In
this case, it is also possible to show that, as the location of the zero of the
controller becomes close to that of the pole of the plant, large peaks in T
will occur.

Another alternative for a near multivariable cancelation is when the
controller has an unstable pole at the same frequency, q say, at which the
plant has a nonminimum phase zero, but with a slightly different direc-
tion. Let Ψ ∈ � n be the output direction of the zero of the plant, and let
Ψ+ ε be the direction of the pole of the controller. Then, cases (ii) and (iii)
of Lemma 4.1.1 hold, i.e.,

Ψ∗S(q) = Ψ∗ , and Ψ∗T(q) = 0 ;

(Ψ∗ + ε∗)S(q) = 0 , and (Ψ∗ + ε∗)T(q) = Ψ∗ + ε∗ .

The above interpolation conditions lead to

ε∗S(q) = −Ψ∗ , and ε∗T(q) = Ψ∗ + ε∗ ,
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which, using any compatible matrix and vector norm, imply that

‖S(q)‖ ≥ |Ψ|/|ε| ,

‖T(q)‖ ≥ |Ψ+ ε|/|ε| .

Hence, if |ε| � |Ψ| then ‖S(q)‖ and ‖T(q)‖ must be large. Consider, for ex-
ample, the Euclidean norm for vectors and the infinity norm for matrices,
i.e., the maximum singular value of the matrix. Then the bounds above
show that σ(S(q)) and σ(T(q)) will become very large if |ε| approaches
zero. This, in turn, will harden the integral constraints on the whole fre-
quency responses of σ(S) and σ(T), as can be seen from the Poisson inte-
gral inequalities obtained by Chen (1995), e.g.,

1

π

∫ �

− �
log σ(S(jω))

σq

σ2q + (ωq −ω)2
dω ≥ logσ(S(q)) . (4.34)

Summarizing, the analysis in this section has shown that unstable mul-
tivariable near cancelations lead to poor sensitivity properties. On the one
hand, ORHP zeros and poles of the open-loop system having the same
directions and near frequencies cause the elements of the sensitivity func-
tions to exhibit large peaks, as demonstrated by (4.33). On the other hand,
ORHP zeros and poles of the open-loop system at the same frequency and
having directions close in norm produce peaks on the maximum singular
value of the sensitivity functions, as seen from (4.34) and the above discus-
sion. This suggests that multivariable approximate cancelations of ORHP
zeros and poles should be avoided if possible.

4.3.6 Examples
In this subsection, we give examples that illustrate the issues discussed
before for continuous-time multivariable systems.

Example 4.3.1. Consider the plant

G(s) =







1 − s

(s + 1)2
s+ 3

(s+ 1)(s + 2)
1 − s

(s+ 1)(s + 2)

s+ 4

(s + 2)2






, (4.35)

which has an ORHP zero at s = 1 with output direction equal to Ψ∗ =

[5,−6]. Since this direction is not canonical, we can argue from §4.3.4 that
there will be a cost in sensitivity associated with achieving diagonal de-
coupling. We will investigate this cost.

Direct application of Corollary 4.3.2 leads to the following inequalities
that must be satisfied by the entries of the sensitivity function, regardless
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of the design methodology used:

1

π

∫ �

− �
log
∣

∣

∣

∣

S11(jω) −
6

5
S21(jω)

∣

∣

∣

∣

1

1 +ω2
dω ≥ 0 , (4.36)

1

π

∫ �

− �
log
∣

∣

∣

∣

5

6
S12(jω) − S22(jω)

∣

∣

∣

∣

1

1 +ω2
dω ≥ 0 . (4.37)

Assuming further that the sensitivity elements are required to satisfy (4.29),
then Corollary 4.3.4 gives the following lower bounds on linear combina-
tions of element norms:

‖S11‖ � +
6

5
‖S21‖ � ≥

(

1

α11 + 6/5α21

)

Θq(ω1)

π−Θq(ω1)

, (4.38)

‖S22‖ � +
5

6
‖S12‖ � ≥

(

1

α22 + 5/6α12

)

Θq(ω1)

π−Θq(ω1)

. (4.39)

Next, we add the restriction of diagonal decoupling. Then, using (4.31)
and (4.32), we have, for k = 1, 2,

∫ �

− �
log |Skk(jω)|

1

1 +ω2
dω ≥ 0 , (4.40)

‖Skk‖ � ≥
(

1

αkk

)

Θq(ω1)

π−Θq(ω1)

. (4.41)

Comparing (4.36) and (4.37) with (4.40), for k = 1 and k = 2, respectively,
it is clear that the constraint on the diagonal elements is alleviated if the
off-diagonal entries are nonzero. More interesting, however, is to compare
the lower bounds on the peak sensitivity given by (4.38) and (4.39) with
(4.41) for k = 1 and k = 2, respectively. Consider, for example, (4.38) and
(4.41) for k = 1. These bounds are shown in Figure 4.2 as a function of the
reduction level α11, for ω1 = 0.3 and for different values of α21. Observe
that α21 = 0 in (4.38) (curve 1 in Figure 4.2) corresponds to the lower
bound in (4.41) for k = 1. Comparing curve 1 with the other curves in
Figure 4.2, we can see that relaxing the requirement of diagonal decou-
pling and allowing the level of sensitivity reduction in the off-diagonal
elements (S21 in this case) to be greater than zero, significantly reduces
the constraint on the combination of peak sensitivity values.

To further analyze the cost of decoupling, we next apply the particu-
lar design methodology proposed in Weller and Goodwin (1993). This
design technique allows one to achieve different degrees of decoupling
while keeping other design parameters essentially constant. Following
this method with the parameter an — which very roughly defines the
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FIGURE 4.2. RHS of (4.38) as a function of � � � , for � ��� � � � and for: 1- � � ��� �
;

2- � � ��� � � � �
; 3- � � ��� � � ��� ; 4- � � ��� � � �

.

bandwidth — equal to 1, the resultant closed-loop sensitivity is

S(s) =









s3 + s2(2 + λ) + s(1 + 3λ)

(s + 1)3
0

(λ − 1)(3s4 − 16s3 − 21s2)

3(s + 1)5
s3 + 3s2 + 4s

(s + 1)3









, (4.42)

where λ = 1 gives diagonal decoupling and λ < 1 gives partial and static
decoupling.10

Because of the structure of this particular design, which leads to S12 = 0,
the integral constraints that must be satisfied are, for λ < 1: (4.40) for
k = 1, 2, and for λ = 0: (4.36) and (4.40) for k = 2. Comparing (4.36) and
(4.40) for k = 1 indicates that there should be an increase in the sensitivity
peak of S11 if diagonalization is required. This is evident from Figure 4.3,
where |S11(jω)| is plotted for different values of λ in the range 0 ≤ λ ≤ 1.

Turning to the singular value approach, note that the integral constraint
(4.34) holds due to the presence of the ORHP open-loop zero q = 1, i.e.,

1

π

∫ �

− �
log σ(S(jω))

1

1 +ω2
dω ≥ log σ(S(1)) .

The above constraint, as it is stated, depends on the particular design
methodology. However, it is easy to show that σ(S(1)) ≥ 1 for any de-
sign,11 and hence the weighted integral of the logarithm of the maximum

10The closed loop of Figure 4.1 is said to be: statically decoupled if it is internally stable
and the complementary sensitivity function � is nonsingular and satisfies � � � � �
	 ; partially
decoupled if it is internally stable and the complementary sensitivity function is nonsingular
and lower triangular.

11This is because of norm properties and the fact that, if the open-loop system has an
ORHP zero � , then there exists a vector � such that � ∗ � � � � � � ∗, see Theorem 13.1.1 in
Chapter 13 for more details.
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FIGURE 4.3. Effect of decoupling on � � � ���
�	� for Example 4.3.1.

singular value of S is nonnegative. This implies, for example, that, for
any design, the frequency response of σ(S) will necessarily achieve val-
ues greater than one.

We next consider again the (partial) decoupling design of Weller and
Goodwin (1993), which led to the sensitivity function given in (4.42). Fig-
ure 4.4 shows the maximum (left) and minimum (right) singular values of
S for different values of λ in the range 0 ≤ λ ≤ 1.
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FIGURE 4.4. Maximum (left) and minimum (right) singular values of � in Exam-
ple 4.3.1, for different degrees of decoupling.

In particular, the plot on the left confirms our prediction that σ(S(jω))

would peak above one. An interesting observation is that total (diagonal)
decoupling (λ = 1) is the best situation for the maximum singular value,
in the sense that λ = 1 gives the smallest peak value for its frequency
response. This situation is desirable since, as seen in §2.2.4 of Chapter 2,
having σ(S(jω)) small is a requirement for robust performance against
e.g., unstructured divisive perturbations of the plant. On the other hand,
decreasing λ from 1 to 0, i.e., relaxing the degree of decoupling, increases
the peak value of the maximum singular value. Comparing these conclu-
sions with the previous ones about the hardening of the constraints on
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the element S11 as the degree of decoupling is increased, we can argue
that, for this particular design methodology, the greater the degree of de-
coupling achieved, the worse the disturbance rejection properties of the
diagonal elements become, while the performance is made more robust
against unstructured perturbations of the plant. ◦
Example 4.3.2. Consider the plant

G(s) =









(1 − s)(s+ 2)

(2s + 1)(s + 1)(s + 4)

(1 − s)(s+ 2)

(2s + 1)(s + 1)(s + 3)
−(s4 + 7s3 + 14s2 + 6s − 4)

(2s + 1)2(s + 1)(s + 3)(s + 4)

−(s + 2)(s3 + 4s2 + 3s + 4)

(2s + 1)2(s + 1)(s + 3)(s + 5)









,

(4.43)
which has an ORHP zero at s = 1 with output direction equal to Ψ∗ =

[1, 0]. This plant was considered in Weller and Goodwin (1993), where it
was shown that the corresponding interactor matrix is nondiagonal and
hence diagonal decoupling was achieved at the expense of introducing
additional nonminimum phase zeros and increasing the relative degree of
the closed-loop transfer functions.

From the point of view of sensitivity constraints, however, no increase
in the peak value of |S11(jω)| is expected due to diagonal decoupling since
the zero direction is canonical. Indeed, as discussed in §4.3.2, the element
S11 satisfies the integral constraint

∫ �

− �
log |S11(jω)|

1

1 +ω2
dω ≥ 0 ,

whether or not the system is decoupled. Thus, in terms of the sensitivity
bounds presented in this chapter, there is no apparent cost associated with
decoupling.

Using the methodology of Weller and Goodwin (1993), leads to the fol-
lowing sensitivity function:

S(s) =









4s4 + s3(14 − 2λ) + 14s2 + s(4 + 2λ)

(s+ 1)3
0

(1 − λ)s

(2s + 1)2
4s3 + 8s2 + 6s

(2s + 1)2(s + 1)









,

where, as before, λ = 1 gives diagonal decoupling and λ < 1 gives partial
and static decoupling. Figure 4.5 shows the plot of |S11(jω)| versus fre-
quency, for different values of λ in the range 0 ≤ λ ≤ 1. It can be observed
that the change in the peak of S11 for different values of λ is minimal and,
in any case, is accompanied by a change in bandwidth. Comparing the
results with those of Example 4.3.1 we conclude that here we essentially
have only a frequency trade-off in sensitivity, whereas in Example 4.3.1
we also had a spatial trade-off; yet both have a nonminimum phase zero
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FIGURE 4.5. Effect of decoupling on � � � ���
�	� for Example 4.3.2.

at the same location. The difference in these examples can be traced back
to the directions associated with the zero.

◦
Example 4.3.3. Here we study the importance of directions when evaluat-
ing the impact of near cancelation of ORHP zeros and poles. Consider the
plant G = D̃−1

G ÑG = NGD
−1
G , where

D̃G(s) =







s− 1

s+ 1
0

1
s+ 1

s+ 2






= DG(s) ,

ÑG(s) =







2

s+ 2
0

0
2

s+ 2






= NG(s) .

The matrix D̃G has a zero at s = 1 with input direction [2/3,−1]∗, which
corresponds to an unstable pole of the plant.

We will use the parametrization of all stabilizing controllers for the
given plant. This parametrization possesses a free parameter, which will
be used to study the effect of directions in near pole-zero cancelations. A
straightforward calculation shows that the matrices

X(s) = Y(s) =







s+ 2

s+ 1
0

−
(s + 2)2

(s + 1)(s + 3)

s+ 2

s+ 3






,

satisfy XD + YN = I. Following Vidyasagar (1985, Theorem 5.2.1), we
have that all controllers that stabilize the closed loop have the form K =

(X + RÑG)−1(Y − RD̃G), where R is a proper and stable transfer matrix
such that X+ RÑG is nonsingular and biproper. We next choose R to have
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the following special form

R(s) =







r1(s)

s + 1

r3(s)

s + 1
r2(s)

s + 1

r4(s)

s + 1






,

where the polynomials ri, i = 1, . . . , 4, have degree one and are such that
the matrix R satisfies the following interpolation constraints

R(0) =

[

−2 0
4

3
−
2

3

]

, and R(1) =







0
27ψ1

2(6ψ2 + 9ψ1)

0
9

8
−

81ψ1

4(6ψ2 + 9ψ1)






.

It is possible to verify that this choice of R has the following properties:

• The controller stabilizes the closed loop.

• The closed loop achieves static decoupling.

• The controller has a nonminimum phase zero at s = 1 with input
direction Ψ = [ψ1, ψ2]

∗.

Thus, we can freely specify the direction of the zero of the controller, which
is at the same frequency location as a pole of the plant.

First note that, as discussed in §4.3.5, internal stability will be lost if Ψ
is aligned with [2/3,−1]∗. To continue, we will use Ψ to show that the sen-
sitivity does not necessarily behave badly for coincident ORHP poles and
zeros unless their directions are also (nearly) collinear. To do this, we con-
sider several choices of Ψ, starting with Ψ = [−1.94, 3.04]∗ , which is almost
collinear with the direction of the pole, and then rotating Ψ clockwise up
to Ψ = [3, 2]∗, which is orthogonal to the plant pole direction.

Figure 4.6 shows the peak values of |Tij(jω)|, i, j = 1, 2 (in dB), as a func-
tion of the angle between zero and pole directions, which ranges from
−0.99 π (almost collinear) to -π/2 (orthogonal). It can be seen from this
figure that the peaks increase significantly when the direction of the con-
troller zero gets close to the corresponding direction of the unstable pole
of the plant. Note, however, that the peak values are not large when the
direction of the zero is not close to that of the pole. These results are in
accord with the conclusions drawn in §4.3.5 and emphasize the role of di-
rections in quantifying performance limits. ◦

4.4 Discrete Systems

In this section, we briefly address discrete-time systems. In particular, we
give the discrete-time counterpart of the Poisson sensitivity integral for
multivariable systems developed for continuous-time systems in §4.3.2.
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FIGURE 4.6. Peaks in complementary sensitivity versus angle between zero and
pole directions.

4.4.1 Poisson Integral for S
Consider the unity feedback configuration of Figure 4.7, where the open-
loop system, L, is an n×n, proper transfer matrix of the complex variable
z. As before, assume that L is formed by the cascade of plant, G, and con-
troller, K, i.e., L = GK. Let the plant and controller have coprime factoriza-
tions12 as in (4.2). Then, the sensitivity function in (3.43) can be expressed
as in (4.3).

b i b- - -
6

� ��� �
�

� � � �

FIGURE 4.7. Discrete-time feedback control system.

To preclude unstable pole-zero cancelations in the open-loop system,
we make the following assumption.

Assumption 4.4. The sets of frequency locations of zeros and poles of the
open-loop system L outside the unit disk are disjoint. ◦

Under Assumption 4.4, if q ∈ � c
is a zero of NG (i.e., a nonminimum

phase zero of G) with output direction Ψ ∈ � n, then S and T satisfy the
following interpolation constraint

Ψ∗S(q) = Ψ∗ , and Ψ∗T(q) = 0 . (4.44)

Other interpolation constraints hold at the plant’s unstable poles as well
as at zeros and poles of the controller in � c

(see Lemma 4.1.1).

12Over the ring of proper transfer matrices having poles inside the unit disk (i.e., stable).
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Assume that S is proper and stable, and consider the notation of §4.3.1.
In particular, ρk in (4.24) is now a proper, stable, scalar rational function
of z. Let Bk be the Blaschke product of the zeros of ρk in � c

, defined as

Bk(z) =

nk∏

i=1

zi

|zi|

z − zi

1 − ziz
.

Then, ρk can be factored as

ρk(z) = Bk(z) ρ̃k(z) z
−δk , (4.45)

where δk is the relative degree of ρk, and ρ̃k is stable, minimum phase,
and has relative degree zero. Note that, for the common situation of a
strictly proper plant, the diagonal elements of S are biproper, and hence
δk in (4.45) is zero in this case.

We then have the following result.

Theorem 4.4.1 (Poisson Integral for S). Let q = rqe
jθq , rq > 1, be a zero

of the plant G, and let Ψ ∈ � n, Ψ 6= 0, be its output direction. Assume that
the sensitivity function, S, is proper and stable. Then, for each index k in
IΨ,

1

2π

∫π

−π

log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(e
jθ)

∣

∣

∣

∣

∣

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ = log |B−1

k (q)|+

δk log |q| ,

(4.46)

where Bk and δk are as in (4.45).

Proof. Note that log |ρ̃k|, with ρ̃k defined in (4.45), satisfies the assump-
tions of Corollary A.6.4 in Appendix A. The result then follows by using
this corollary on log |ρ̃k| as in the proof of Theorem 3.4.2 in Chapter 3, and
then using the interpolation constraint (4.44) in a similar fashion to the
proof of Theorem 4.3.1. �

The following corollary establishes a constraint that is independent of
the controller.

Corollary 4.4.2. Under the conditions of Theorem 4.4.1, the sensitivity
function S satisfies, for each index k in IΨ,

1

2π

∫π

−π

log

∣

∣

∣

∣

∣

n∑

i=1

ψ∗
i

ψ∗
k

Sik(e
jθ)

∣

∣

∣

∣

∣

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ ≥ 0 . (4.47)

Proof. The proof follows from (4.46), on noting that |B−1
k (q)| ≥ 1 and

δk log |q| ≥ 0. �

The above results will be used in the following chapter to study limita-
tions for periodic systems.
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4.5 Summary

This chapter has discussed two different approaches to the investigation
of sensitivity limitations in multivariable linear control. One of these ap-
proaches uses integral constraints on sensitivity vectors, whilst the other
approach considers integral constraints on the logarithm of the singular
values of the sensitivity functions. Each of these approaches to the prob-
lem emphasizes different aspects of multivariable feedback design, and, in
combination, they provide a general view of multivariable design limita-
tions imposed by open-loop ORHP zeros and poles. On the one hand, the
analysis by means of integral constraints on sensitivity vectors has proven
particularly useful to give insights into multivariable issues especially re-
lating to the cost of decoupling, spatial and frequency domain trade-offs in
sensitivity reduction, and the effect of directionality on the impact of near
unstable pole-zero cancelations on performance. On the other hand, the
integral relations on the logarithm of the singular values of the sensitivity
function suggest a link between the directionality properties — in terms
of singular vectors, see Chapter 2 — and sensitivity reduction. Indeed, all
these integral relations exhibit a term involving the Laplacian of the loga-
rithm of sensitivity, which, in turn, using a technique due to Freudenberg
and Looze (1987, p. 184), can be expressed in a way that highlights the
directionality properties of the sensitivity function. The understanding of
the role of these Laplacians and their implications toward feedback design
probably merits further investigation.

Notes and References

Bode Integral Formulae
§4.1 and §4.2 are largely based on Chen (1995). This work also obtained Poisson
integral constraints on the singular values of the sensitivity function.

Poisson Integral Formulae
§4.3 is based on Gómez and Goodwin (1995). This latter work also presented de-
sign limitations for distributed systems, which allows one to consider transfer ma-
trices with different time delays affecting each entry. The extension to this class of
systems required additional technical results regarding zeros and the behavior at
infinity of entire functions. The examples in §4.3.6 were also taken from Gómez
and Goodwin (1995).

Other results on design limitations for multivariable systems were given by
Boyd and Desoer (1985). This work obtained inequality versions of the Bode and
Poisson integral formulae based on the recognition that the logarithm of the largest
singular value of an analytic transfer function is a subharmonic function.
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Related work has been reported by Freudenberg and Looze who convert the
multivariable problem into a scalar one by pre and post multiplying the sensitivity
function by vectors (Freudenberg and Looze, 1985) or by the use of determinants
(Freudenberg and Looze, 1987). Similar ideas appear in the work of Sule and
Athani (1991), who use directions associated with poles and zeros of the system,
resulting in a directional study of trade-offs.

§4.4 follows Gómez and Goodwin (1995). Alternative approaches to the prob-
lem of integral constraints for MIMO discrete systems can be found in Chen and
Nett (1995), and Hara and Sung (1989).





5

Extensions to Periodic Systems

Periodic dynamical systems frequently arise in applications. Examples
include batch processes that are taken through a periodic operating cy-
cle, and systems where periodic or multirate sampling strategies are em-
ployed (Feuer and Goodwin, 1996). A periodic system is time-varying in
nature; however, by using time or frequency domain raising techniques,
it is possible to reduce the analysis to that of a special LTI multivariable
system.

Here we focus on discrete-time linear periodic feedback systems. For
these systems, the integral constraints for MIMO discrete-time systems of
§4.4 in Chapter 4, can be used to quantify sensitivity limitations. However,
the implications of the latter results in the present context are different and
reflect the intrinsic structure of periodic systems.

5.1 Periodic Discrete-Time Systems

Consider a state space description for an n-input n-output discrete-time
periodic system given by

xk+1 = Akxk + Bkuk ,

yk = Ckxk +Dkuk ,
(5.1)

where {Ak}, {Bk}, {Ck} and {Dk} are periodic sequences of period N. With
each of these periodic sequences, {Ak} for example, we associate its Fourier
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series expansion,1 given by

Ān =

N−1∑

k=0

Ake
−jθNkn , n = 0, 1, . . . , N − 1 , (5.2)

where θN = 2π/N. For future use, we arrange the Fourier coefficients Ān
in (5.2) to form the following matrix

Ā ,
1

N











Ā0 Ā1 . . . ĀN−1

ĀN−1 Ā0 . . . ĀN−2

...
...

. . .
...

Ā1 Ā2 . . . Ā0











. (5.3)

5.1.1 Modulation Representation
We will study the system (5.1) in the frequency domain. To do this, we
make use of the double-sided Z-transform2, which, for a sequence {xk}, is
defined by

X(z) =

�∑

k=− �

xk z
−k . (5.4)

LetU(z) and Y(z) be the Z-transforms of the input and output sequences
in (5.1), {uk} and {yk}, respectively. We introduce the modulation representa-
tion of U and Y, denoted by Ū and Ȳ, and given by

Ū(z) =











U(z)

U(z e−jθN)
...

U(z e−j(N−1)θN )











, Ȳ(z) =











Y(z)

Y(z e−jθN)
...

Y(z e−j(N−1)θN)











. (5.5)

I.e., the modulation representation of a signal is obtained by “stacking”
into a vector the signal and its N − 1 versions modulated by the roots of
unity of order N (except the root equal to 1). The modulation representa-
tion is sometimes called frequency domain raising of a signal, as opposed to
the more common time domain raising.

Let Ā, B̄, C̄, D̄, defined as in (5.3), be the matrices of Fourier series co-
efficients of the sequences {Ak}, {Bk}, {Ck} and {Dk} in (5.1). Applying the
Z-transform to (5.1), and using the matrices Ā, B̄, C̄, D̄, it is easy to show
that Ū and Ȳ defined in (5.5) are related by

Ȳ(z) = H̄(z)Ū(z) , (5.6)

1Note that the Fourier series expansion of a periodic sequence is another periodic se-
quence.

2Throughout the rest of this chapter, the double-sided � -transform will be called just the
� -transform.
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where
H̄(z) = C̄W̄−1(zI − ĀW̄−1)−1B̄ + D̄ , (5.7)

and where

W̄ ,











I 0 . . . 0

0 e−jθNI 0 . . .
...

...
. . .

...
0 . . . . . . e−j(N−1)θN











. (5.8)

We will refer to the matrix H̄ in (5.7) as the modulated transfer matrix of
system (5.1). Note that the use of this matrix allows one to treat a periodic
system as a particular MIMO LTI system.

An alternative to the frequency domain input-output representation given
in (5.6) is found by using a time domain raising technique. This latter tech-
nique takes the system (5.1) into an equivalent time-invariant system by
stacking a set of N samples of the appropriate signal into a vector. This is
a form of series to parallel conversion. The resultant vector can be (single-
sided) Z-transformed in the usual way to obtain an input-output transfer
matrix, HR say. It is shown in e.g., Feuer and Goodwin (1996) that H̄ in
(5.7) is related to this “time domain raised” transfer matrix HR by a linear
transformation of the form

H̄(z) = W−1
s Λ−1(z)HR(zN)Λ(z)Ws , (5.9)

where Λ and Ws are given by

Λ(z) =













I 0 . . . 0

0 zI 0
...

...
...

. . .
...

0 . . . . . . zN−1I













,

Ws =











I I . . . . . . I

I W W2 . . . WN−1

...
...

...
. . .

...
I WN−1 W2(N−1) . . . W(N−1)2











,

with W = e−jθN I and θN = 2π/N.
In view of (5.9) we may conclude that both H̄ and HR are equally valid

representations of periodic systems and, hence, contain all the relevant
frequency domain information. Yet, the time domain raised transfer func-
tion has a major disadvantage from a frequency domain point of view,
because it describes the output sequence at eachN samples, rather than at
each sample. However, we are usually interested in the response at each
sample, which requires us to (somehow) combine the information coded
in the successive rows of the time domain raised signals. This is precisely
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the interleaving operation captured in (5.9). Note that HR will, in general,
be difficult to interpret whereas the response of the modulated transfer
matrix H̄ in (5.7) can be directly interpreted as the normal frequency re-
sponse at unity sampling period.3

Our analysis in the following sections will depend on the “poles” and
“zeros” of functions that are modulated transfer matrices such as H̄ in
(5.7). Note that these are not standard transfer functions due to the fre-
quency shifting. Not withstanding this, we define poles, zeros and their
associated directions in the usual way as would be done if H̄were a trans-
fer function. For example, we say that p is a nonminimum phase zero of
H̄ if |p| > 1 (i.e., p ∈ � c

) and rankH̄(p) < rankH̄(z) for almost all z.
We end this introductory section with a property of modulated transfer

matrices that will be useful in subsequent analysis.

Proposition 5.1.1. The modulated transfer matrix H̄ in (5.7) has the fol-
lowing property

QH̄(z e−jθN) = H̄(z)Q ,

whereQ is given by

Q =

















0 . . . . . . . . . I

I 0 . . . . . . 0

0 I
. . . . . .

...
...

. . . . . . . . .
...

0 . . . . . . I 0

















.

Proof. From (5.9), the matrix H̄(z e−jθN) can be expressed as

H̄(z e−jθN) = W−1
s Λ−1(z e−jθN)HR(zN e−jNθN)Λ(z e−jθN )Ws .

ButNθN = 2π and thusHR(zN e−jNθN ) = HR(z). It is also straightforward
to verify that Λ(z e−jθN )Ws = Λ(z)WsQ. The result then follows. �

Note that Proposition 5.1.1 shows that the matrix QH̄(z e−jθN ) is ob-
tained by shifting the columns of H̄(z) to the left.

5.2 Sensitivity Functions

Consider the feedback configuration of Figure 5.1, where the plant and the
controller are n-input n-output discrete-timeN-periodic systems.

3To further illustrate this claim, say that the
�

-periodic system happens to be time-
invariant. In this case ¯� in (5.7) turns out to be a diagonal matrix formed from the usual
frequency response of the time-invariant system, whereas the time domain raised transfer
function will be related to the usual frequency response in a very indirect fashion (see Good-
win and Gómez (1995) for more details).
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FIGURE 5.1. Feedback control system.

We represent the plant and controller by their corresponding modulated
transfer matrices, Ḡ and K̄, respectively. The signals {rk}, {ek} and {yk} are
sequences representing the reference input, error, and output, respectively,
which have modulated representation R̄, Ē, and Ȳ.

We write Ḡ and K̄ using coprime factorizations, over the ring of proper
and stable transfer functions, as4

Ḡ = D̃−1
G ÑG = NGD

−1
G ,

K̄ = D̃−1
K ÑK = NKD

−1
K .

(5.10)

By an argument similar to the one used to establish (5.9), it can be shown
that NG, for example, is related to a coprime factor NRG corresponding to
the time domain raised transfer function GR by

NG(z) = W−1
s Λ−1(z)NRG(zN)Λ(z)Ws , (5.11)

and similar relations hold for the remaining factors of the coprime factor-
izations of Ḡ and K̄ in (5.10).

We next consider the mappings, in the modulated signal space, between
R̄ and Ē, and between R̄ and Ȳ. We will refer to these matrices as the modu-
lated sensitivity, S̄, and the modulated complementary sensitivity, T̄ . In terms
of the coprime factors in (5.10), S̄ and T̄ are given by

S̄ = DK(D̃GDK + ÑGNK)−1D̃G ,

T̄ = NG(ÑKNG + D̃KDG)−1ÑK .
(5.12)

Note that these are the same expressions used in Chapter 4, but now S̄ and
T̄ are Nn × Nn transfer matrices that map modulated representations of
signals.

In the sequel, we make the following assumption.

Assumption 5.1. The sets of frequency locations of zeros and poles of the
open-loop system ḠK̄ outside the unit disk are disjoint. ◦

Under Assumption 5.1, if q ∈ � c
is a zero of NG (i.e., a nonminimum

phase zero of Ḡ) with output direction Ψ ∈ � Nn, then S̄ and T̄ satisfy the

4To simplify notation, we eliminate the use of “bars” on the coprime factors of modulated
transfer matrices.
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following interpolation constraint

Ψ∗S̄(q) = Ψ∗ , and Ψ∗T̄(q) = 0 . (5.13)

Other interpolation constraints hold at plant unstable poles as well as at
zeros and poles of the controller in � c

(see Lemma 4.1.1 in Chapter 4).
It is interesting at this stage to reflect on the nature of the zeros of

NG. From (5.11), we have thatNG(q) = W−1
s Λ−1(q)NRG(qN)Λ(q)Ws and,

therefore, the nonminimum phase zeros of NG are the Nth-roots of the
nonminimum phase zeros of NRG. Thus, if qN = rNq e

jNθq is a nonmini-
mum phase zero of NRG, then the set

Z , {rqe
jθq , rqe

j(θq−θN), . . . , rqe
j[θq−(N−1)θN]} , (5.14)

is a set of nonminimum phase zeros of NG. We will see in the following
section, however, that every element in Z gives the same information in
terms of integral constraints on the modulated sensitivity function.

5.3 Integral Constraints

We will use the ideas of §4.4 in Chapter 4, applied here to the modulated
sensitivity function. For convenience, we first recall some notation. Con-
sider the modulated sensitivity function, S̄, in (5.12). We denote by S̄ik, the
element in the i-row and k-column of S̄. If Ψ is a vector in � Nn, we denote
its elements by ψi, i = 1, . . . , Nn, i.e., Ψ = [ψ∗

1, ψ
∗
2, . . . , ψ

∗
Nn]∗. Also, we

use the index set IΨ , {i ∈ � : ψi 6= 0} as the set of indices of the nonzero
elements of Ψ.

Given a set Zk = {zi, i = 1, . . . , nk} of complex numbers in � c
, we define

its Blaschke product as the function

Bk(z) =

nk∏

i=1

zi

|zi|

z − zi

1 − ziz
. (5.15)

If Zk is empty, we define Bk(z) = 1, ∀z.
Next, let Ψ ∈ � Nn, Ψ 6= 0, be the output direction of a nonminimum

phase zero of the plant Ḡ, which thus satisfies (5.13). Assume that S̄ is
proper and stable, and consider the vector function Ψ∗S̄ : � → � Nn,
whose Nn elements are proper, stable, scalar rational functions. Pick one
of these elements, say

ρk(z) ,

Nn∑

i=1

ψ∗
i S̄ik(z) , (5.16)

where k is in IΨ, and let Bk be the Blaschke product of the zeros of ρk in
� c

, defined as in (5.15). Then, ρk can be factored as

ρk(z) = Bk(z) ρ̃k(z) z
−δk , (5.17)
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where δk is the relative degree of ρk, and ρ̃k is stable, minimum phase,
and has relative degree zero.

We then have the following result.

Theorem 5.3.1 (Poisson Integral for S̄). Let q = rqe
jθq , rq > 1, be a zero

of the plant Ḡ, and let Ψ ∈ � Nn, Ψ 6= 0, be its output direction. Assume
that the modulated sensitivity function, S̄, is proper and stable. Then, for
each index k in IΨ,

1

2π

∫π

−π

log

∣

∣

∣

∣

∣

Nn∑

i=1

ψ∗
i

ψ∗
k

S̄ik(e
jθ)

∣

∣

∣

∣

∣

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ = log |B−1

k (q)|+

δk log |q| ,

(5.18)

where Bk and δk are as in (5.17).

Proof. Follows by direct application of Theorem 4.4.1 in Chapter 4. �

Note that the above result makes use of Bk and δk, which are in general
not known unless a design has already been carried out. Regarding the rel-
ative degree δk, it can be said that it is zero for strictly proper plants, but
in the general case, all that can be said based on knowledge of the plant
is that it will be nonnegative. Since we are interested in fundamental con-
straints that apply regardless of the controller used, we give the following
corollary that establishes a constraint that is independent of the controller.

Corollary 5.3.2. Under the conditions of Theorem 4.4.1, the sensitivity
function S̄ satisfies, for each index k in IΨ,

1

2π

∫π

−π

log

∣

∣

∣

∣

∣

Nn∑

i=1

ψ∗
i

ψ∗
k

S̄ik(e
jθ)

∣

∣

∣

∣

∣

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ ≥ 0 . (5.19)

Proof. The proof follows from (5.18), on noting that |B−1
k (q)| ≥ 1 and

δk log |q| ≥ 0. �

As discussed at the end of §5.2, each nonminimum phase zero rqejθq

of NG defines the set Z in (5.14) of nonminimum phase zeros of NG. In
principle, we should use all of them to compute the integral constraints
associated with the system. However, we will show next that every ele-
ment in Z gives the same set of constraints.

Suppose that the zero q = rqe
jθq , with output direction Ψ, is used to

compute the integral constraints. Then there is an integral of the form
(5.18) corresponding to each ρk in (5.16), such that k in IΨ. Let

q̃ = rqe
j(θq−θN)
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be used to compute another set of constraints. Because of Proposition 5.1.1,

QNG(q̃) = NG(q)Q ,

and we see that
Ψ̃ = (Ψ∗Q)∗ (5.20)

is an output direction associated with q̃.
Proposition 5.1.1 also shows that QS̄(ejθ) = S̄(ej(θ+θN))Q, and thus,

using (5.20),

Ψ̃∗S̄(ejθ) = Ψ∗QS̄(ejθ)

= Ψ∗S̄(ej(θ+θN))Q .
(5.21)

Consider any element ρk̃, k̃ in IΨ̃, of Ψ̃∗S̄, i.e., ρk̃(z) ,
∑Nn
i=1 ψ̃

∗
i S̄ik̃(z). It

then follows using (5.21) that

ρk̃(e
jθ) = ρk(e

j(θ+θN)) ,

where k = k̃− n if n < k̃ ≤ Nn, and k = (N− 1)n + k̃ if 1 ≤ k̃ ≤ n.
It is now a matter of a simple computation to show that the integral

constraint of the form (5.18) corresponding to ρk̃ and the zero q̃ is the same
as that corresponding to ρk and the zero q. Furthermore, the relationship
between k and k̃ is clearly bijective and, hence, every one of the integrals
obtained from the zero q̃ can be obtained from the zero q. The converse
is also true. The same also happens between the integrals associated with
the zeros rqej(θq−θN) and rqej(θq−2θN), and so on. In conclusion, only one
of the zeros is needed to compute the integral constraints.

An alternative to compute the integral constraints on S̄ for only one of
the zeros in the set Z is to compute the integral constraints on the first
n columns of S̄ but for all the zeros in Z. This also follows from Propo-
sition 5.1.1. The importance of this fact is that, unlike time-invariant sys-
tems, fundamental limitations of periodic feedback control systems ex-
pressed in terms of integral constraints involve different terms, each one
of them associated with how one single frequency of the output is affected
by multiple frequencies of the input, or how multiple frequencies of the
output are affected by a single frequency of the input.

Finally, we point out that similar results can be obtained for the modu-
lated complementary sensitivity function.

5.4 Design Interpretations

In this section we use the integral constraints developed above to explore
two aspects of the performance of linear periodic feedback systems. In
particular, we apply the integrals to the problem of control of periodic
systems where it is required to have a time-invariant map for the closed
loop, and to the problem of periodic control of a LTI system.
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5.4.1 Time-Invariant Map as a Design Objective
We have remarked earlier (see the footnote on page 122) that a time-in-
variant system has a diagonal modulated transfer matrix. Hence, there is
a clear connection between having a time-invariant system as a design
objective and achieving diagonal decoupling for a MIMO time-invariant
system. The latter problem was studied in §4.3.4 of Chapter 4, where it
was shown that there is usually a sensitivity cost associated with diago-
nal decoupling. We will see next that the same is true for the problem of
having a time-invariant closed loop for periodic systems.

Consider the periodic feedback system of Figure 5.1, which, for simplic-
ity, is assumed to be a SISO system. Assume that, inter-alia, the control
objective is to achieve a time-invariant map from the reference to the out-
put. This implies that, in the frequency domain raised system, T̄(ejθ) and
S̄(ejθ) are required to be block diagonal. We then have the following re-
sult.

Theorem 5.4.1. Let q = rqe
jθq , rq > 1, be a zero of the plant Ḡ, and letΨ ∈

� Nn,Ψ 6= 0, be its output direction. Assume that the modulated sensitivity
function, S̄, is proper and stable, and such that S̄(ejθ) is diagonal. Then, for
each index k in IΨ,

1

2π

∫π

−π

log |S̄kk(e
jθ)|

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ ≥ 0 , (5.22)

or equivalently

1

2π

∫π

−π

log |S̄11(e
jθ)|

r2q − 1

1 − 2rq cos(θ − θq + (k − 1)θN) + r2q
dθ ≥ 0 ,

(5.23)
for each index k in IΨ.

Proof. The constraint (5.22) is immediate from (5.19), on noting that, if
S̄(ejθ) is diagonal, then S̄ik(ejθ) = 0 for i 6= k.

For the constraint (5.23), note that S̄kk(ejθ) = S̄11(e
j(θ−(k−1)θN)), which

follows from Proposition 5.1.1. We then obtain, using (5.22), that

1

2π

∫π

−π

log |S̄11(e
j(θ−(k−1)θN))|

r2q − 1

1 − 2rq cos(θ − θq) + r2q
dθ ≥ 0 .

Making the change of variablesφ = θ−(k−1)θN, and invoking periodicity
of the integrand, we finally arrive at the constraint (5.23). �

Note that S̄11(ejθ) is the frequency response of the error to the refer-
ence signal, i.e., E(ejθ) = S̄11(e

jθ)R(ejθ), and there are no terms involving
shifted functions of R(ejθ) because it is assumed that the closed loop has
a time-invariant input-output map.
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The inequality (5.23) implies that S̄11 satisfies as many integral con-
straints as there are nonzero elements of the zero direction Ψ (i.e., for each
k in IΨ). Moreover, in each of this integrals, the weighting function

Wq(θ + (k − 1)θN) ,
r2q − 1

1 − 2rq cos(θ− θq + (k− 1)θN) + r2q
(5.24)

is shifted in angle for different values of k, and thus, their corresponding
maximum values are located at different angles.

The impact of this constraint is more evident if we assume also that
|S̄11(e

jθ)| is intended to be reduced in some set Θ1 ⊂ (−π, π), i.e.,

|S̄11(e
jθ)| ≤ α < 1 , ∀θ ∈ Θ1 , [−θ1, θ1] , θ1 < π . (5.25)

Let the weighted length of the interval Θ1 be defined, for each k in IΨ, as
(cf. (3.50) in Chapter 3)

Θkq(θ1) ,

∫θ1

−θ1

Wq(θ + (k − 1)θN)dθ .

Then, from (5.23), we obtain

[2π −Θkq(θ1)] log ‖S̄11‖ � +Θkq(θ1) logα ≥ 0 , ∀k ∈ IΨ ,

which is equivalent to

‖S̄11‖ � ≥
(

1

α

)

Θk
q(θ1)

2π−Θk
q(θ1)

, ∀k ∈ IΨ . (5.26)

Note that the value of Θkq(θ1) (for some k ∈ IΨ) will, in general, be large
if the frequency range Θ1 where sensitivity reduction is required includes
the maximum value of the corresponding weighting functionWq in (5.24).
Therefore, in view of (5.26), peaks in |S̄11(e

jθ)| are more likely to be large
when sensitivity reduction is required over ranges that include the maxi-
mum value of some of the different weighting functions.

We then note that this situation is, in general, worse for periodic systems
than it is for time-invariant systems. Indeed, in the latter case, we need
consider only one weighting function for each nonminimum phase zero
rather than as many as there are nonzero elements in the zero direction.
We also note that the situation becomes potentially worse as the number
of elements in IΨ increases or as the dimension of the null space associated
with the zero grows (see §4.3.4 in Chapter 4).

We conclude from the previous analysis that, for periodic systems, the
problem of sensitivity reduction with the additional requirement that the
closed-loop map from reference to output be time-invariant is very likely
to result, in general, in large peaks for |S̄(ejθ)|.
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As an illustration of the above results we study a simple situation where
it will turn out that there is no extra sensitivity cost associated with having
a time-invariant closed-loop map.

Example 5.4.1. Consider a SISO plant described by

xk+1 = Axk + Bkuk ,

yk = Cxk +Dkuk ,
(5.27)

where A and C are constant matrices, and {Bk} and {Dk} are N-periodic
sequences. Assume further that the very special condition holds that there
exists a periodic scalar gain Kk 6= 0, ∀k, such that

BkKk = B , and DkKk = D ,

where B and D are constant. It is then clear that one can achieve time-
invariance by simply redefining the input. We will use our previous anal-
ysis to show that, in this particular case, there is no penalty in achieving
time-invariance for the closed-loop system.

Let Ḡ be as in (5.7), i.e., Ḡ is the modulated transfer matrix associated
with the plant (5.27). Similarly, let K̄ be the modulated transfer matrix as-
sociated with the periodic gain Kk. Using the relationship (5.9) between
time and frequency domain raising, it is easy to see that K̄ is given by5

K̄ = W−1
s













K0 0 . . . 0

0 K1 . . .
...

...
. . . . . .

...
0 . . . . . . KN−1













Ws ,

and we see that K̄ is nonsingular since Kk 6= 0 for all k.
LetNGD−1

G be a right coprime factorization of Ḡ. We will show that the
output zero directions ofNG are canonical, i.e., for each zero q ofNG, there
is a basis for the left null space of NG(q) constructed of vectors having
only one nonzero element.

We first note that there are no unstable pole-zero cancelations in ḠK̄,
and, clearly NG(K̄−1DG)−1 is a right coprime factor of ḠK̄. Moreover,
since Kk was chosen so that BkKk and DkKk are constant, it is clear that
ḠK̄ is diagonal. Because of this, it is possible to build a right coprime frac-
tion N̄D̄−1 = ḠK̄ where N̄ and D̄ are diagonal. We then conclude that6

NG = N̄R , (5.28)

5The time domain raised transfer matrix corresponding to the scalar gain � � is a diago-
nal matrix having the elements � ��� � ����������� �	� �

� in its diagonal (see Feuer and Goodwin
(1996)).

6This is because any two coprime factorizations are related by units of the ring of proper
and stable transfer matrices, i.e., biproper and bistable matrices (Vidyasagar, 1985, Theo-
rem 4.1.43, p.75).
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where R is biproper and bistable.
Since N̄ is diagonal, it is straightforward to build a canonical basis for

the left null space of N̄(q) and, because of (5.28), this basis will also be a
canonical basis for the left null space of NG(q).

Let Ψ be a vector in the left null space of NG(q); it follows that Ψ is
canonical, i.e., IΨ has only one nonzero element. Hence, there is only one
weighting function of the form (5.24), which implies that there is only one
integral constraint (5.23) associated with the zero with direction Ψ. This
situation is no worse than that corresponding to a time-invariant system.

◦

5.4.2 Periodic Control of Time-invariant Plant
A question that has been the subject of an ongoing discussion is whether
or not it is advantageous to use linear time-varying controllers (e.g., pe-
riodic controllers) for time-invariant plants. From some points of view,
periodic control of time-invariant plants seems to yield improved perfor-
mance over time-invariant control, whilst from other points of view there
appear to be inherent disadvantages.7 We give here a particular view of
this problem based on the integral constraints derived in §5.3.

LetG be the (usual) transfer function of the time-invariant plant, and let
Ḡ be the modulated transfer matrix corresponding toG, based on a period
of N, i.e., assuming that an N-periodic controller will be used. Because of
the time-invariant characteristic of the plant, Ḡ will have the following
structure

Ḡ(z) =













G(z) 0 . . . 0

0 G(ze−jθN) . . .
...

...
. . . . . .

...
0 . . . . . . G(ze−j(N−1)θN)













.

Then, if d̃−1
g ñg and ngd−1

g are left and right coprime factorizations8 of
the plant G, respectively, we can construct coprime factorizations of Ḡ =

D̃−1
G ÑG = NGD

−1
G , where the different factors contain shifted versions of

d̃g, ñg, ng, and dg. For example,NG and D̃G can be constructed as

NG(z) =













ng(z) 0 . . . 0

0 ng(ze
−jθN) . . .

...
...

. . . . . .
...

0 . . . . . . ng(ze
−j(N−1)θN)













, (5.29)

7See section on notes and references at the end of the chapter.
8We use here lower case letters to avoid confusion with the factorizations of the modu-

lated matrices.
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and

D̃G(z) =













d̃g(z) 0 . . . 0

0 d̃g(ze
−jθN ) . . .

...
...

. . . . . .
...

0 . . . . . . d̃g(ze
−j(N−1)θN )













. (5.30)

Let q = rqe
jθq be a nonminimum phase zero of ng, with output di-

rection Ψ ∈ � Nn. Then every element in Z defined in the set (5.14) is a
nonminimum phase zero of NG in (5.29). However, we know from §5.3
that only one of the zeros in this set is needed to obtain the associated in-
tegral constraints, because the rest lead to the same integrals. We will use
the zero q and its corresponding direction Ψ. We observe that, a particular
feature of the modulated representation of the plant is that the direction,
Ψ̄ say, of q as a zero of NG in (5.29) has the form

Ψ̄∗ = [Ψ∗, 0, . . . , 0] . (5.31)

We next study the structure of the modulated sensitivity function. First
note that, under the assumption of internal stability of the closed loop,
the modulated form of the controller has a left coprime factorization (lcf)
satisfying D̃GDK + ÑGNK = I (Vidyasagar, 1985). Hence, from (5.12), the
modulated sensitivity is simply S̄ = DKD̃G. Thus, splittingDK into blocks
of appropriate dimensions, and using the expression for D̃G in (5.30), we
obtain that S̄(z) =















D
(11)

K (z)d̃g(z) D
(12)

K (z)d̃g(ze
−jθN) . . . D

(1N)

K (z)d̃g(ze
−j(N−1)θN)

D
(21)

K (z)d̃g(z) D
(22)

K (z)d̃g(ze
−jθN) . . .

...
...

. . . . . .
...

D
(N1)

K (z)d̃g(z) . . . . . . D
(NN)

K (z)d̃g(ze
−j(N−1)θN)















.

According to Theorem 5.3.1, we have only to consider those columns of S̄
corresponding to nonzero entries of Ψ̄. Then it is clear from the structure
of Ψ̄ given in (5.31) that the problem is equivalent to the multivariable
integral constraints for S̄11 = D

(11)

K d̃g. This, in turn, generates the same
integral constraints as if one uses a time-invariant controller having D(11)

K

as the denominator of a lcf. Thus, the use of periodic control is no less
constrained than the use of time-invariant control.

In conclusion, we see that periodic controllers offer no apparent advan-
tage over time-invariant ones from the point of view of fundamental in-
tegral constraints that must be satisfied by the sensitivity function. We
remark that similar conclusions hold, mutatis-mutandis, for the comple-
mentary sensitivity function.
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5.5 Summary

This chapter has studied Poisson integral constraints for discrete periodic
feedback systems. The integrals have been developed on a modulated rep-
resentation of the sensitivity function. This modulated representation as-
sociates a transfer function with periodic systems, which can then be dealt
with as one would a MIMO time-invariant system. One has to pay partic-
ular attention, however, to the structure of these modulated matrices and
the nature of its zeros and poles.

Using the resultant integral constraints, it is possible to analyze design
limitations inherent to linear, periodically time-varying systems. In partic-
ular, we have shown that there is generally an additional cost associated
with having a time-invariant target closed loop for a periodic open-loop
plant. It was also shown that nonminimum phase zeros and/or unstable
poles of a discrete LTI plant continue to impose design limitations even if
a periodic time-varying controller is used.

Notes and References

This chapter is mainly based on Goodwin and Gómez (1995).

Frequency Domain Raising
The origins of this tool can be related to early work of Zadeh (1950), who gave a
frequency domain description of general time-varying systems. The modulation
representation has been extensively used in the signal processing literature, see
e.g., Shenoy et al. (1994), Vetterli (1987) and Vetterli (1989).

The modulated transfer matrix, when evaluated along the unit circle, is some-
times referred to as the alias component matrix (Smith and Barnwell, 1987; Ramstad,
1984; Vetterli, 1989).

Time Domain Raising
For a description of time domain raising and its utility see e.g., Khargonekar et al.
(1985), Meyer (1990), Ravi et al. (1990) and Feuer and Goodwin (1996). This latter
reference establishes the relation between time and frequency domain raising.

Transform Techniques
For a more detailed exposition of Fourier techniques see e.g., Feuer and Goodwin
(1996). The double-sided � -transform and its properties is studied, for example, in
Franklin et al. (1990).
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Periodic Control of LTI Systems
Khargonekar et al. (1985) argue that, for an important class of robustness prob-
lems, discrete periodic compensators are superior to time-invariant ones. This
superiority is explained in terms of improved gain and phase margins. Similar
ideas are presented in Lee et al. (1987) for continuous-time systems, and in Francis
and Georgiou (1988) for sampled-data systems. On the other hand, Khargonekar
et al. (1985) showed that time-varying controllers offer no advantage over time-
invariant ones in the problem of weighted sensitivity minimization. Furthermore,
in Shamma and Dahleh (1991) it is argued that time-varying compensation does
not improve optimal rejection of persistent bounded disturbances, and also it does
not help in the bounded-input bounded-output robust stabilization of time-invariant
plants with unstructured uncertainty.

An analysis of the use of periodic controllers, based on frequency domain ar-
guments, has been given by Goodwin and Feuer (1992) and Feuer (1993). These
works showed that the use of periodic control faces two problems: inherent pres-
ence of high frequency components, and sensitivity to high frequency system un-
certainty.





6

Extensions to Sampled-Data
Systems

This chapter deals with fundamental limitations for sampled-data (SD)
feedback systems. By the term SD, we refer to a system with both continu-
ous-time and discrete-time signals — as is the case of digital control of an
analogue plant — but which is studied in continuous-time. This contrasts
with the approach taken in §3.4 in Chapter 3, where we were concerned
only with the sampled behavior of the system. In this chapter, the full in-
tersample behavior will be taken into account.

Unfortunately, the discrete results in Chapter 3 are insufficient to de-
scribe fundamental limitations in SD systems, since good sampled behav-
ior is clearly necessary but not sufficient for good overall behavior.

Because a SD system is intrinsically time-varying due to the sampling
process, one cannot use transfer functions to describe its input-output
properties. However, it is possible to calculate the Laplace transform of
the response of a SD system to a particular input, and hence one may eval-
uate the steady-state response of a stable SD system to a sinusoidal input
of given frequency. For analogue systems, the response to such an input
is a sinusoid of the same frequency as the input, but with amplitude and
phase modified according to the transfer function of the system evaluated
at the input frequency (see §2.1.3 in Chapter 2). The response of a stable
SD system to an input sinusoidal signal, on the other hand, consists of a
sum of infinitely many sinusoids spaced at integer multiples of the sam-
pling frequency away from the frequency of the input. We will refer to
the component having the same frequency as the input as the fundamen-
tal, and the other components as the harmonics. In fact, the fundamental
corresponds to the first harmonic, which will be predominant in most ap-
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plications. This is because higher frequency components will normally be
suppressed in a well-designed SD system.

The fundamental, and each of the harmonics, is governed by what we
term the frequency response function, which has many properties similar to
those of a transfer function. In particular, these frequency response func-
tions have sufficient structure to allow complex analysis to be applied to
derive a set of formulae analogous to the Bode and Poisson integrals. As in
the LTI case, these integrals describe trade-offs between system properties
in different frequency ranges. Our analysis in this chapter concentrates on
the fundamental components of the SD response, but similar results may
be derived for the harmonics (Braslavsky, 1995).

6.1 Preliminaries.

6.1.1 Signals and System
We consider the SISO SD feedback system shown in Figure 6.1, where G
and F are the transfer functions of the plant and anti-aliasing filter, Kd is
the digital controller, and Sτ andH represent the sampler and hold device
respectively.

The plant and controller are assumed to be proper, and the filter strictly
proper and stable,1 and they are all free of unstable hidden modes. The
plant may include a pure time delay, denoted by τG ≥ 0. The relative
degree of the controller is denoted by RDKd.

The signals in Figure 6.1 are as follows:

r : reference input, {uk} : discrete control sequence,
y : system output, u : analogue control input,
d : output disturbance v : analogue output of the filter,
w : measurement noise, {vk} : sampled output of the filter.

Continuous-time signals are assumed scalar functions from [0,∞) to � ,
and discrete sequences are defined for k = 0, 1, 2, . . ., taking values on � .

A class of signals that will be quite useful for our purposes is connected
with the class of functions of bounded variation.

Definition 6.1.1 (Function of Bounded Variation). A function h, defined
on the closed real interval [a, b], is of bounded variation if the total variation

1The assumption that the filter is strictly proper is standard and guarantees that the
sampling operation is well defined (cf. Sivashankar and Khargonekar, 1993; Dullerud and
Glover, 1993). The assumption of stability is only made for simplicity of exposition and may
be removed.
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FIGURE 6.1. SD control system.

of h on [a, b],

Vh(a, b) , sup
n∑

k=1

|h(tk) − h(tk−1)| (6.1)

is finite. The supremum here is taken over everyn ∈ � and every partition
of the interval [a, b] into subintervals {tk, tk−1}, where k = 1, 2, . . . n, and
a = t0 < t1 < · · · < tn = b.

A function h defined on [0,∞) is of uniform bounded variation (UBV)
(Braslavsky et al., 1995a) if, given δ > 0, the total variation Vh(t, t + δ)

on intervals [t, t+ δ] of length δ is uniformly bounded, that is, if

sup
t∈[0, � )

Vh(t, t+ δ) < ∞ . (6.2)

◦
A function of BV is not necessarily continuous, but it is differentiable

almost everywhere. Moreover, the limits

h(t±) , lim
ε � 0

h(t± ε), ε > 0 (6.3)

are well defined at every t, which means that h can have discontinuities
of at most the “finite-jump” type. This is particularly appropriated for sig-
nals involved in sampling operations, as we will see.

We will assume throughout that the input signals r, d, and w, are such
that, when multiplied by some exponentially decaying term e−σt, are func-
tions of UBV. It is straightforward to verify that steps, ramps, sinusoids
and exponentials are all signals satisfying this condition. However, sig-
nals like sin(et

2

), and signals that contain impulses are excluded.

6.1.2 Sampler, Hold and Discretized System
The implementation of a controller for a continuous-time system by means
of a digital device, such as a computer, implies the process of sampling
and reconstruction of analogue signals. By the sampling process, an ana-
logue signal is converted into a sequence of numbers that can then be dig-
itally manipulated. The hold device performs the inverse operation, trans-
lating the output of the digital controller into a continuous-time signal. We
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will assume throughout that nonlinearities associated with the process of
discretization, such as finite memory word-length, quantization, etc., have
no significant effect on the sampled-data system.

We assume also that the sampling is regular, i.e., if τ is the sampling
period, sampling is performed at instants t = kτ, with k = 0,±1,±2, . . ..
Associated with τ, we define the sampling frequency ωs = 2π/τ. By ωN =

ωs/2 we denote the Nyquist frequency, and by ΩN the Nyquist range of
frequencies [−ωN,ωN].

We consider an idealized model of the sampler. If v is a continuous-time
signal, we define the sampling operation with period τ by

Sτ v = {vk}
�

k=0,

where the sequence {vk}
�

k=0 represents the sampled version of v, with vk =

v(kτ+), and k ∈ � 0. The z-transform operator is denoted by Z, i.e.,

Z{uk} ,

�∑

k=0

ukz
−k,

and the Laplace transform operator is denoted by L, i.e., Lu = U, where

U(s) =

∫ �

0

e−stu(t)dt .

The hold device,H, is a generalized SD hold function (GSHF) a la Kabamba
(1987), defined by

u(t) = h(t− kτ)uk, kτ ≤ t < (k + 1)τ, k ∈ � 0. (6.4)

The function h in the above definition, which characterizes the hold, is
assumed to be of bounded variation, and with support on the interval
[0, τ]. In particular, the choice h(t) = 1 for t ∈ [0, T ] yields the zero order
hold (ZOH). By considering GSHFs we extend the scope of our analysis
to a wide class of SD control schemes that do not necessarily rely on ZOH
reconstruction.

Associated with the hold we define its frequency response function by
H = Lh. Since h is supported on a finite interval, it follows that H is an
entire function, i.e., it has no singularities at any finite s in � . For example,
in the case of the ZOH we get the familiar response H(s) = (1 − e−sτ)/s.
Frequency responses for other types of hold functions are derived in Mid-
dleton and Freudenberg (1995).

The frequency response of the hold is useful in computing the Laplace
transform of the output of the hold device.

Lemma 6.1.1. Consider a hold device as defined in (6.4) and its frequency
response function H. Let Ud denote the z-transform of the input sequence
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{uk}, and U the Laplace transform of the hold output to this sequence.
Then

U(s) = H(s)Ud(esτ) . (6.5)

Proof. Using (6.4), we can express the output of the hold device to {uk} as

u(t) =

�∑

k=0

h(t− kτ)uk

(

1
(

t− (k + 1)
)

− 1
(

t− kτ
)

)

, (6.6)

where 1 denotes the unit step function 1(t) = 1 if t ∈ [0, τ), and 0 other-
wise. Hence,

U(s) =

∫ �

0

e−sτu(t)dt

=

�∑

k=0

∫ (k+1)τ

kτ

e−sτ h(t− kτ)uk dt

=

�∑

k=0

e−skτuk

∫τ

0

e−st h(t)dt .

The result then follows from the definition of the frequency response func-
tion of the hold, H, and the definition of the z-transform. �

We denote by (FGH)d the discretized plant, defined as

(FGH)d , ZSτL
−1FGH,

where L−1FGH denotes the inverse Laplace transform of FGH. The as-
sumptions on G, H and F stated above are sufficient to guarantee (e.g.,
Freudenberg et al., 1995; Braslavsky et al., 1995a) that the discretized plant
(FGH)d satisfies the well-known formula2

(FGH)d(ejωτ) =
1

τ

�∑

k=− �

Hk(jω)Gk(jω)Fk(jω), (6.7)

where the notation Yk(·) represents Y(· + jkωs), with k an integer, and
ωs = 2π/τ. This notation will be frequently used in the sequel.

In relation to (FGH)d, we also recall the definitions of the discrete sen-
sitivity and complementary sensitivity functions, here given by

Sd =
1

1 + Kd(FGH)d
and Td =

Kd(FGH)d

1 + Kd(FGH)d
.

2Sometimes called the impulse modulation formula (e.g., Araki et al., 1993), this identity is
closely related to the Poisson summation formula (e.g., Rudin, 1987).
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An important feature of SD systems is evident from (6.7), namely, the re-
sponse of the discretized plant at a frequency ω ∈ ΩN depends upon the
response of the analogue plant, filter, and hold function at an infinite num-
ber of frequencies. Indeed, it is well known that the steady-state response
of a stable SD system to a sinusoidal input consists of a fundamental com-
ponent and infinitely many aliases shifted by multiples of the sampling
frequency. As we will see in §6.2, analogous expressions can also be ob-
tained for the response to more general inputs.

6.1.3 Closed-loop Stability
As with the case of a ZOH, closed-loop stability is guaranteed by the as-
sumptions that sampling is nonpathological and that the discretized sys-
tem is closed-loop stable. The next lemma is a generalization of the well-
known result of Kalman et al. (1963) to the case of GSHFs (Middleton and
Freudenberg, 1995).3

Lemma 6.1.2 (Nonpathological Sampling). Suppose that G and F are as
defined in §6.1.1 and assume further that

(i) if pi and pk are CRHP poles of G, then

pi 6= pk + jnωs, n = ±1,±2, · · · (6.8)

(ii) if pi is a CRHP pole of G, then H(s) has no zeros at s = pi.

Then the discretized plant (6.7) is free of unstable hidden modes. ◦
Since the response of a GSHF may have zeros in � +, Lemma 6.1.2 says,

in particular, that it may be necessary to ensure that none of these zeros
coincides with an unstable pole of the analogue plant. 4 Under the non-
pathological sampling hypothesis, it is straightforward to extend the ex-
ponential and L2 input-output stability results of Francis and Georgiou
(1988) and Chen and Francis (1991) to the case of GSHF.

Lemma 6.1.3. Suppose that G, F, Kd, and H are as defined in §6.1.1 and
§6.1.2, that the nonpathological sampling conditions (i) - (ii) are satisfied,
that the product Kd(FGH)d has no pole-zero cancelations in � c, and that
all poles of Sd lie in � . Then the feedback system in Figure 6.1 is exponen-
tially stable and L2 input-output stable.

Proof. The proof may be obtained by simple modification of the proofs of
Theorem 4 in Francis and Georgiou (1988), and Theorem 6 in Chen and
Francis (1991). �

3See Middleton and Xie (1995a) for the multivariable case.
4Note that this is necessary in the SISO case.
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Lemma 6.1.3 establishes the conditions for the nominal stability of the
SD system of Figure 6.1, which will be assumed throughout the rest of the
chapter.

6.2 Sensitivity Functions

6.2.1 Frequency Response
The steady-state response of a stable SD feedback system to a complex
sinusoidal input consists of a fundamental component at the frequency
of the input as well as additional harmonics located at integer multiples
of the sampling frequency away from the fundamental. This well-known
fact is discussed in textbooks (cf. Åström and Wittenmark, 1990; Franklin
et al., 1990), and has been emphasized in several recent research papers
(e.g., Araki et al., 1993; Goodwin and Salgado, 1994).

We next present expressions for the output response y in Figure 6.1 to
disturbances and noise. Analogous expressions may be stated for the re-
sponse to the reference input, and for the response of the control u to these
signals.

Lemma 6.2.1. Denote the responses of y to each of d andw by yd and yw

respectively. Then the Laplace transforms of these signals are given by

Yd(s) =

[

I−
1

τ
G(s)H(s) Sd(e

sτ)Kd(e
sτ) F(s)

]

D(s)

−

�∑

k=− �

k6=0

[

1

τ
G(s)H(s) Sd(esτ)Kd(e

sτ) Fk(s)

]

Dk(s),
(6.9)

and

Yw(s) = −

[

1

τ
G(s)H(s) Sd(esτ)Kd(e

sτ) F(s)

]

W(s)

−

�∑

k=− �

k6=0

[

1

τ
G(s)H(s) Sd(esτ)Kd(e

sτ) Fk(s)

]

Wk(s).
(6.10)

Proof. These formulae may be derived using standard techniques from SD
control theory (e.g., Franklin et al., 1990; Åström and Wittenmark, 1990).
We present only a derivation of (6.10). Assume that r and d are zero. Block
diagram algebra in Figure 6.1 and (6.5) yield

Yw(s) = G(s)H(s)Ud(esτ) (6.11)

and
Ud(z) = −Sd(z)Kd(z)Vd(z). (6.12)
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The sampled output of the antialiasing filter can be written as

Vd(z) = ZSτL
−1V(s)

= ZSτL
−1F(s)W(s).

The assumptions on w, and the fact that F is strictly proper guarantee the
validity of the relation (Braslavsky et al., 1995a)

Vd(e
sτ) =

1

τ

�∑

k=− �

Fk(s)Wk(s). (6.13)

Substituting (6.12) - (6.13) into (6.11) and rearranging yields the desired
result. �

Under the assumption of closed-loop stability, the preceding formulae
may be used to derive the steady-state response of the system to a pe-
riodic input. As noted above, the response will be equal to the sum of
infinitely many harmonics of the input frequency. The magnitude of each
component is governed by a function analogous to the usual sensitivity or
complementary sensitivity function for LTI systems.

Definition 6.2.1 (SD Sensitivity Functions). We define the fundamental
sensitivity and complementary sensitivity functions by

S0(s) , I−
1

τ
G(s)H(s) Sd(esτ)Kd(e

sτ) F(s) (6.14)

and
T0(s) ,

1

τ
G(s)H(s) Sd(esτ)Kd(e

sτ) F(s) (6.15)

respectively. For k 6= 0 define the k-th harmonic response function by

Tk(s) ,
1

τ
Gk(s)Hk(s) Sd(esτ)Kd(e

sτ) F(s). (6.16)

◦
These SD response functions are not rational functions, since their defi-

nition involves functions of the variable esτ, likeH(s),Kd(esτ), and Sd(esτ).
In addition, note that they are not transfer functions in the usual sense,
because they do not equal the ratio of the transforms of output to input
signals. However, these functions do govern the steady-state frequency
response of the SD system.

Lemma 6.2.2 (Steady-State Frequency Response). Let the hypotheses of
Lemma 6.1.3 be satisfied and assume that d(t) = ejωt, t ≥ 0, and w(t) =

ejωt, t ≥ 0. Then as t → ∞, we have that

yd(t) → ydss(t) and yw(t) → ywss (t),
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where

ydss(t) = S0(jω)ejωt −

�∑

k=− �

k6=0

Tk(jω)ej(ω+kωs)t, (6.17)

and

ywss (t) = −T0(jω)ejωt −

�∑

k=− �

k6=0

Tk(jω)ej(ω+kωs)t. (6.18)

Proof. See §B.2.1 in Appendix B. �

Notice from (6.17) and (6.18) that the fundamental components of the
disturbance and noise responses can potentially be reduced over some
frequency ranges by shaping S0 and T0 adequately. These facts correspond
to the LTI case, as seen in Chapter 2.

Yet, a feature that is distinctive of SD systems is also evident from (6.17)-
(6.18), and this is the presence of harmonics at frequencies other than that
of the input. The existence of these harmonics is due to the use of SD feed-
back, and is reflection of the fact that SD feedback has no counterpart in
analogue systems.

6.2.2 Sensitivity and Robustness
The fundamental sensitivity and complementary sensitivity functions, to-
gether with the harmonic response functions, may be also used to describe
differential sensitivity and robustness properties of a SD feedback system.

As seen in §2.2.4 of Chapter 2, the sensitivity function of a LTI feed-
back system governs the relative change in the reference response of the
system with respect to small changes in the plant. Derivations similar to
those of Lemma 6.2.2 show that the steady-state response of the system in
Figure 6.1 to a reference input r(t) = ejωt, t ≥ 0, is given by

yrss(t) = T0(jω)ejωt −

�∑

k=− �

k6=0

Tk(jω)ej(ω+kωs)t. (6.19)

Since T0(jω) depends upon Sd(ejωτ), it follows from (6.7) that the fun-
damental component of the reference response at a particular frequency is
sensitive to variations in the plant response at infinitely many frequencies.

Lemma 6.2.3 (Differential Sensitivity). At each frequency ω, the rela-
tive sensitivity of the steady-state reference response (6.19) to variations
in G(j(ω+ lωs)) is given by

(i) For l = 0,
G(jω)

T0(jω)

∂T0(jω)

∂G(jω)
= S0(jω). (6.20)
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(ii) For all l 6= 0,

Gl(jω)

T0(jω)

∂T0(jω)

∂Gl(jω)
= −T0(j(ω+ lωs)). (6.21)

Proof. The proof is a straightforward calculation, keeping in mind the de-
pendence of Sd(ejωτ) upon Gl(jω). �

These results may best be interpreted by considering frequencies in the
Nyquist range. Fix ω ∈ ΩN. Then (6.20) states that the sensitivity of the
fundamental component of the reference response to small variations in
the plant at that frequency is governed by the fundamental sensitivity func-
tion. On the other hand, (6.21) states that the sensitivity of the fundamen-
tal component to higher frequency plant variations is governed by the fun-
damental complementary sensitivity function evaluated at the higher fre-
quency.

Sensitivity functions S0 and T0 also have implications on the stability
robustness properties of the SD system. Suppose that the plant is subject
to a multiplicative perturbation, i.e., the perturbed plant, denoted G̃, can
be written as

G̃ = G(1 +W1∆) , (6.22)

where ∆ is a stable and proper perturbation, andW1 is a stable minimum
phase weighting function used to represent frequency dependence of the
modeling error, and such that GW1 is proper.5

Lemma 6.2.4 (Robust Stability against Multiplicative Perturbations). Con-
sider the system of Figure 6.1 and let the assumptions of Lemma 6.1.3
hold. A necessary condition for the system to remain stable when the plant
is perturbed as in (6.22) for all ∆ such that ‖∆‖ � < 1 is that

‖T0(jω)W1(jω)‖ � ≤ 1. (6.23)

Proof. See Appendix B. �

Unsurprisingly, a similar result holds for S0 when we consider a divisive
perturbation model, where the perturbed plant is expressed by

G̃ = (1 +W2∆)−1G , (6.24)

where ∆ is as for the multiplicative perturbation model, and W2 is stable,
minimum phase, and such that GW2 is proper.

5See also §2.2.4 in Chapter 2, where we gave an equivalent description of multiplicative
uncertainty.
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Lemma 6.2.5 (Robust Stability against Divisive Perturbations). Under
the assumptions of Lemma 6.1.3, a necessary condition for the system of
Figure 6.1 to remain stable when the plant is perturbed as in (6.24) for all
∆ such that ‖∆‖ � < 1 is that

‖S0(jω)W2(jω)‖ � ≤ 1. (6.25)

Proof. See Appendix B. �

It follows from Lemmas 6.2.4 and 6.2.5 that if |T0(jω)| or |S0(jω)| are
very large at any frequency, then the SD system will exhibit poor robust-
ness to unstructured uncertainty in the analogue plant at that frequency.

6.3 Interpolation Constraints

In this section we present a set of interpolation constraints that must be
satisfied by the SD sensitivity functions defined in (6.14)-(6.16). SD sensi-
tivity responses have fixed values on � + that are determined by the open-
loop zeros and poles of the plant, hold response, and digital controller.
As we will see later, a significant difference between the SD case and the
continuous-time only or discrete-time only cases is that the poles and ze-
ros of the controller yield different constraints than do those of the plant.

We introduce the following notation for the ORHP zeros of S0 and T0,
respectively given by

ZS , {s ∈ � + : S0(s) = 0} , (6.26)

ZT , {s ∈ � + : T0(s) = 0} . (6.27)

Two definitions concerning the mapping between the z-plane and the
s-plane will be handy in the sequel.

Definition 6.3.1 (Unfolded Images and Periodic Reflections). Given a
number z0 ∈ � , we say that sk0 = 1

τ
log z0+ jkωs, with k = 0,±1,±2, · · · ,

is an unfolded image of z0.
Given a number s0 ∈ � , we say that sk0 = s0+jkωs, with k = ±1,±2, · · · ,

is a periodic reflection of s0. ◦
The following theorem describes the interpolation relations for the fun-

damental sensitivity and complementary sensitivity functions.

Theorem 6.3.1 (Interpolation Constraints for S0 and T0). Consider the
system of Figure 6.1 and assume that the hypotheses of Lemma 6.1.3 are
satisfied. Then,

(i) S0 and T0 have no poles in � +.
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(ii) ZS ⊃ {p ∈ � + : p is a pole of G}.

(iii) ZT = {q ∈ � +}, where q is either

(a) an ORHP zero of G, i.e., G(q) = 0;

(b) an ORHP zero of H, i.e., H(q) = 0;

(c) an unfolded image of a nonminimum phase zero of Kd, i.e.,
Kd(e

qτ) = 0;

(d) a periodic reflection of an ORHP pole p of G, i.e., q = p+ jkωs
for some integer k 6= 0.

(iv) If b ∈ � c is a pole of Kd, and bk is an unfolded image of b, i.e.,
bk = 1

τ
logb + jmωs,m = 0,±1,±2, · · · , then

S0(bm) = 1 −
G(bm)H(bm) F(bm)

τ(FGH)d(b)
, (6.28)

T0(bm) =
G(bm)H(bm) F(bm)

τ(FGH)d(b)
. (6.29)

Proof. Introduce factorizations

G(s) F(s) = e−sτN(s)

D(s)
,

whereN andD are coprime rational functions with no poles in � +, and

(FGH)d(z) =
Nd(z)

Dd(z)
, (6.30)

whereNd andDd are coprime rational functions with no poles in � c
. By

the Youla parametrization, all controllers Kd that stabilize (6.30) have the
form6

Kd =
Yd +DdQd

Xd −NdQd
, (6.31)

whereQd, Xd, and Yd are stable, and Xd and Yd satisfy the Bezout identity

DdXd +NdYd = 1. (6.32)

It follows that Sd = Dd(Xd −NdQd) and

KdSd = Dd(Yd +DdQd). (6.33)

6We suppress dependence on the transform variable when convenient; the meaning will
be clear from the context.
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Using (6.33) in (6.14) and (6.15) yields

S0(s) = 1−
1

τ
e−sτN(s)H(s)

D(s)
Dd(e

sτ) [Yd(esτ) +Dd(e
sτ)Qd(e

sτ)] (6.34)

and

T0(s) =
1

τ
e−sτN(s)H(s)

D(s)
Dd(e

sτ) [Yd(e
sτ) +Dd(e

sτ)Qd(esτ)] . (6.35)

Then:

(i): T0 is stable because each factor in the numerator of (6.35) is stable,
and because the assumption of nonpathological sampling guaran-
tees that any unstable pole of 1/Dmust be canceled by a correspond-
ing zero of Dd(esτ).

(ii): It follows from (6.32) that Yd(epτ) = 1/Nd(e
pτ). Using this fact, and

evaluating (6.34) in the limit as s → p yields

S0(s) −→ 1 − lim
s � p

F(s)G(s)H(s)

τ(FGH)d(esτ)
.

Replace (FGH)d(esτ) using (6.7):

S0(s) −→ 1− lim
s � p

H(s)G(s)F(s)
∑ �

k=− � Fk(s)Gk(s)Hk(s)
. (6.36)

By the assumptions that F is stable and that sampling is nonpatho-
logical, G and F have no poles at p + jkωs, k 6= 0. Using this fact,
and the fact that H has no finite poles, yields that each term in the
denominator of (6.36) remains finite as s → p except the term k = 0.
Then (ii) follows.

(iii): Observe first that (6.35) implies that T0 has ORHP zeros only at the
ORHP zeros of N, H,Dd(esτ), or [Yd(e

sτ) +Dd(e
sτ)Qd(esτ)].

From the assumptions in §6.1.1,G, F, andGF are each free of unstable
hidden modes. Hence N and D can have no common ORHP zeros
and (iii)a follows. By the assumption of nonpathological sampling,
neither can H and D. Hence (iii)b follows. Note next that the zeros
of Dd(esτ) lie at p + jkωs, k = 0,±1,±2, · · · , where p is any ORHP
pole of G and hence a zero of D. It follows from this fact that the
ratio Dd(esτ)/D(s) can have zeros only for k = ±1,±2, · · · . By the
assumption of nonpathological sampling, no other cancelations oc-
cur, and all these zeros are indeed zeros of T0. This proves (iii)d. By
(6.31), the ORHP zeros of [Yd(esτ) + Dd(e

sτ)Qd(e
sτ)] are identical

to the ORHP zeros of Kd(esτ). By the hypotheses of Lemma 6.1.3,
none of these zeros can coincide with those of Dd(esτ), and thus
with those of D. This proves (iii)c.
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(iv): It follows from (6.33) that Kd(b)Sd(b) = 1/(FGH)d(b). Substitution
of this identity into (6.14)-(6.15) yields (6.28)-(6.29).

�

Theorem 6.3.1 establishes ORHP values of S0 and T0 that are fixed by
open-loop ORHP poles and zeros of the plant, which hold irrespective of
the controller.

There are a number of differences between the interpolation constraints
for the SD and the continuous-time cases; we describe these in the follow-
ing remarks.
Remark 6.3.1 (Unstable Plant Poles). Each ORHP plant pole yields constraints
directly analogous to the continuous-time case; i.e., at each ORHP pole p,
S0(p) = 0 and T0(p) = 1. Furthermore, each of these poles yields the addi-
tional constraints (iii)d, i.e., S0(p+ jkωs) = 1 and T0(p+ jkωs) = 0, k 6= 0,
which arise from the periodically spaced zeros of Sd(esτ) and the fact that
nonpathological sampling precludes all but one of these zeros from being
canceled by a pole of G. ◦
Remark 6.3.2 (Nonminimum Phase Plant Zeros). Each ORHP zero of the
plant, q, yields constraints directly analogous to the continuous-time case;
i.e., S0(q) = 1 and T0(q) = 0. Note in particular that these constraints are
present independent of the choice of the hold function. The zeros of the dis-
cretized plant lying in � c, on the other hand, do not impose any inherent
constraints on S0. Indeed, suppose that ν ∈ � c is a zero of (FGH)d. Then
for each νk , 1

τ
log(ν) + jkωs, k = 0,±1,±2, · · · , it follows that

S0(νk) = 1 −
1

τ
G(νk)H(νk)Kd(ν)F(νk), (6.37)

and thus the size of S0(νk) is not independent of the choice of controller.
◦

Remark 6.3.3 (Unstable Controller Poles). In the analogue case, unstable plant
and controller poles yield identical constraints on the sensitivity and com-
plementary sensitivity functions; namely, when evaluated at such a pole,
the sensitivity must equal zero and the complementary sensitivity must
equal one. Comparing (ii) and (iv) in Theorem 6.3.1, we see that in a SD
system unstable plant and controller poles will generally yield different
constraints on sensitivity and complementary sensitivity. In particular, un-
stable controller poles will yield corresponding zeros of S0 only in special
cases. ◦
Remark 6.3.4 (Zeros of Kd). Each zero of the controller lying in � c imposes
infinitely many interpolation constraints upon the continuous-time sys-
tem because there are infinitely many points in the s-plane that map to
the location of the zero in the z-plane. These constraints are due to the fact
that a pole at any of these points will lead to an unstable discrete pole-zero
cancelation. ◦
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Remark 6.3.5 (Zeros of Hold Response). By (iii)b, zeros of H lying in the
ORHP impose constraints on the sensitivity function identical to those im-
posed by ORHP zeros of the plant. A ZOH has zeros only on the jω-axis,
but GSHF response functions may have zeros in the open right half plane
(Braslavsky et al., 1995b). ◦
Remark 6.3.6 (Zeros of S0). The list of ORHP zeros for T0 is exhaustive;
however, that for S0 is not. It is interesting to contrast this situation with
the analogue case. For analogue systems, the ORHP zeros of the sensitivity
function consist precisely of the union of the ORHP poles of the plant and
controller. On the other hand, by Theorem 6.3.1 (ii) and (iv), unstable plant
poles yield zeros of S0 while unstable controller poles generally do not.
Furthermore, as the following example shows, S0 may have ORHP zeros
even if both plant and controller are stable.

Example 6.3.1. Consider the plant G(s) = 1/(s + 1). Discretize with a
ZOH, sample period τ = 1, and no anti-aliasing filter (i.e., F(s) = 1). This
yields (FGH)d(z) = .6321/(z − .3670). A stabilizing discrete controller for
this plant is

Kd(z) =
(4.8158)(z2 + .1z + 0.3988)

(z2 − 1.02657z + 0.9025)
.

Both plant and controller are stable; yet it may be verified that S0 has zeros
at s = 0.2 ± j (see Figure 6.2).
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6.4 Poisson Integral formulae

The interpolation constraints derived in the preceding section fix the val-
ues of the SD response functions at points of the ORHP. In this section,
we translate these constraints into Poisson integral relations that must be
satisfied by the SD sensitivity functions. These relations are equivalent to
those presented in Chapter 3.

We introduce some Blaschke products first. For convenience, we denote
the ORHP zeros of S0 and T0 respectively as

ZS = {pi : i = 1, 2, . . . , np} , and ZT = {qi : i = 1, 2, . . . , nq} ,

wherenS andnT may be infinite. Correspondingly, let their Blaschke prod-
ucts be

BS(s) ,

np∏

i=1

s− pi

s+ p̄i
, and BT (s) ,

nq∏

i=1

s− qi

s+ q̄i
. (6.38)

We also denote by7

BGf: the Blaschke product of the ORHP poles of G,

BGg: the Blaschke product of the ORHP zeros of G,

BH: the Blaschke product of the ORHP zeros of H,

BKd
: the Blaschke product of the unfolded images of the ORHP zeros of
Kd, and

BGt: the Blaschke product of the periodic reflections of the ORHP poles
of G.

6.4.1 Poisson Integral for S �

The following theorem presents a Poisson integral inequality that must be
satisfied by log |S0(jω)|.

Theorem 6.4.1 (Poisson integral for S0). Assume that the hypotheses of
Lemma 6.1.3 are satisfied. Let q = σq + jωq, with σq > 0, be an ORHP
zero of T0, as described in Theorem 6.3.1. Then,

∫ �

− �
log |S0(jω)|

σq

σ2q + (ω−ωq)2
dω ≥ π log|B−1

Gf
(q)| . (6.39)

7Since there are three Blaschke products emanating from
�

, we use in the notation some
kind of graphical indication, i.e., � to indicate a zero, � to indicate a pole, and � to suggest
periodic reflection.
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Proof. Factorize S0 as S0 = S̃BS, where BS is given in (6.38), and where S̃
has no poles or zeros in the ORHP. Then applying Corollary A.6.3 in Ap-
pendix A to S̃ implies that (6.39) holds with equality if BGf(q) is replaced
by BS(q). Since the set of ORHP zeros of S0 due to the ORHP poles of G
is generally a proper subset of all such zeros (cf. Remark 6.3.6) inequality
(6.39) follows. �

Theorem 6.4.1 has several design implications, which we describe in a
series of remarks.

Remark 6.4.1 (Nonminimum Phase Plant Zeros). As in the continuous time
case, if the plant is nonminimum phase, then requiring that |S0(jω)| < 1

over a frequency range Ω implies that, necessarily, |S0(jω)| > 1 at other
frequencies. The severity of this trade-off depends upon the relative loca-
tion of the ORHP zero and the frequency rangeΩ. We now discuss this in
more detail.

We recall the definition of the weighted length of an interval by the
Poisson kernel for the half plane, introduced in Chapter 3, (3.33). Let s0 =

σ0+ jω0 be a point lying in � +, and consider the frequency intervalΩ1 =

[−ω1,ω1). Then, we had that

Θs0
(ω1) =

∫ω1

−ω1

σ0

σ20 + (ω−ω0)2
dω.

We have also seen in §3.3.2 that Θs0
(ω1) equals the negative of the phase

lag contributed by a Blaschke product of s0 at the upper end point of the
interval Ω1. With this notation, the following result is an immediate con-
sequence of (6.39).

Corollary 6.4.2 (Water-Bed Effect). Suppose that q is an ORHP zero of the
plant, and suppose that

|S0(jω)| ≤ α, for all ω in Ω1.

Then

sup
ω>ω1

|S0(jω)| ≥ (1/α)
Θq(ω1)

π−Θq(ω1)
∣

∣B−1
Gf

(q)
∣

∣

π
π−Θq(ω1) (6.40)

◦
The bound (6.40) shows that if disturbance attenuation is required through-

out a frequency interval in which the ORHP zero contributes significant
phase lag, then disturbances will be greatly amplified at some higher fre-
quency. The factor due to the Blaschke product in (6.40) shows that plants
with approximate ORHP pole-zero cancelations yield particularly sensi-
tive feedback systems. ◦



152 6. Extensions to Sampled-Data Systems

Remark 6.4.2 (Nonminimum Phase Hold Zeros). An ORHP zero of the hold
response imposes precisely the same trade-off as does a zero of the plant
in the same location. This trade-off is exacerbated if the ORHP hold zero is
near an unstable plant pole. Poor sensitivity in this case is to be expected,
as an exact pole-zero cancelation yields an unstable hidden mode in the
discretized plant8. ◦
Remark 6.4.3 (Unstable Plant Poles). Using analogue control, the sensitivity
function of a system with an unstable, but minimum phase, plant can be
made arbitrarily small over an arbitrarily wide frequency range (Zames
and Bensoussan, 1983) while keeping sensitivity bounded outside this
range. This is no longer true for digital controllers and the fundamental
sensitivity function. The following result is an immediate consequence of
(6.39). ◦

Corollary 6.4.3.

(i) Assume that the plant has a real ORHP pole, p = σp. Then

‖S0‖ � ≥
√

1 +

(

σp

ωN

)2

. (6.41)

(ii) Assume that the plant has an ORHP complex conjugate pole pair,
p = σp + jωp, p̄ = σp − jωp. Then for k = ±1,±2 . . .

‖S0‖ � ≥
√

1 +

(

σp

kωN

)2
√

1 +

(

σp

ωp − kωN

)2

. (6.42)

◦
Proof. We show only (i); (ii) is similar. Evaluate (6.39) with q equal to one
of the periodic reflections of p, i.e., q = σp + jkωs, with k = ±1,±2, . . .
Then

π log ‖S0‖ � ≥
∫ �

− �
log |S0(jω)|

σp

σ2p + (ω − kωs)2
dω

≥ π log
∣

∣

∣

∣

2σp + jkωs

−jkωs

∣

∣

∣

∣

.

(6.43)

From (6.43) follows

‖S0‖ � ≥
√

1 + [σp/(kωN)]
2

≥
√

1 + (σp/ωN)
2
.

�

8See the conditions for nonpathological sampling in Lemma 6.1.2.
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In either case of Corollary 6.4.3, the fundamental sensitivity function
necessarily has a peak strictly greater than one.

For a real pole, achieving good sensitivity requires that the sampling
rate be sufficiently fast with respect to the time constant of the pole; e.g.,
achieving ‖S0‖ � < 2 requires that ωN > σp/

√
3. This condition is also

necessary for a complex pole pair. Furthermore, sensitivity will be poor if
ωp ≈ kωN for some k 6= 0. The reason for poor sensitivity in this case
is clear; if ωp = kωN, then the complex pole pair violates the nonpatho-
logical sampling condition (6.8), and the discretized plant will have an
unstable hidden mode.

More generally, we have

Corollary 6.4.4. Assume that the plant has unstable poles pi and pk with
pi 6= p̄k. Then

‖S0‖ � ≥ max
k6=0

∣

∣

∣

∣

p̄i + pk + jkωs

pi − pk − jkωs

∣

∣

∣

∣

(6.44)

and

‖S0‖ � ≥ max
k6=0

∣

∣

∣

∣

pi + pk + jkωs

p̄i − pk − jkωs

∣

∣

∣

∣

(6.45)

◦
It follows that if sampling is “almost pathological”, in that pi − pk ≈

jkωs, or p̄i − pk ≈ jkωs, then sensitivity will be large.

Remark 6.4.4 (Approximate Discrete Pole Zero Cancelations). Let the discrete
controller have an ORHP zero a. Then (6.39) holds with q equal to one of
the unfolded images of a in the s-plane. If the plant has an unstable pole
near one of these points, then the right hand side of (6.39) will be large,
and S0 will have a large peak. Poor sensitivity is plausible, because this
situation corresponds to an approximate pole-zero cancelation between
an ORHP zero of the controller and a pole of the discretized plant. ◦

6.4.2 Poisson Integral for T �

We now derive a result for T0 dual to that for S0 obtained in the previ-
ous section. An important difference is that we can characterize all ORHP
zeros of T0, and thus obtain an integral equality.

First, we note an additional property of the hold response function.

Lemma 6.4.5. The hold response function may be factored as

H(s) = H̃(s)e−sτHBH(s), (6.46)

where τH ≥ 0, BH is as defined on page 150, and log |H̃| satisfies the Pois-
son integral relation.
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Proof. Follows directly from the definition of H, which implies that H is a
function in H2, and thus the factorization of Hoffman (1962, pp. 132-133)
applies. �

Theorem 6.4.6 (Poisson integral for T0). Suppose that the conditions of
Lemma 6.1.3 are satisfied. Let p = σp + jωp be an ORHP pole of G. Then

∫ �

− �
log |T0(jω)|

σp

σ2p + (ω−ωp)2
dω = πσp(τG + τH + RDKd τ)

+ π log |B−1
Gg

(p)|

+ π log |B−1
H (p)|

+ π log |B−1
Gt

(p)|

+ π log |B−1
Kd

(p)| ,

(6.47)

where RDKd denotes the relative degree of Kd.

Proof. Note that T0 has an inner-outer factorization

T0(s) = T̃(s) e−sτG e−sτH e−sτ RDKd BGg(s)BH(s)BGt(s)BKd
(s)

where T̃ satisfies Corollary A.6.3 in Appendix A. Since log |T̃(jω)| = log |T0(jω)|,
the result follows. �

We comment on the design implications of Theorem 6.4.6 in a series of
remarks.
Remark 6.4.5. The first term on the right hand side of (6.47) shows that
|T0(jω)| will display a large peak if there is a long time delay in the plant,
digital controller, or hold function. ◦
Remark 6.4.6. The third and fourth terms on the right hand side of (6.47)
show that |T0(jω)| will display a large peak if there is an approximate un-
stable pole-zero cancelation in the plant, or between the plant and the hold
function. By the nonpathological sampling condition (ii) in Lemma 6.1.2,
the latter peak corresponds to an approximate unstable pole-zero cancela-
tion in the discretized plant. ◦

The following result is analogous to Corollary 6.4.4 for T0.

Corollary 6.4.7.

(i) Assume that p = σp, a real pole. Then

‖T0‖ � ≥
sinh

(

πσp

ωN

)

(

πσp

ωN

) . (6.48)
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(ii) Assume that p = σp + jωp, a complex pole. Then

‖T0‖ � ≥
sinh

(

πσp

ωN

)

(

πσp

ωN

)

∣

∣

∣

∣

∣

∣

∣

∣

sinh
(

πp

ωN

)

(

πp

ωN

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

πωp

ωN

)

sin
(

πωp

ωN

)

∣

∣

∣

∣

∣

∣

∣

∣

. (6.49)

Proof. Consider the Blaschke product corresponding to the periodic reflec-
tions of p, which can be also written as

Bp(s) =

�∏

k=1

1 −

(

s− p

jkωs

)2

1 −

(

s+ p̄

jkωs

)2

Using the identities (Levinson and Redheffer, 1970, p. 387),

sinπα
πα

=

�∏

k=1

(

1−
α2

k2

)

and sin jα = j sinhα yields

Bp(s) =

sinhπ
(

s− p

ωs

)

π

(

s− p

ωs

)

π

(

p̄+ s

ωs

)

sinhπ
(

p̄+ s

ωs

) (6.50)

Note that the first factor on the right hand side of (6.50) converges to
one as s → p. It follows that

Bp(p) =

(

πσp

ωN

)

sinh
(

πσp

ωN

) (6.51)

Inverting yields (6.48). Furthermore

Bp̄(p) =

sin
(

πωp

ωN

)

(

πωp

ωN

)

(

πp

ωN

)

sinh
(

πp

ωN

) (6.52)

Together (6.51)-(6.52) yield (6.49). �
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Figure 6.3(a) gives plots of the bound (6.49) versus σp = Rep for various
values ofωp = Imp, and Figure 6.3(b) gives plots of the bound (6.49) ver-
sus ωp for various values of σp. The pole location has been normalized
by the Nyquist frequency. Note in Figure 6.3(b) that for a complex pole
‖T0‖ � will become arbitrarily large as ωp → kωN, k = ±1,±2 . . . , be-
cause sampling becomes pathological at such frequencies. It follows from
these plots that to achieve good robustness the Nyquist frequency should
be chosen several times larger than the radius of any unstable pole.
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FIGURE 6.3. Lower bounds on ‖ � � ‖ � .

6.5 Example: Robustness of Discrete Zero
Shifting

We illustrate the use of the tools presented in this chapter by analyzing
an example of design originally presented in Er and Anderson (1994). The
plant is given by

P(s) =
s − 5

(s + 1)(s + 3)
.

It is required that the closed-loop bandwidth,ωb, satisfy the lower bound
ωb ≥ 15.3 rad/s. Notice that the nonminimum phase zero of the ana-
logue plant lies well within the desired closed-loop bandwidth. Hence, by
the results of Chapter 3, if this bandwidth is achieved with an analogue
controller, then the resulting closed-loop system will have very poor sen-
sitivity and robustness properties.

Briefly, the design suggested in Er and Anderson (1994) consists of first
using a GSHF to relocate the discrete zeros so that the discretized plant is
minimum phase, and then applying a standard discrete-time LQG/LTR
procedure (e.g., Zhang and Freudenberg, 1993). It follows that perfect
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FIGURE 6.4. Structure for the GSHF-based LTR of Er and Anderson (1994).

LTR at the sampling times is feasible independent of the zero distribution
of the analogue plant. The proposed scheme is shown in Figure 6.4. The
sampling period is chosen as τ = 0.04s, and an appropriate GSHF is given
by

h(t) =

{
−1957 for 0 ≤ t < 0.02 ,
1707 for 0.02 ≤ t < 0.04 . (6.53)

This yields a minimum phase discretized plant. In Figure 6.5 we plot |Sd(e
jωτ)|

and |Td(e
jωτ)| obtained with the compensator suggested in Er and Ander-

son (with their parameter q = 3). The closed-loop specification is achieved
and both |Sd(e

jωτ)| and |Td(e
jωτ)| are well behaved.
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However, as the results in this chapter predict, the closed-loop system
will still be prone to sensitivity and robustness problems. Figure 6.6 shows
a plot of |T0(jω)|, which exhibits large values within and outside the Nyquist
interval. Following Lemma 6.2.4, we should expect poor sensitivity to per-
turbations in the analogue plant for which W1 in (6.22) satisfies

|T0(jω)| >
1

|W1(jω)|
,

at some ω. Indeed, suppose that the plant has an unmodeled time delay
τG. This may be represented by a multiplicative perturbation model as in
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(6.22), with

∆(s) =
1 − e−sτG

sτG(1 + δ)
, and W1(s) = −τGs(1 + δ),

where 0 < δ � 1. In Figure 6.6 we have also plotted 1/W1(jω)| for τG =

0.0024s, and it can be seen that there is a frequency for which |T 0(jω)| ≈
1/|W1(jω)|. In fact, as can be checked by simulation, the system becomes
unstable even for this small time delay. Note that this extreme sensitivity
to small errors in the analogue plant model is not apparent from the Bode
plots of the discrete sensitivities.

6.6 Summary

This chapter has developed performance limitations for SISO SD systems.
The approach relies on the analysis of the SD sensitivity functions S0 and
T0, which serve to quantify the sensitivity and robustness properties of
the system taking intersample behavior into account.

It follows from the results in this chapter that SD systems do not escape
the difficulty imposed upon analogue feedback design by open-loop non-
minimum phase zeros, unstable poles, and time delays. This difficulty,
then, persists when the controller is implemented digitally and, further-
more, independently of the type of hold function used.

In addition, a number of limitations are unique to digital controller im-
plementations. First, there are design limitations due to potential nonmin-
imum phase zeros of the hold function. Second, and perhaps most inter-
esting, are the design limitations due to unstable plant poles. If the sample
rate is “almost pathological” and/or is slow with respect to the time con-
stant of the pole, then sensitivity, robustness, and response to exogenous
inputs will all be poor.

Notes and References

The contents of this chapter are largely based on Freudenberg et al. (1995). In this
paper, integral constraints on � � and � � of the Bode-type have also been derived.
Extensions of these results to multirate SD systems have been reported in Middle-
ton and Xie (1995b), while applications to the analysis of robustness properties of
zero shifting control schemes have been presented in Freudenberg et al. (1994),
from which the example in §6.5 was taken; see also Braslavsky (1995) for a de-

tailed discussion. More on performance limitations for SD systems may be found
in Araki (1993), Feuer and Goodwin (1994) and Zhang and Zhang (1994).

Fundamental sensitivity functions were first introduced in Goodwin and Sal-
gado (1994) to study SD systems considering full intersample behavior. A fre-
quency domain framework embodying all harmonics has been presented in Araki
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et al. (1993). Recent references on the frequency response of SD systems include
Yamamoto and Araki (1994), Hagiwara et al. (1995), Rosenvasser (1995), and Ya-
mamoto and Khargonekar (1996).

A rigorous and self-contained derivation of the key sampling formula that yields
(6.7) may be found in Braslavsky et al. (1995a).

For further reading on SD systems see the recent books by Chen and Francis
(1995) and Feuer and Goodwin (1996).





Part III

Limitations in Linear
Filtering





7

General Concepts

This chapter sets up the general framework for the discussion in Part III
regarding sensitivity limitations in filter design. In particular, two main
concepts are introduced here: filtering sensitivity functions and bounded er-
ror estimators. These concepts are the starting point of a theory of design
limitations for a broad class of linear filtering problems, as we will see in
the following chapters.

7.1 General Filtering Problem

This section presents the filtering problem that we will be primarily con-
cerned with the next few chapters.

Consider the general filtering configuration of Figure 7.1, where the sig-
nals are as follows,

v : process input, in � m, y : measured output, in � `,
w : measurement noise, in � `, ẑ : estimate, in � n,
z : signal to be estimated, in � n, z̃ : estimation error, in � n.

The plant, G, is a LTI system given by the following state-space repre-
sentation (cf. the notation in (2.4)):

G
s
=





A B 0

C1 D1 0

C2 D2 I



 , (7.1)
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FIGURE 7.1. General filtering configuration.

where the pair (A,C2) is assumed to be detectable. For simplicity, we will
also assume that the pair (A,B) is stabilizable, and indicate the main dif-
ferences with the nonstabilizable case when relevant.1 The process input
v and the measurement noise w are nonmeasured external inputs to the
plant.

The filter is represented by a proper transfer function F. The general
problem of filtering then focuses on the design of a suitable F such that
the target signal z can be estimated from the noisy measurements y. In
optimal filtering, for example, F is selected to minimize a certain perfor-
mance criteria, typically involving the “smallness” of the estimation error
in some sense based on particular assumptions about v and w.

Sometimes the process has, in addition to v, a control or measured in-
put u. In this case the filter will generally use both measured input and
output in the construction of the estimate. An important class of filters
that use both u and y in the estimate is the class of unbiased filters, which
will be briefly considered in §7.3.1. The following example illustrates the
construction of a filter when a measured input is available.

Example 7.1.1. Suppose that the plant G in Figure 7.1 has an additional
measured input u, i.e., G is given by the state-space description

ẋ = Ax+ Buu+ Bv, x(0) = x0,

z = C1x+D1v,

y = C2x+D2v +w.

(7.2)

One way to estimate the signal z using both u and y is to build a full-state
observer for the state x. Then, the filter F obtained from this observer will
be given by a realization of the following general form:

ξ̇ = Âξ + Kuu + Kyy, ξ(0) = ξ0,

x̂ = Ĉξ,

ẑ = C1x̂,

(7.3)

where ξ is the state of the filter and x̂ is an estimate of the plant’s state x.
Different choices of the matrices in (7.3) will lead to filters having different

1See Seron (1995) for the complete analysis of this latter case.
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characteristics, such as boundedness of the estimation error, unbiasedness,
etc. More on this in §7.3. ◦

For convenience, we partition the plant as shown in Figure 7.2, with the
obvious definitions for the transfer functions Gz and Gy appearing there.
Note that, by the assumption of detectability from y and stabilizability
from v, the function Gy contains all the unstable modes of G, some or all
of which may not appear in Gz.

b
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+

FIGURE 7.2. Structure of the plant.

The following standing assumptions about the transfer functions F and
Gz are needed in the sequel.

Assumption 7.1.

(i) F is stable.

(ii) Gz is right invertible.
◦

Condition (i) in Assumption 7.1 is clear, and the least requirement that
we can ask for the filter; namely, that it should be a stable operation on the
available signal, y. Condition (ii) is necessary for our definition of filtering
sensitivity functions, in the section coming. In relation to this condition,
recall thatGz(s) is right invertible if it has full row rank at almost all s ∈ � ,
which requires that there be at least as many process inputs as signals to
be estimated, i.e.,m ≥ n.

For future use, we introduce a notation for generic input-output oper-
ators in the setting of Figure 7.1. If a and b are two generic signals (i.e.,
either of v, w, z, etc.), we denote by the symbol Hba the direct – i.e., gen-
erally physical and open-loop – mapping from signal a to signal b. For
example, Hzv denotes the map from process input v to signal z, i.e., the
operator given by the function Gz.

7.2 Sensitivity Functions

The principal focus in the filtering literature has been on various opti-
mization procedures. Until recently, by far the greatest emphasis was on
quadratic performance criteria. These criteria measure performance in terms
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of variance of the estimation error (Anderson and Moore, 1979; Kailath,
1974). However, in later years, attention has focused on other optimization
criteria. For example, the recently introduced robust design methods em-
ploy the infinity norm (Yaesh and Shaked, 1989; Nagpal and Kharghonekar,
1991; Bernstein and Haddad, 1989; de Souza et al., 1995). Whilst optimiza-
tion methods play an invaluable role in determining the best solution un-
der a given set of conditions, they fail to pin-point why a desired perfor-
mance level is not achievable. They also do not allow one to evaluate the
benefits of changing the measurement system, for example, by relocating
a sensor or by adding additional sensors.

One way to address these issues is to identify complementary operators
— such as S and T in the control case — that represent relevant properties
of the filtering system, and then use integral constraints to quantify the in-
herent sensitivity trade-offs associated with filtering problems. This is the
approach taken in Goodwin et al. (1995) and Seron and Goodwin (1995),
and is the one that we will develop in this chapter.

Consider the operators Hz̃v, Hẑv, and Hzv mapping process input to es-
timation error, estimate, and estimated signal, respectively, in the diagram
of Figure 7.1. Then, we have the following definition.

Definition 7.2.1 (Filtering Sensitivity Functions). Let the conditions in
Assumption 7.1 hold. Then, the filtering sensitivity and complementary sen-
sitivity functions, denoted by P and M, respectively, are defined as

P(s) , Hz̃v(s)H
−1
zv (s), and M(s) , Hẑv(s)H

−1
zv (s). (7.4)

◦
The filtering sensitivity P represents the relative effect of the process in-

put on the estimation error, while the filtering complementary sensitivity
M represents the relative effect of the process input on the estimate. In
terms of the transfer functions defined in Figure 7.2, we can express P and
M as follows:

P = (Gz − FGy)G
−1
z , and M = FGyG

−1
z . (7.5)

The following complementarity constraint holds for the filtering sensi-
tivity and complementary sensitivity functions.

Theorem 7.2.1. The filtering sensitivity and complementary sensitivity
defined in (7.4) satisfy the relation

P(s) +M(s) = I, (7.6)

at any complex frequency s that is not a pole of P andM.

Proof. It follows from Figure 7.1 that

Hz̃v + FHyv = Hzv. (7.7)
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Then (7.6) follows immediately using the definitions (7.4) and noting that
Hẑv = FHyv. �

Equation (7.6) is reminiscent of the complementary result of feedback
control, i.e., (3.7), that the sum of sensitivity, S, and complementary sensi-
tivity, T , is the identity operator. However, P and M are not the direct ‘fil-
tering’ versions of S and T ; this will be discussed in more detail in §7.2.2.
The following subsection studies the use of the filtering sensitivities in
measuring important properties related to the filtering problem.

7.2.1 Interpretation of the Sensitivities
Consider, for simplicity, that P and M in (7.4) are scalar, and assume fur-
ther that the ratio of system transfer functions Hyv/Hzv is proper.

From the mere definition of P in (7.4), it is evident that |P(jω)| measures
the magnitude of the frequency response of the estimation error relative to
the magnitude of the frequency response of the signal to be estimated. This
suggests a criterion to specify an appropriate shape for |P(jω)| in design.
Indeed, suppose for example that the frequency distribution of the process
input v is known. Then, achieving |P(jω)| small at those frequencies where
v has a significant magnitude will be desirable, since it will reduce the
relative effect of v on the estimation error.

On the other hand, the filtering complementary sensitivityM represents
the ratio between the transfer function from the process input to the esti-
mated signal and the transfer function from the process input to the ac-
tual signal. Thus, it is desirable to achieve |M(jω)| close to one over the
frequency range where the spectrum of v is concentrated. This will result
in an impact (in magnitude) of the process input on the estimate similar
to the impact that it has on the signal to be estimated.

Typically, the spectrum of v is concentrated at low frequencies, so ap-
propriated shapes for P andM in this case will be as shown in Figure 7.3.
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In addition, note from (7.5) that M it is the product of a proper transfer
function and the filter transfer function F. Clearly, the effect of the output
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disturbance, w, on the estimation error (and on the estimate itself) will be
reduced if |F(jω)| is small over the range of frequencies wherew is strong.
This desired reduction of |F| can be readily translated into the shape of
|M(jω)|, after normalizing through the factor |Hyv(jω)/Hzv(jω)|. Note
that, since F is a strictly proper transfer function, its output disturbance
rejection properties are typically aimed at high-frequency disturbances,
such as measurement noise.

The foregoing discussion analyzed the sensitivities as relative gains,
and gave some insights into desirable shapes for their frequency responses.
However, dynamic interpretations of the filtering sensitivities can also be
obtained for particular cases.

Indeed, suppose that we express the filter as driven by the innovations
process (Kailath, 1968), denoted ι, and defined as

ι , y − ẑ, (7.8)

where ẑ is, in this case, an estimate of the noise-free output, i.e., z = y−w

(notice that here Hzv = Hyv). Then it is possible to express the filtering
system as a feedback loop, as shown in Figure 7.4.
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FIGURE 7.4. Filtering Feedback Loop.

Loosely speaking, then, the sensitivities will represent dynamic responses
to system disturbances in those filtering problems where the estimate, ẑ,
is fed-back into this feedback loop.

The following examples analyze two particular cases where the filtering
sensitivities have dynamic meaning.

Example 7.2.1 (‘Output-Filtering’ Sensitivities). Assume that the vari-
able to be estimated is the disturbance-free output, i.e., z in Figure 7.1 is
given by

z = y−w.

In this case, we have thatGy = Gz in Figure 7.2, and hence the sensitivities
(7.5) become

Py = 1 − F,

My = F.
(7.9)

We call these functions the output-filtering sensitivities. It is instructive to
express these sensitivities in terms of the filter function Fι, shown in Fig-
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ure 7.4, which maps innovations into estimate. We have,

Py = (1 + Fι)
−1,

My = Fι(1 + Fι)
−1,

(7.10)

which are similar to the control sensitivities S and T . It is then evident
that Py is the dynamic transfer between the measurement noise, w, and
the innovations, ι, whilst My is the dynamic transfer between w and the
estimated variable, ẑ. ◦
Example 7.2.2. Alternatively assume that the transfer functionHyv can be
expressed as

Hyv = HyzHzv,

such that z = Hzvv. Assume further that Hyz is proper. Then, it is natural
to factor the filter function Fι in Figure 7.4 as

Fι = FyFz,

for appropriate transfer functions Fy and Fz, and take ẑ = Fzι as an esti-
mate for z. The corresponding filtering loop is shown in Figure 7.5.
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FIGURE 7.5. Particular Filtering Loop.

It is easy to see that, in this case, the filtering sensitivities are given by

P = [1 + Fz(Fy −Hyz)]P
y,

M = FzP
yHyz,

(7.11)

where Py is the output-filtering sensitivity given by (7.10). The sensitivi-
ties in (7.11) are the responses of ι and ẑ to the internal disturbance wz,
respectively. Note that they collapse into Py and My if Fy = Hyz. The lat-
ter condition would be a natural choice for Fy. ◦

7.2.2 Filtering and Control Complementarity
The filtering sensitivities P andM are not the direct counterpart of the con-
trol sensitivities S and T . This is because the estimation problem depicted
in Figure 7.1, when set in a control framework, is more general than the
one-degree of freedom control loop where S and T are defined. Indeed, the
“filtering” versions of S and T would correspond to the output-filtering
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sensitivities, i.e., the sensitivities arising in the problem of estimating the
system noise-free output (z = y −w), as discussed in Example 7.2.1.

We will next derive a complementarity constraint for linear feedback
control that parallels the filtering constraint given in (7.6). Consider the
control loop shown in Figure 7.6, where G is the plant transfer function
given by

G ,

[

Gzv Gzu
Gyv Gyu

]

, (7.12)

and K is a controller that stabilizes the feedback loop.
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FIGURE 7.6. Control Loop.

This configuration is standard, e.g., in the H � control literature.2 The
plant G has two sets of inputs: the external inputs, v, and the control in-
puts, u. Also, it has a set outputs, y0, that are available to the controller
K after being corrupted with output disturbances, d, and sensor noise, n,
and a set of signals of interest, z, which are generally the signals to be
controlled or regulated.

The “classical” sensitivity and complementary sensitivity, S and T , are
defined for a simpler unity feedback control loop (see Figure 3.2 in Chap-
ter 3), where they are directly connected with performance, disturbance
rejection and robustness properties (cf. §2.2.2 in Chapter 2). However, as
we see next, they can also be defined for the feedback loop in Figure 7.6.

Introduce first the notation Hba to indicate the total mapping – possi-
bly nonphysical – from signal a to signal b, i.e., after combining (adding,
composing, etc.) all the ways in which a is a function of b and solving any
feedback loops that may exist.3 Then, we have that

S = Hyd = (I +GyuK)−1,

T = −Hyn = GyuK(I+GyuK)−1.
(7.13)

As seen in Chapter 3, S and T satisfy the complementarity constraint

S + T = I.

2In the standard configuration, in fact, � and � are absorbed into � . Here we choose to
draw them explicitly to emphasize the way in which they affect the output � .

3Cf. the notation ����� introduced at the end of §7.1.
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This relation involves mappings from external inputs that are directly in-
jected into the loop (i.e., without intermediate dynamics), to system sig-
nals that are fed-back in the same loop (see Figure 7.6). A more general
result, comparable to the filtering relation given in (7.7), can be devel-
oped for the configuration of Figure 7.6. This structural constraint involves
mappings from external inputs that are injected dynamically in the loop,
to some internal variables, e.g., the system (combination of) states, z, which
are not directly fed-back. This result is stated below.

Theorem 7.2.2. Consider the general control loop of Figure 7.6, where the
plant G is given by (7.12). The total mappings, Hzv and Hzd, from the
external inputs v and d to the internal variables z, satisfy the following
structural relation:

Hzv + (−Hzd)Gyv = Gzv. (7.14)

Proof. From Figure 7.6, and the definitions in (7.12) and (7.13), we have, in
the Laplace transform domain

Y0 = SGyvV + TD,

and

Z = GzvV +GzuK(D− Y0)

= (Gzv −GzuKSGyv)V +GzuKSD.
(7.15)

Then

Hzv = Gzv −GzuKSGyv,

Hzd = GzuKS,

from which (7.14) follows. �

Notice that, when considering mappings to z, the sensor noise, n, in
Figure 7.6 can be set to zero since its influence on z is the same as that of d.

A complementarity constraint that parallels (7.6) can be readily obtained
by multiplying through both sides of (7.14) by G−1

zv and making similar
definitions to those in (7.4).

The relation given in (7.14) is clearly analogous to that of (7.7). This in-
dicates that the filtering problem considered in §7.2 fits into the structure
of the control configuration of Figure 7.6. In the search for generality, how-
ever, we have gone too far: we now need to select the particular choices of
G and K that will give the exact control counterpart of (7.7).

Making the choices of inputs and outputs as shown in Figure 7.7, we
conclude that the controller K corresponds to the filter F, whilst the plant
G corresponds to the matrix

Gf ,

[

Gzv −I

Gyv 0

]

.
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FIGURE 7.7. Equivalent Filtering Loop.

Observe that setting the entry (2,2) ofGf equal to zero amounts to open-
ing the loop (S = I, T = 0 in (7.13)), but this is the way in which we have
set up the filtering problem in §7.2. In the context of bounded error fil-
tering, however, we will soon see that F satisfies conditions that ensure
boundedness of z̃. There is then, ideally, no need for feedback if these con-
ditions hold.

Although a feedback loop can be made explicit by considering the filter
driven by the innovations, as we have seen in §7.2.1, note that the mere
presence of feedback does not make the observer a closed loop in general
(i.e., when the signal to be estimated is not just the disturbance-free out-
put, i.e., z 6= y−w). Indeed, it was shown by Bhattacharyya (1976) that an
observer is a closed-loop system if and only if it can be expressed as a sys-
tem driven by the estimation error z̃ = z− ẑ. Moreover, Bhattacharyya (1976)
proved that an observer must be a closed-loop system if it is to provide
observer action despite arbitrarily small perturbations of the system state
space matrices.

7.3 Bounded Error Estimators

It is natural to require that a state estimator, in addition to being stable,
should produce a bounded estimation error when all the signals entering
the system are bounded. Thus, from the general class of stable estimators,
we will make a mild restriction to bounded error estimators (BEEs) according
to the following definition.

Definition 7.3.1 (BEE). We say that a stable filter is a BEE if, for all finite
initial states of the plant and the filter, the estimation error z̃ is bounded
whenever the system inputs v andw are bounded. ◦

Let x0 be the initial state of the plant, and let V and W be the Laplace
transforms of the process input and measurement noise, respectively. It
then follows from Figures 7.1 and 7.2, and (7.1) that — modulo exponen-
tially decaying terms due to the filter initial state — the Laplace transform
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of the estimation error, denoted by Z̃, is given by

Z̃ = G̃0x0 + (Gz − FGy)V − FW, (7.16)

where
G̃0(s) , [C1 − F(s)C2](sI −A)−1 (7.17)

leads the estimation error component due to the plant initial state.
Thus, since the filter F is stable and the plant G— i.e., the pair (A,B) —

is stabilizable, a necessary and sufficient condition for F to be BEE is that
the transfer function Gz − FGy be stable. Note that this means that

• unstable poles shared byGz andGy must be canceled4 by a nonmin-
imum phase zero of the differenceGz − FGy, while

• unstable poles of Gy that do not appear in Gz must be canceled by
nonminimum phase zeros of F.

If (A,B) is not stabilizable then a necessary and sufficient condition for F
to be BEE is that the transfer function G̃0 in (7.17) be stable. In Chapters 10
and 11, we will consider predictors and smoothers based on BEEs that
perform full-state filtering. For future reference then, we note that, if F is
intended to estimate the full state, F is a BEE if and only if the transfer
function

G̃0(s) = [I− F(s)C2](sI−A)−1 (7.18)

is stable.
The BEE assumption is the minimum that can be required from a fil-

ter and, therefore, it underlies numerous state estimation problems in the
literature. The class of BEEs includes, for example, observers of the form
(7.3) that assign pre-specified stable dynamics to the estimation error. In-
deed, assume that the external inputs to the plant in (7.2) are zero and
write the corresponding dynamics of the state estimation error, x̃ , x−Ĉξ,
as

˙̃x = (A − ĈKyC2)x − ĈÂξ .

Assume next that we desire that x̃ evolve as

˙̃x = Ãx̃, (7.19)

where Ã is a stability matrix of the same dimensions as A. This will occur
if and only if the matrices Â, Ky and Ĉ satisfy

A− ĈKyC2 = Ã and ĈÂ = ÃĈ. (7.20)

It is clear that a filter satisfying (7.19) and (7.20) is a BEE.

4In frequency and direction in the multivariable case.
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BEEs do not, in general, assign the error dynamics, since the estimation
error component due to the initial state of the observer may decay with
different dynamics than the component due to the plant initial state. To
further see the difference, note that the estimation error corresponding to
a general BEE for full-state estimation satisfies the following equations

[

ẋ

ξ̇

]

=

[

A 0

KyC2 Â

] [

x

ξ

]

,

x̃ =
[

I −Ĉ
]

[

x

ξ

]

,

(7.21)

while the estimation error corresponding to an observer with pre-specified
error dynamics Ã satisfies (7.19). We can then argue that the concept of
bounded error estimation corresponds to making the unstable modes of
the plant unobservable from the estimation error, whilst the subclass that
achieves pre-specified error dynamics actually assigns the eigenvalues of
the estimation error. The following examples illustrate these points.

Example 7.3.1. We want to estimate the state of the scalar plant ẋ = x, y =

x. A filter F1, of the form (7.3), given by

ξ̇ =

[

0 1

−1 −2

]

ξ +

[

−2

2

]

y,

x̂ =
[

0 1
]

ξ,

is a BEE for this plant, since G̃0 in (7.16) becomes, using the above data,

G̃0(s) =
(s2 − 1)

(s2 + 2s + 1)

1

(s− 1)

=
1

s+ 1
,

which is stable. However, this filter does not assign error dynamics, since
(7.20) is not satisfied, i.e.,

ĈÂ −AĈ = [−1 − 3] 6= −ĈKyC2Ĉ = [0 2].

On the other hand, the filter F2 given by

ξ̇ =

[

0 1

−1 −2

]

ξ+

[

0

2

]

y,

x̂ =
[

1 1
]

ξ.

is also a BEE and, moreover, achieves an estimation error with dynamics
˙̃x = −x̃, and thus satisfies (7.20) with Ã = −1. Figure 7.8 shows the time
response of both filters to an initial state error.

◦
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FIGURE 7.8. Estimates of ˙� � � : general BEE (left) and observer that assigns the
error dynamics (right).

Example 7.3.2. Consider the special case of an error driven stable observer
for the system (7.2), having the same order as the system. Such an observer
may be of the form (7.3) where Ky is such that Â = A−KyC2 is a stability
matrix and Ĉ = I, i.e.,

˙̂x = (A − KyC2)x̂ + Kuu + Kyy. (7.22)

The observer (7.22) is easily seen to be a BEE for full-state estimate since

G̃0 = [I − (sI−A + KyC2)
−1KyC2](sI−A)−1

= [I + (sI−A)−1KyC2]
−1(sI−A)−1

= (sI −A+ KyC2)
−1,

(7.23)

which is stable. Moreover, the error dynamics are given by Ã = Â. ◦
General BEEs do not specify the way in which the filter is to treat the

measured input, if available. Thus, they may be biased, i.e., the estimation
error has a component driven by the measured input. On the other hand,
unbiased filters are designed to process the measured input in the same
way as the plant does, as seen in the following subsection.

7.3.1 Unbiased Estimators
In this section we discuss a special subclass of BEEs, namely, that of unbi-
ased estimators. The distinguishing feature of this type of BEE is that they
achieve a total decoupling of the estimation error from the measured in-
put. The formal definition of this subclass is given below (Middleton and
Goodwin, 1990).
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Definition 7.3.2 (Unbiased Estimator). We say that a stable filter for the
plant (7.2) is unbiased if, whenever v ≡ 0 and w ≡ 0, for all measured
inputs u, and for all finite initial states of the plant and the filter, the esti-
mation error z̃ decays asymptotically to zero. ◦

We then have the following result.

Lemma 7.3.1. A stable state estimator for the system (7.2) is unbiased if
and only if

(i) it is a BEE and

(ii) the transfer function from the measured input u to the estimation
error,Hx̃u, is identically zero.

Proof. Immediate from Definition 7.3.2 on writing the expression for the
estimation error. �

Example 7.3.3. Consider again Example 7.3.2. Note that the special ob-
server (7.22) is an unbiased estimator if the particular choice Ku = Bu is
made. This can be seen on noting that

Hx̃u(s) = (sI−A + KyC2)
−1Bu − (sI − Â)−1Ku ≡ 0

using (7.23). This particular observer is generally known as an identity ob-
server. ◦

As the above example suggests, unbiased estimators of the form (7.3)
for (7.2) are observers that assign the error dynamics which, in addition to
(7.20), satisfy the constraint

ĈKu = Bu. (7.24)

A nice feature of unbiased filters is that separation applies, that is, if used
to control the plant, then the resulting closed loop is automatically stable
provided the state estimates are fed-back with a gain such that, if the same
gain were to be used on the true states, then stability would result. This is
why the unbiasedness requirement is frequently presupposed in the defi-
nitions of observers appearing in the control literature. However, we will
show in subsequent chapters that there are inherent trade-offs in filter de-
sign that affect all BEEs, whether unbiased or not.

7.4 Summary

This chapter has introduced the notation and definitions necessary for the
development of the remaining chapters in this part. The main concepts
here are the filtering sensitivity functions and the class of BEEs. The filter-
ing sensitivity functions play a role similar to their control counterparts;
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we have discussed in this chapter some important interpretations in the
context of linear filtering design, and their connections to a general con-
trol paradigm.

The filtering sensitivities are the basis for the theory of design limita-
tions developed in the next chapters. This theory of limitations holds for
a wide class of linear filtering problems, namely, those based on BEEs,
which are estimators that produce a bounded estimation error under any
possible input driving the system.

Notes and References

The definition of filtering sensitivity functions is taken from Seron and Goodwin
(1995). Goodwin et al. (1995) introduced similar functions for the case of unbiased
estimators. BEEs were also introduced in Seron and Goodwin (1995); see Seron
(1995) for a more detailed discussion.

In view of its generality, the class of linear BEEs encompasses various specific
state estimators that have been proposed in contemporary literature. For example,
robust

�
� optimization designs, in general lead to BEEs that are not necessarily

unbiased (see e.g., de Souza et al., 1995). The bias results from the fact that, in the
presence of plant parameter uncertainty, the component of the estimation error
due to the known input signal � cannot, in general, be completely canceled. In
fact, in de Souza et al. (1995) the authors have shown, through comparison with
Kalman filter and nominal

�
� filter design, that the biased component of the

estimation error may be minimized by allowing the filter to be biased from the
outset.

For further reading on filters and observers see e.g., the textbooks Anderson
and Moore (1979) and O’Reilly (1983).
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SISO Filtering

In this chapter we examine the fundamental design trade-offs that apply
to linear scalar filtering problems based on bounded error estimators. We
will see that, due to the condition of bounded error estimation, the fil-
tering sensitivity functions introduced in the last chapter are necessarily
constrained at points in the complex plane determined by ORHP poles
and zeros of the plant. These interpolation constraints, in turn, translate
into Poisson and Bode-type integral relations, which show essential limi-
tations in the achievable performance, and induce clear trade-offs in filter
design.

8.1 Interpolation Constraints

We have seen in Chapter 3 that, for the case of feedback control and un-
der minimality assumption, S has zeros at the unstable open-loop plant
poles and T has zeros at the nonminimum phase open-loop plant zeros. In
this section we consider the filtering sensitivities resulting from any scalar
BEE, and show that right half plane poles and zeros of the plant transfer
matrices Gy and Gz impose constraints on particular complex values of P
and M given in (7.5) of Chapter 7.

First, it is interesting to observe that P andM in (7.5) are not necessarily
analytic in the ORHP since Gz may have ORHP zeros (that are not can-
celed in the division). This fact differs from the common assumption in
control theory that the sensitivity and complementary sensitivity are ana-
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lytic in the ORHP. Note, however, that the more general control sensitivi-
ties that can be defined from (7.14) in Chapter 7 are potentially nonanalytic
in the ORHP if Hzv is nonminimum phase.

For the problem of filtering with BEEs, we have the following result on
the analyticity of P andM in the ORHP.

Lemma 8.1.1. Consider the filtering sensitivities given in (7.5) and assume
that F is a BEE. Then P andM are analytic in the ORHP if and only if either
of the following conditions hold.

(i) Gz is minimum phase.

(ii) Every ORHP zero of Gz is also a zero of the product FGy.

Proof. Immediate from (7.5). �

The following lemma formalizes the interpolation constraints that P and
M must satisfy at the ORHP poles and zeros of Gy and Gz.

Lemma 8.1.2 (Interpolation Constraints). Assume that F in (7.5) is a BEE.
Then P andM must satisfy the following conditions.

(i) If p ∈ � + is a pole of Gz, then

P(p) = 0, and M(p) = 1.

(ii) If q ∈ � + is a zero of Gy that is not also zero of Gz, then

P(q) = 1, and M(q) = 0.

(iii) If q ∈ � + is a zero of Gz that is not also zero of FGy, then P(s) and
M(s) have a pole at s = q.

Proof. Case (i) readily follows from (7.5) by noting that the term Gz − FGy
is stable if F is a BEE. Case (ii) is immediate from (7.5) since F is stable.
Finally, case (iii) follows from Lemma 8.1.1. �

We introduce for convenience the following notation for the ORHP ze-
ros of P and M:1

ZP , {s ∈ � + : P(s) = 0} ,

ZM , {s ∈ � + : M(s) = 0} .
(8.1)

Then, Lemma 8.1.2 establishes that ZP includes the set of ORHP poles of
Gz and ZM contains ORHP zeros of Gy. As in the control case, we have

1Recall that, when defining a set of zeros of a transfer function, the zeros are repeated
according to their multiplicities.
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then translated the plant characteristics of instability and “nonminimum
phaseness” into properties that the functions P and M must satisfy in the
ORHP. Note that ZP also contains those ORHP zeros of (Gz − FGy) that
are not also zeros of Gz and ZM also contains those ORHP zeros of F that
are not also zeros of the (possibly nonproper) transfer function Gz/Gy.

Notice that since the plant is detectable from y, the transfer function Gy
has all the unstable poles of Gz. In consequence, Gy/Gz — and hence M
— has no zeros at any unstable pole of G.

The interpolation constraints given in Lemma 8.1.2 will be translated
into constraints on the frequency response of the sensitivities in the fol-
lowing section.

8.2 Integral Constraints

In this section we use the interpolation constraints of Lemma 8.1.2 to de-
rive Poisson and Bode-type integral relations satisfied by P and M. These
relations constrain the values of the filtering sensitivities on the imagi-
nary axis. The Poisson integral constraints on P and M are derived using
the Poisson integral formulae for the recovery of a function, analytic in the
ORHP, from its values on the imaginary axis (see §A.6.1 in Appendix A).

Let the sets (8.1) be given by

ZP = {pi : i = 1, . . . , np} ,

ZM = {qi : i = 1, . . . , nq} ,

and let the corresponding Blaschke products be2

BP(s) =

np∏

i=1

s− pi

s+ pi
, and BM(s) =

nq∏

i=1

s − qi

s + qi
. (8.2)

We also introduce the following sets of zeros.

Zz , {s ∈ � + : Gz(s) = 0 and F(s)Gy(s) 6= 0} ,

Zy , {s ∈ � + : Gy(s) = 0 and Gz(s) 6= 0} ,

Z1/z , {s ∈ � + : G−1
z (s) = 0} .

(8.3)

Note that the set of zeros of P includes Z1/z, i.e.,

ZP ⊃ Z1/z , (8.4)

2Recall that, if the set � originating the Blaschke product � is empty, then we define
� � � � � 


, ∀ � ∈ � .
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the set of zeros ofM includes Zy, i.e.,

ZM ⊃ Zy , (8.5)

and Zz is the set of ORHP poles of P andM. Denote the Blaschke products
corresponding to the sets in (8.3) by Bz, By and B1/z. It is then easy to see
that we can factor P andM as

P(s) = P̃(s)BP(s)/Bz(s) ,

M(s) = M̃(s)BM(s)/Bz(s) ,
(8.6)

where P̃ and M̃ have no zeros or poles in the ORHP. We then obtain the
following integral constraints.

Theorem 8.2.1 (Poisson Integral for P). Assume that F in (7.5) is a BEE.
Let q = σq + jωq, σq > 0, be a zero of Gy that is not also zero of Gz (i.e.,
q ∈ Zy in (8.3)). Then, assuming that P is proper,

∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω = π log

∣

∣B−1
P (q)

∣

∣ − π log
∣

∣B−1
z (q)

∣

∣ .

(8.7)

Proof. The proof follows by using factorization (8.6) and applying the Pois-
son integral formula (Theorem A.6.1 in Appendix A) to log P̃. �

Theorem 8.2.2 (Poisson Integral for M). Suppose that F in (7.5) is a BEE.
Let p = σp + jωp, σp > 0, be a pole of Gz (i.e., p ∈ Z1/z in (8.3)). Then,
assuming that M is proper,
∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω = π log

∣

∣B−1
M (p)

∣

∣− π log
∣

∣B−1
z (p)

∣

∣ .

(8.8)

Proof. Same as the proof of Theorem 8.2.1, this time using M̃. �

The results in Theorems 8.2.1 and 8.2.2 are affected by the particular
choice of filter, since the Blaschke product Bz on the RHSs of (8.7) and
(8.8) depends on F. In particular, we see that the integral constraints on P
and M are relaxed by nonminimum phase zeros of Gz that are not shared
with FGy. An explanation for this may be given if we think of a nonmin-
imum phase zero as a “mild time-delay”.3 Then, a delay in the signal to
be estimated, with respect to the measured signals, would allow for more
time to compute a better estimate — in the sense discussed in §7.2.1 of

3This intuitively follows from the fact that a time-delay, analyzed by its Padé approxima-
tions (e.g., Middleton and Goodwin, 1990), may be seen as containing an arbitrarily large
number of nonminimum phase zeros.



8.2 Integral Constraints 183

Chapter 7. An extreme case of this phenomenon can be found in the pro-
cess of smoothing, where the signal to be estimated is artificially delayed.
See Chapters 10 and 11 for more discussion.

Constraints that are completely independent of the estimator parame-
ters are readily obtained from these results under an additional condition,
as we see in the following corollary.

Corollary 8.2.3. Suppose that P and M in (7.5) are proper and that F is
a BEE. Consider the sets defined in (8.3), and assume further that if there
exists a complex number s0 in � + such thatGz(s0) = 0 then alsoGy(s0) =

0. Then,

(i) if q = σq + jωq ∈ Zy, we have that
∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω ≥ π log

∣

∣

∣B−1
1/z

(q)
∣

∣

∣ ; (8.9)

(ii) if p = σp + jωp ∈ Z1/z, we have that
∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω ≥ π log

∣

∣B−1
y (p)

∣

∣ . (8.10)

Proof. First notice that the assumption that every nonminimum phase zero
ofGz is also a zero ofGy implies that the set Zz is empty, so Bz disappears
from the RHSs of (8.7) and (8.8). Then, since ZP in (8.1) includes the set
Z1/z defined in (8.3), the Blaschke product of the ORHP zeros of P, BP , has
B1/z as a factor and hence log |B−1

P (q)| ≥ log |B−1
1/z

(q)|. Thus, inequality
(8.9) follows from (8.7). In a similar way, inequality (8.10) follows from
(8.8) on noting that ZM ⊃ Zy. �

From the above results it can be inferred that reduction of |P(jω)| or
|M(jω)| in one frequency range must be compensated by an increase in
another frequency range. The presence of ORHP poles and zeros in those
transfer functions that link the process input v to the output y and target
signal z, lead to more stringent requirements. This will be discussed in
more detail in §8.3.

Bode’s integral theorems of feedback control (cf. §3.1.2 in Chapter 3)
also have filtering analogs, as shown next.

Theorem 8.2.4 (Bode Integral for P). Suppose that P in (7.5) is proper and
that F is a BEE. Let ZP = {pi : i = 1, . . . , np} be the set of zeros of P in the
ORHP and let Zz in (8.3) be given by Zz = {ζi : i = 1, . . . , nζ}. Then, if
P(j∞) 6= 0
∫ �

0

log
∣

∣

∣

∣

P(jω)

P(j∞)

∣

∣

∣

∣

dω =
π

2
lim
s � �

s[P(s) − P(∞)]

P(∞)
+ π

np∑

i=1

pi − π

nζ∑

i=1

ζi. (8.11)
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Proof. Similar to the proof of (3.1.4) in Chapter 3. Note that here the con-
tour of Figure 3.3 will have indentations into the right half plane that avoid
the branch cuts of logP corresponding to both the ORHP zeros and poles
of P. �

Theorem 8.2.5 (Bode Integral for M). Assume that M in (7.5) is proper
and that F is a BEE. Let ZM = {qi : i = 1, . . . , nq} be the set of zeros of M
in the ORHP and let Zz in (8.3) be given by Zz = {ζi : i = 1, . . . , nζ}. Then,
if M(0) 6= 0
∫ �

0

log
∣

∣

∣

∣

M(jω)

M(0)

∣

∣

∣

∣

dω

ω2
=
π

2

1

M(0)
lim
s � 0

dM(s)

ds
+ π

nq∑

i=1

1

qi
− π

nζ∑

i=1

1

ζi
. (8.12)

Proof. Same as the proof of Theorem 8.2.4. �

As we see in (8.11) and (8.12), nonminimum phase zeros of Gz that are
not zeros of FGy have an effect on the Bode integral constraints that is con-
sistent with that discussed above for Poisson integral constraints, i.e., they
relax the constraints. On the other hand, we see in (8.12) — as well as in
(8.8) — that the presence of nonminimum phase zeros of Gy that are not
zeros of Gz can only make the constraints more severe, since ZM ⊃ Zy.
This can be interpreted as these nonminimum phase zeros “blocking”,
this time, the measured signal from which the estimates are constructed.
It is not surprising, then, that more severe limits on the achievable per-
formance should be expected. As we will see in Chapters 10 and 11, the
problem of prediction exemplifies an extreme case of this latter situation.

In the following section we discuss design implications of the constraints
given by the Poisson integrals on P andM.

8.3 Design Interpretations

The objective of this section is to illustrate how the constraints imposed by
the integral relations given in the §8.2 can be translated into restrictions on
the shape of the frequency responses of the filtering sensitivities.

To begin with, note that, assuming Gz minimum phase, a direct appli-
cation of (8.9) and (8.10) gives lower bounds on the H � norms of P and
M, i.e.,

‖P‖ � ≥ max
q∈Zy

∣

∣

∣B−1
1/z

(q)
∣

∣

∣ ,

‖M‖ � ≥ max
p∈Z1/z

∣

∣B−1
y (p)

∣

∣ .
(8.13)

This implies, for example, that both ‖P‖ � > 1 and ‖M‖ � > 1 if Gz is
unstable and minimum phase and Gy is nonminimum phase. Moreover,
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these bounds hold for all possible designs. More information, however,
can be obtained if we assume that certain natural design goals are im-
posed.

From the discussion in §7.2.1 of Chapter 7, it is clear that the relative
effect of the process disturbance on the estimation error will be reduced
if |P(jω)| is small at the frequencies where the power of the process noise
v is concentrated. A similar conclusion holds for |M(jω)| and the influ-
ence of the measurement noise w on the estimation error. In general, as
discussed in §7.2.1, the spectrum of v is typically concentrated at low fre-
quencies, while the spectrum of w is typically more significant at high
frequencies. This suggests that a reasonable approach to design would be
to make |P(jω)| small at low frequencies and |M(jω)| small at high fre-
quencies. Thus, as previously discussed, a value of |M(jω)| close to one,
in the range of frequencies where the spectrum of v is large, will avoid a
deleterious impact of the process disturbance on the estimate.

The foregoing discussion indicates that typical requirements on the fil-
tering sensitivities are captured, for example, by the following specifica-
tions.

|P(jω)| < α1 for ω ∈ [0,ω1] , (8.14)
|M(jω)| < α2 for ω ∈ [ω2,∞] , (8.15)

where α1 and α2 are small positive numbers. Notice that (8.15) can also be
set in terms of P, taking into account the complementarity relation (7.6),
i.e.,

|P(jω)| < 1 + α2 forω ∈ [ω2,∞] . (8.16)

By the same token, an alternative way of expressing (8.14) is

|M(jω)| < 1 + α1 forω ∈ [0,ω1] . (8.17)

Figure 8.1 expresses graphically these requirements on the frequency re-
sponse of P. These specifications are similar to the design objectives in
feedback control, with P and M playing the role of the sensitivity S and
complementary sensitivity T , respectively. In the feedback control prob-
lem, open-loop ORHP poles and zeros inhibit achieving these objectives,
as we have seen in §3.3.2 of Chapter 3. We will see below that correspond-
ing limitations apply to filtering problems.

Once design requirements such as those stated in (8.14) and (8.15) have
been established, the results in §8.2 can be used to foresee their effect
on achievable filter performance in other frequency ranges. For example,
whenever |P(jω)| is small, log |P(jω)| is negative. It follows from (8.9), for
example, that if specification (8.14) holds, log |P(jω)| must be positive in
some other frequency range.

More quantitative information regarding these peaks is given below. Let
Θs0

(ω1) be the weighted length of the interval [−ω1,ω1], as defined in
(3.33) in Chapter 3. We then have the following corollary.
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Corollary 8.3.1. Suppose that P andM in (7.5) are proper,Gz is minimum
phase, and F is a BEE. Suppose further that (8.14) and (8.15) hold. Then,

(i) for each q = σq + jωq ∈ Zy, we have that

‖P‖ � ≥
(

1

α1

)

Θq(ω1)

Θq(ω2)−Θq(ω1)
(

1

1 + α2

)

π−Θq(ω2)

Θq(ω2)−Θq(ω1)

×
∣

∣

∣B
−1
1/z

(q)
∣

∣

∣

π
Θq(ω2)−Θq(ω1)

; (8.18)

(ii) for each p = σp + jωp ∈ Z1/z, we have that

‖M‖ � ≥
(

1

α2

)

π−Θp(ω2)

Θp(ω2)−Θp(ω1)
(

1

1 + α1

)

Θp(ω1)

Θp(ω2)−Θp(ω1)

×
∣

∣B−1
y (p)

∣

∣

π
Θp(ω2)−Θp(ω1) . (8.19)

Proof. We use specification (8.15) onM to get the bound (8.16) on P. It then
follows from (8.14), (8.16), and (8.9) that

Θq(ω1) log |α1| + [Θq(ω2) −Θq(ω1)] log ‖P‖ �

+ [π−Θq(ω2)] log |1+ α2| ≥ π log
∣

∣

∣B−1
1/z

(q)
∣

∣

∣

Hence

‖P‖[Θq(ω2)−Θq(ω1)]
� ≥

(

1

α1

)Θq(ω1)(
1

1 + α2

)π−Θq(ω2) ∣
∣

∣B−1
1/z

(q)
∣

∣

∣

π

.

Inequality (8.18) then follows. In a similar way, (8.19) can be obtained us-
ing (8.15), (8.17) and (8.10). �
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To give an idea of how severe the constraints given by (8.18) and (8.19)
may be, we consider the following numerical example.

Example 8.3.1. Consider the filtering setting of Figure 7.1 in Chapter 7.
Assume that the plant is as given in Figure 7.2. Further say that Gy has
one real nonminimum phase zero at q = 0.5, and that Gz is stable and
minimum phase. Suppose that we require specifications (8.14) and (8.16)
to hold for the filtering sensitivity for this system. Now we propose the fol-
lowing experiment: fix the high-frequency specifications (8.16) with ω2 =

10 and α2 = 0.5, and vary the low-frequency specifications, i.e., the band-
width ω1 and level of reduction, α1. Under these conditions, we analyze
the lower bound bP , defined as the RHS of (8.18), i.e.,

bP ,

(

1

α1

)

Θq(ω1)

Θq(ω2)−Θq(ω1)
(

1

1 + α2

)

π−Θq(ω2)

Θq(ω2)−Θq(ω1)

×
∣

∣

∣
B−1
1/z

(q)
∣

∣

∣

π
Θq(ω2)−Θq(ω1)

. (8.20)

Figure 8.2 shows the behavior of bP vs. ω1 for values of α1 ranging from
0.6 to 0.1. Notice that, since Gz was assumed stable, there is no contri-
bution of the Blaschke product B1/z on the RHS of (8.18). As we see in
this figure, the presence of a nonminimum phase zero in Gy introduces
restrictions on the minimum achievable value of ‖P‖ � . More specifically,
if |P(jω)| is required to be “small” over a range of frequencies where the
nonminimum phase zero of Gy has nonneglectable phase-lag (in rough
lines, when q is within [0,ω1)), then |P(jω)| will necessarily be “large”
at frequencies outside this range. Hence, there is a clear trade-off on the
amount of sensitivity reduction that can be obtained in the ranges [0,ω1)

and [ω1,ω2).
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FIGURE 8.2. Lower bound ��� vs. � � for different values of � � , � � � � � � , � � � � �
,

and a nonminimum phase zero � � � � � .

This trade-off is worsened if, in addition, Gz has an unstable pole, since
then the Blaschke product B1/z in (8.20) may have a considerable contri-
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bution, depending on the position of the pole relative to the zero of Gy.
Figure 8.3 again displays bP vs.ω1, this time for a fixed value of α1 = 0.5,
and three different values of a single real unstable pole of Gz, p = 2, 5, 20.
As we see, the closer the pole and the zero are, the worse the trade-off
induced on the values of |P(jω)|.
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FIGURE 8.3. Lower bound ��� vs. � � for different values of the pole � , � � � � � � ,
� � � � � � , � � � � �

, and a nonminimum phase zero � � � � � .

◦
Example 8.3.1 illustrates the effects of a real nonminimum phase zero of

Gy on the achievable shapes of |P(jω)|. A practical lesson of this example
is that nonminimum phase zeros closer to the jω-axis will impose tougher
restrictions on P. Similar conclusions apply for complex zeros.

It is not difficult to see, after comparing expressions (8.18) and (8.19),
that unstable poles of Gz play a similar role with M, although this time
poles farther from the jω-axis are the most troublesome. We summarize
these conclusions as follows.

(i) ORHP zeros of Gy constrain the magnitude of P. Zeros closer to the
jω-axis impose more severe constraints.

(ii) ORHP poles of Gz constrain the magnitude ofM. Poles farther from
the jω-axis impose more severe constraints.

(iii) The combination of ORHP zeros and poles of the plant worsen the
constraints on both sensitivities. More severe constraints should be
expected if there is a pole close to a zero in the ORHP.

In connection with practical design specifications as those shown in Fig-
ure 8.1, these constraints imply that large peaks in the sensitivities may
occur. For example, this will occur if reduction of P is desired over a fre-
quency range much larger than any nonminimum phase zero of M. Con-
sequently, high sensitivity to disturbances should be expected at an inter-
mediate range of frequencies.
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It also follows from Corollary 8.3.1 and the definition of the Blaschke
product, that nonminimum phase zeros of Gz weaken the constraints on
both sensitivities.

In the following section, we consider more examples for the case that
particular design methodologies are used for the filter design.

8.4 Examples: Kalman Filter

We consider now a particular design methodology, namely, Kalman filter
design, to illustrate how the bounds derived in the previous section can
be used to assess and compare the performance achieved with different
designs. The first example studies a Kalman filter design for an open-loop
unstable, nonminimum phase system (i.e., one having ORHP zeros inGy),
which is affected by process noise with spectrum concentrated at low fre-
quencies.

Example 8.4.1 (Kalman Filter Design). Consider a system of the form
shown in Figure 7.1 in Chapter 7, where G, of the form (7.1) in Chapter 7,
is given by the following matrices

A =

[

0 1

3 −2

]

, B =

[

0

1

]

, C1 =
[

2 1
]

, C2 =
[

−2 1
]

. (8.21)

These data give the following transfer functions for the partition of the
plant shown in Figure 7.2,

Gz(s) =
s+ 2

(s+ 3)(s − 1)
, and Gy(s) =

s− 2

(s+ 3)(s − 1)
. (8.22)

From (8.22), (8.4) and (8.5), we have that P and M have nonminimum
phase zeros, namely, p = 1 ∈ ZP, and q = 2 ∈ ZM. Hence, |B−1

1/z
(q)| =

|B−1
y (p)| = 3 in (8.18) and (8.19).
Arbitrarily choosing ω1 = 1, α2 = 0.5 and ω2 = 100 for specifications

(8.16)-(8.17), leads to the bounds shown in Figure 8.4. In this figure, bP
denotes the lower bound on ‖P‖ � given by (8.20), and bM denotes the
lower bound on ‖M‖ � given by the RHS of (8.19) in Corollary 8.3.1.

The curves in Figure 8.4 hold for any linear filter for the system (7.2) in
Chapter 7 with data (8.21). As an illustration for a particular estimator, we
use a standard Kalman filter (see for example Anderson and Moore, 1979).
Within this paradigm, we will analize the effect of changing the design for
different levels of sensitivity attenuation, i.e., different values of α1 and
ω1 in Figure 8.1.

The estimate provided by the Kalman filter achieves the optimal esti-
mation error in the minimum variance sense, provided that the system
is affected by process and measurement noises that are white and have
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zero mean. The filter is computed by solving an algebraic Riccati equa-
tion parametrized by the system matrices and by the noises incremental
covariances.

In order to build a mechanism to adjust α1 and ω1, we add the follow-
ing hypotheses:

(i) the measurement noise, w, is white with known incremental vari-
ance R, and

(ii) the process input, v, is generated by a low-pass model driven by
white noise,

v̇ = −av+ av0, (8.23)
where a is a positive number that serves as a free parameter, and v0
is a white noise with known incremental varianceQ.

The Kalman filter is then designed for a composite system that includes
the noise model (8.23), and the number a and the ratio Q/R can be used
to adjust the values of α1 andω1 achieved in various designs.

Some typical curves are shown in Figures 8.5 and 8.6, which illustrate
the achieved shapes of |P| and |M| for fixed Q and R and two different
values of a. On the other hand, Figures 8.7 and 8.8 show the achieved
shapes of |P| and |M| for a fixed value a = 1 and two different ratios Q/R.

From various designs, we have extracted those cases for whichω1 could
be reasonably taken as 1, and have compared the corresponding value of
α1 and the peak sensitivities ‖P‖ � and ‖M‖ � . These are shown in Fig-
ures 8.9 and 8.10, respectively. For the sake of comparison, we also show
in these figures the bounds bP and bM plotted earlier in Figure 8.4.

As can be seen from these last figures, the bounds bP and bM are rather
conservative for this example; the peaks found in |P(jω)| and |M(jω)| ap-
proximately double the bounds predicted. ◦

Example 8.4.1 shows that the design trade-offs arising from the essen-
tial limitations imposed by ORHP poles and zeros of the plant can in fact
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be significantly worse than those predicted using the analysis of §8.3. The
strength of this analysis lies on its generality, and the degree of its conser-
vativeness is linked to the particular design methodology employed.

The following example compares the filtering sensitivities resulting from
the previous Kalman Filter design with those achieved by a design that
minimizes the H � norm of weighted versions of P andM.

Example 8.4.2 (Kalman Filter versus H � Designs). Consider again the
plant given by (7.1) in Chapter 7 and the data (8.21). A filter design that
guarantees bounds on the H � norms of the filtering sensitivities can be
achieved using a parametrization of all BEEs developed in Seron and Good-
win (1995). Under this parametrization P can be written as

P = T1 − LT2, (8.24)

where T1 and T2 are proper and stable transfer functions computed from
the data given in (8.21), and L is an arbitrary proper stable transfer func-
tion, which serves as a free parameter. An H � mixed sensitivity problem
(Kwakernaak, 1985) is then obtained if we compute L to minimize

∥

∥

∥

∥

W1(T1 − LT2)

W2LT2

∥

∥

∥

∥

�
, (8.25)

where the weightsW1 andW2 serve to give an adequate shape to the solu-
tion on the jω-axis. Ideally, |W1(jω)| represents the inverse of the desired
shape for |P(jω)|, while W2 serves to impose the condition that M should
roll off at high frequencies. Here, we have selected

W1(s) =
s+ 1/a1

k(s+ 1)
and W2(s) =

0.5s + 1

104
, (8.26)

which are plotted in Figure 8.11 for k = 10 and a1 = 0.2.

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

 ω

 |W
1(

jω
)|

10
−4

10
−2

10
0

10
2

10
4

−10

−8

−6

−4

−2

0

 ω

 lo
g 

|W
2(

jω
)|

FIGURE 8.11. Weighs � � , for � �
� �

and � ��� � � � (left), and � � (right).

By changing the values of k and a1 in W1 we can obtain different de-
signs satisfying specification (8.14). The selection of W1 as in Figure 8.11



8.5 Example: Inverted Pendulum 193

was made to approximately match the shapes obtained by the Kalman fil-
ter in Example 8.4.1; in particular, note that we are requiring P to have
a value close to 1/|W1(0)| = 2 at low frequencies. We point out that the
H � method allows for a lower reduction level simply by changing the
parameters of W1. Moreover, it turns out that this methodology can yield
smaller peaks in the achieved sensitivities than those obtained with the
Kalman filter of the previous example. Figures 8.12 and 8.13 compare the
absolute bounds bP and bM for this system with the H � norms of P and
M obtained with both methodologies for different values of α1. The rest
of the specifications for these curves areω1 = 1, ω2 = 100, and α2 = 0.5.
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As can be seen from Figures 8.12 and 8.13, and as anticipated, the con-
servativeness of the predicted bounds depends on the particular design
technique chosen. In this example, the H � method has a water-bed effect
milder than that of the Kalman filter. Sensitivities corresponding to both
designs are shown in Figures 8.14 and 8.15 for α1 = 2.53. The parameters
for W1 in (8.26) are k = 10 and a1 = 0.2; the parameters for the Kalman
filter are taken as a = 1, R = 1, and Q = 263.

We see from this example that the results given in this chapter can be
effectively used to compare different filter design methods. ◦

8.5 Example: Inverted Pendulum

Consider the inverted pendulum analyzed in §1.3.3 of Chapter 1, and re-
visited in §3.3.3 of Chapter 3. It is well known that this system is observ-
able from the carriage position measurement; however, practical evidence
suggests that it is difficult to estimate the angle θ from the available data.

We will use the framework of Chapters 7 and 8 to study the sensitivity
limitations that apply to the problem of angle estimation from the carriage
position measurement.
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Choosing z = θ, the linearized model for this system (e.g., Middleton,
1991) has the form (7.1) in Chapter 7, where

A =









0 1 0 0

0 0 −gm1/m2 0

0 0 0 1

0 0 (1 +m1/m2)g/` 0









, B =









0

1/m2
0

−1/(m2`)









,

C1 =
[

0 0 1 0
]

, C2 =
[

1 0 0 0
]

.

Herem1 is the mass at the end of the pendulum,m2 is the carriage mass, g
is the gravitational constant, and ` is the pendulum length. These data give
the following transfer functions for the partitioning of the plant shown in
Figure 7.2 of Chapter 7,

Gz =
−1

m2` (s+ p)(s − p)
, and Gy =

(s + q)(s − q)

m2 s2(s + p)(s − p)
, (8.27)

where q =
√

g/` and p = q
√

1 +m1/m2. Say we take q = 1. Choosing
the specification parameters in (8.14) and (8.15) as α1 = 0.25, ω1 = 0.01,
α2 = 0.5, andω2 = 100, Corollary 8.3.1 gives the following lower bounds
on the peak sensitivities

‖S‖ � ≥ 6, and ‖T‖ � ≥ 6. (8.28)

We next design a filter for the above system following the H � mixed
sensitivity minimization procedure outlined in Example 8.4.2. In particu-
lar, we choose the weights in (8.25) as

W1(s) = 0.1
s+ 2

s + 0.01
,
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and W2 as given in (8.26). Figure 8.16 shows the values of log |P(jω)| and
log |M(jω)| achieved by this design, for the mass ratiom1/m2 = 0.2, 0.4, 1.
For m1/m2 = 1, in particular, the peak sensitivities actually achieved are
around two times the values of the lower bounds in (8.28). The reasons
for this conservatism include the fact that the sectionally constant shapes
assumed by Corollary 8.3.1 are actually unrealistic from a practical design
point of view.
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We note that, for the mass ratiom1/m2 = 0.1, and the same specification
parameters as in (8.14) and (8.15), Corollary 8.3.1 gives the lower bounds
in (8.28) equal to 44. Recalling that P maps relative input disturbances to
relative estimation errors (see §7.2.1 in Chapter 7), this validates the claim
made in §1.1 of Chapter 1 that relative input errors of the order of 1% will
appear as angle relative estimation errors of the order of 50%.

8.6 Summary

This chapter has discussed a new concept in the area of filtering, namely
that of sensitivity of the estimation error to process and measurement
noise. These sensitivities always satisfy a complementarity constraint, which
can be used to establish integral bounds on the magnitude of their fre-
quency responses. These bounds give new insights into the fundamental
limits that apply to all linear, bounded error filters.

The utility of the results has been vindicated by specific examples. In
particular, §8.3 and §8.4 have shown that, for a given signal from a system
to be estimated, fundamental design constraints apply to all filtering prob-
lems irrespective of the method used to obtain a specific design. Thus, one
can use the design constraints to judge, a priori, whether or not, a desired
level of performance is achievable. Moreover, the constraints can only be
modified if the intrinsic nature of the problem is changed at source, e.g.,
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by modifying the location of sensors, which, inter-alia, changes the nu-
merator polynomials and hence the bounds in the sensitivity constraints.

Notes and References

This chapter was mainly based on Goodwin et al. (1995), Seron and Goodwin
(1995) and Seron (1995).
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MIMO Filtering

This chapter investigates sensitivity limitations in multivariable linear fil-
tering. Similar to those obtained in Chapter 4 for the control problem, mul-
tivariable integral constraints hold for the MIMO version of the filtering
sensitivities introduced in Chapter 7. Also similar to the control case, there
are different ways to extend the SISO integrals to a MIMO setting. The ap-
proach followed in this chapter emphasizes the trade-offs that arise when
the system is required to satisfy, besides frequency conditions, structural
specifications on the multivariable sensitivities.

In the MIMO case, frequency restrictions similar to those arising in SISO
systems apply to linear combinations of the scalar entries of the filtering
sensitivities P and M. Thus, the penalties imposed by ORHP zeros and
poles are somehow “shared” by the scalar entries of the sensitivities and,
in this sense, the limitations may “relax” with respect to SISO systems.
However, if, in addition to frequency specifications, a particular structure
is required for these functions (e.g., diagonal, diagonal-dominant, trian-
gular, etc.), then, as we will see, extra costs may arise.

The results presented in this chapter can be used to obtain performance
limitations in a variety of filtering applications where multivariable struc-
tural features are of particular interest. To illustrate, we explore the design
trade-offs arising in problems of detection and isolation of system faults.



198 9. MIMO Filtering

9.1 Interpolation Constraints

We consider again the general setting introduced in Chapter 7. As in the
previous chapter, the standing assumption here is that of BEE (see §7.3).
We summarize the conditions required in this chapter for the functions F,
Gz, and Gy defined in §7.1, in the following assumption.

Assumption 9.1.

(i) F is a BEE, i.e., F and Gz − FGy are stable.

(ii) Gz is right invertible and minimum phase.

(iii) GyG−1
z is proper (hereG−1

z is a right inverse of Gz).
◦

Since the plant G is stabilizable, then stability of F and Gz − FGy is a
necessary and sufficient condition for the filter to be a BEE, as defined
in §7.3 in Chapter 8. It can be inferred from condition (i) that unstable
modes shared byGz andGy are canceled1 by a zero of the differenceGz−

FGy, while those unstable poles of Gy that do not appear in Gz must be
necessarily canceled by nonminimum phase zeros of F.

In condition (ii), recall that for Gz to be right invertible it is necessary
that there be at least as many process inputs as signals to be estimated. The
assumption that Gz has no CRHP zeros is made to simplify the analysis.

Condition (iii) is assumed to guarantee that the sensitivities are proper.
It was shown in Chapter 8 that, in the scalar case, ORHP poles of the

system transfer function Gz are zeros of the filtering sensitivity, P, whilst
ORHP zeros of the system transfer functionGy that are not zeros ofGz, are
zeros of the filtering complementary sensitivity, M. The following lemma
generalizes these results to the MIMO case, emphasizing the multivariable
character of the zeros.

Lemma 9.1.1 (Interpolation Constraints). Suppose that G and F satisfy
the hypotheses stated in Assumption 9.1. Then the following conditions
are satisfied by P andM:

(i) P andM are stable and proper.

(ii) Let p ∈ � + be a pole of Gz. Then, there exists a nonzero vector Φ ∈
� n such that

P(p)Φ = 0, and M(p)Φ = Φ. (9.1)

(iii) Let q ∈ � + be a zero of Gy. Then, there exists a nonzero vector
Ψ ∈ � n such that

P(q)Ψ = Ψ, and M(q)Ψ = 0. (9.2)

1In frequency and direction.
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(iv) Let q ∈ � + be a zero ofGz−FGy. Then there exists a nonzero vector
Ψ ∈ � n such that

Ψ∗P(q) = 0, and Ψ∗M(q) = Ψ∗. (9.3)

(v) Let q ∈ � + be a zero of F, and suppose further that the product
GyG

−1
z does not have a pole at q. Then there exists a nonzero vector

Ψ ∈ � n such that

Ψ∗P(q) = Ψ∗, and Ψ∗M(q) = 0. (9.4)

Proof. Stability of P and M follows from the fact that F is a BEE and Gz
is minimum phase; their properness follows from condition (iii). Case (ii)
follows in a straightforward manner from (7.5) by noting that the term
Gz− FGy is stable by Assumption 9.1. For case (iii), we have that there ex-
ists a nonzero vector Ψ1 such that Gy(q)Ψ1 = 0. Since Gz is minimum
phase, then there exists a nonzero vector Ψ such that G−1

z (q)Ψ = Ψ1.
Hence, since F is assumed stable, (9.2) follows. Case (iv) is immediate on
noting that Gz is minimum phase. Finally, for case (v) notice that if q is
not a pole of GyG−1

z , then necessarily there exists a vector Ψ such that
Ψ∗F(q)Gy(q)G

−1
z (q) = 0, and (9.4) follows. �

Remark 9.1.1. Conditions (iv) and (v) depend on the particular choice of
filter and they are stated for completeness. However, our main focus here
is on results that hold irrespective of the particular filter — this is true of
the other cases in Lemma 9.1.1. Yet, as we will see in §9.4, there are filter-
ing applications where zeros of F are directly determined by the unstable
poles of the plant. ◦
Remark 9.1.2. Notice that since the plant is detectable from y, the transfer
function Gy has all the unstable poles of Gz. In consequence, GyG−1

z —
and henceM — has no zeros at any unstable pole of G. ◦

9.2 Poisson Integral Constraints

The interpolation constraints derived in the previous section fix the val-
ues of the filtering sensitivity functions at points in the CRHP determined
by poles and zeros of the plant and filter. In the SISO case addressed in
Chapter 8, the Poisson integral was used to translate these constraints into
equivalent integral relations that must be satisfied by P and M along the
jω-axis. This section extends the results of Chapter 8 to MIMO filtering
problems using the technique suggested by Gómez and Goodwin (1995)
and developed for the multivariable control case in Chapter 4.

We first introduce some preliminary notation. Recalling that P and M
are n × n square transfer matrices, we denote by Pik, and Mik their re-
spective elements in the i-row and k-column. If Φ is a vector in � n, we
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denote its elements by φi, i = 1, . . . , n, i.e., Φ = [φ∗
1, φ

∗
2, . . . , φ

∗
n]∗. Also,

we introduce the index set IΦ , {i ∈ � : φi 6= 0} as the set of indices of the
nonzero elements of Φ.

As before, given a set Zk = {si, i = 1, . . . , nk} of complex numbers in
the ORHP, we define its Blaschke product as the function

Bk(s) =

nk∏

i=1

s − si

s + s̄i
.

If Zk is empty, we define Bk(s) = 1, ∀s. We then have the following result.

Theorem 9.2.1 (Poisson Integral for P). Let q = σq + jωq, σq > 0, be a
zero of Gy, and let Ψ ∈ � n, Ψ 6= 0, be the corresponding zero direction
of M, as described in Lemma 9.1.1 (iii). Then, under Assumption 9.1, for
each index k in IΨ,

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

Pki(jω)
ψi

ψk

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω ≥ 0 . (9.5)

Proof. The proof follows the same general line as that in Chapter 4 —
Gómez and Goodwin (1995) — and is an application of the Poisson in-
tegral formula, as in Freudenberg and Looze (1985), to the elements of
the vector function PΨ : � → � n, which are proper, stable, scalar ratio-
nal functions. Pick one of these elements, say ρk(s) ,

∑n
i=1 Pki(s)ψi,

where k is in IΨ, and let Bk be the Blaschke product of the zeros of ρk
in the ORHP. Then, the function ρ̃(s) , B−1

k (s)ρk(s) is proper, stable, and
minimum phase, which implies that log ρ̃(s) is analytic in the ORHP and
satisfies the conditions of the Poisson integral formula (Theorem A.6.1 in
Appendix A). Evaluating this at s = q, and using the fact that |ρ̃k(jω)| =

|ρk(jω)| yields

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

Pki(jω)ψi

∣

∣

∣

∣

∣

σq

σ2q+(ωq−ω)2
dω = log

∣

∣

∣

∣

∣

B−1
k (q)

n∑

i=1

Pki(q)ψi

∣

∣

∣

∣

∣

= log |B−1
k (q)| + log |ψk| ,

(9.6)

where the last step follows from the interpolation condition P(q)Ψ = Ψ

(notice that ψk 6= 0 by assumption). Since

1

π

∫ �

− �

σq

σ2q + (ωq −ω)2
dω = 1 ,

subtracting log |ψk| from both sides of (9.6) yields

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

Pki(jω)
ψi

ψk

∣

∣

∣

∣

∣

σq

σ2q + (ωq −ω)2
dω = log |B−1

k (q)| . (9.7)
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The proof is then completed on noting that |B−1
k (s)| ≥ 1 at any point s in

� +, and so log |B−1
k (q)| ≥ 0. �

Theorem 9.2.1 establishes that, for each nonminimum phase zero of the
plant Gy, there is a set of integral constraints that limit the values of P on
the jω-axis in an intrinsically vectorial fashion. More specifically, depend-
ing on the characteristics of the input directions associated to the zero,
up to n integral constraints may arise on linear combinations of elements
of P in the same row. If the zero direction happens to be canonical (i.e.,
it has only one nonzero entry) or P is designed to be diagonal, then the
constraints reduce to those of the SISO case.

Recall that, in the SISO case, if the plant is nonminimum phase, then re-
quiring that (as is often desirable) |P(jω)| < 1 over a frequency range, say
Ω, implies that, necessarily, |P(jω)| > 1 at other frequencies. The sever-
ity of this trade-off depends on the relative location of the nonminimum
phase zero and the frequency range Ω. More details and interpretations
were given in Chapter 8.

A similar integral holds for the filtering complementary sensitivity func-
tion, as established below.

Theorem 9.2.2 (Poisson Integral for M). Let p = σp + jωp, σp > 0, be a
pole of Gz, and let Φ ∈ � n, Φ 6= 0, be the corresponding zero direction of
P, as described in Lemma 9.1.1 (ii). Then, under Assumption 9.1, for each
index k in IΦ,

1

π

∫ �

− �
log

∣

∣

∣

∣

∣

n∑

i=1

Mki(jω)
φi

φk

∣

∣

∣

∣

∣

σp

σ2p + (ωp −ω)2
dω ≥ 0 . (9.8)

Proof. The proof follows that of Theorem 9.2.1, this time using the inter-
polation constraint (ii) in Lemma 9.1.1. �

A straightforward corollary of these results emphasizes the vectorial
nature of the associated trade-offs. Let Ω1 , [0,ω1] denote a given range
of frequencies of interest, and assume that the k-row of M satisfies the
following design specifications:

|Mki(jω)| ≤ εki for ω in [ω1,∞], i = 1, . . . , n, (9.9)

where εki, i = 1, . . . , n, are small positive numbers. Let Θs0
(ω1) be the

weighted length of the interval [−ω1,ω1], as defined in (3.33) in Chap-
ter 3. Then, we have the following corollary.

Corollary 9.2.3. Assume that all the conditions of Theorem 9.2.2 hold.
Then, if the k-row of M achieves specifications (9.9), the following in-
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equality must be satisfied,

‖Mkk‖ � +

n∑

i=1
i6=k

∣

∣

∣

∣

φi

φk

∣

∣

∣

∣

‖Mki‖ � ≥







1

εkk +
∑n
i=1
i6=k

∣

∣

∣

φi

φk

∣

∣

∣εki







Θp(ω1)

π−Θp(ω1)

.

(9.10)

Proof. The proof follows immediately from Theorem 9.2.2 by using speci-
fications (9.9) onM (see Corollary 4.3.4 in Chapter 4 for more details). �

As in the SISO case, the corollary shows that the integral relation (9.8)
implies lower bounds on the infinity norm of elements of M. Notice that
the exponent on the RHS of (9.10) is a positive number and its base is
likely to be larger than one if the εki’s are small enough; hence, the more
demanding the specifications, the larger these lower bounds are.

If the zero direction is not canonical, an important difference in the
MIMO case is that the lower bounds apply to a combination of norms of el-
ements, which somehow relaxes the constraint over the SISO case (where
there is only one element). Also, the lower bounds are smaller than in the
SISO case due to the presence of extra positive terms in the denominator
of the RHS of (9.10). In consequence, if M is required to be diagonal (as
often occurs in a number of applications), the constraints on the values of
M on the jω-axis worsen since the off-diagonal elements disappear. We
analyze this in more detail in the following section.

9.3 The Cost of Diagonalization

As was concluded from Corollary 9.2.3, when the zero direction is not
canonical the cost that it induces on each row of P or M can be shared
among various elements of the row. On the other hand, as discussed in
Chapter 4 for the control case, a diagonally decoupled system loses this
potential to alleviate the cost, since all the price is paid by the diagonal
elements alone.

By combining the ideas of Gómez and Goodwin and the parametriza-
tion of all diagonalizing post-compensators given by Kinnaert and Peng
(1995), it is possible to make a precise statement about the cost of diago-
nal decoupling. For convenience, we first recall the result of Kinnaert and
Peng. Given an ` × n stable, proper, left-invertible transfer function H, it
can be factorized as

H = Q

[

H̄

0

]

, (9.11)

whereQ is an `× ` bistable and biproper transfer function and H̄ is an up-
per triangular `× `matrix (Dion and Commault, 1988). The matrix [H̄∗ 0]∗
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is a column Hermite form of H over the ring of stable proper rational
functions and it is unique up to units of this ring. With the aid of this
factorization, Kinnaert and Peng (1995) derived a parametrization of all
stable, proper postcompensators F such that FH is a stable, proper diag-
onal matrix with nonzero diagonal elements. Using this parametrization
for F, the product FH has the form

FH = Q̄R , Q̄diag[R1, R2, . . . , Rn] , (9.12)

where Q̄ is an arbitraryn×n stable, proper, diagonal matrix with nonzero
diagonal elements, and the Rk, k = 1, . . . n, are the functions

Rk(s) ,

∏nk

i=1(s − pi)

(s + σk)nk+rk
. (9.13)

In (9.13), pi, i = 1, . . . nk, are the unstable poles of the k-row of H̄−1 in
(9.11), σk is an arbitrary positive real number, and rk is determined so
that

lim
s � � Rk(s) (k-row of H̄−1) = a nonzero row vector.

Notice that the functions Rk contain information about the zeros ofH, and
their numerators depend on H alone.

Assume next that we are given a filtering problem where the design
objective is to achieve a diagonal complementary sensitivity M. This is
desirable, for example, if the filter is to perform detection and isolation of
system faults, as we will discuss in §9.4. We then have the following result.

Theorem 9.3.1 (Cost of Diagonalization). Let Assumption 9.1 hold. Let
p = σp + jωp, σp > 0, be a pole of Gz, and let Φ ∈ � n, Φ 6= 0, be the cor-
responding zero direction of P, as described in Lemma 9.1.1 (ii). Assume
that GyG−1

z is a stable, proper and left invertible transfer function, with
Hermite form

GyG
−1
z = Q

[

Ḡ

0

]

. (9.14)

Suppose that the filter F has been selected such that M in (7.5) is a stable,
proper diagonal matrix with nonzero diagonal elements. Then, for each
index k in IΦ,

1

π

∫ �

− �
log |Mkk(jω)|

σp

σ2p + (ωp −ω)2
dω = log |B−1

k (p)| , (9.15)

where Bk is the Blaschke product of the unstable poles of the k-row of
Ḡ−1, and where Ḡ is defined in (9.14).

Proof. Note that the assumptions imply that Theorem 9.2.2 holds special-
ized to the diagonal case, i.e.,

1

π

∫ �

− �
log |Mkk(jω)|

σp

σ2p + (ωp −ω)2
dω ≥ 0 .
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The inequality above is turned into an equality similar to (9.7) by adding
the Blaschke product of ORHP zeros of ρk (defined in the proof of The-
orem 9.2.1). Since M has the form (9.12) with H = GyG

−1
z , this Blaschke

product is independent of the filter and equal to the unstable poles of the
k-row of Ḡ−1, with Ḡ defined in (9.14). This completes the proof. �

The following example illustrates the result.

Example 9.3.1. Consider a plant having the following transfer functions.

Gy(s) =















1

s + 1

s− 1

s+ 1
0

0 0
4 − s

(s − 3)(s + 2)
4

s2 + 3s + 5
0

4

s2 + 3s + 5















,

G−1
z (s) =















0
s − 3

s + 2
s+ 1

s+ 3

s+ 1/3

s + 2

0
3 − s

s + 2















.

(9.16)

Note that G−1
z has a zero at p = 3 with input direction

Φ =

[

−1

1

]

,

which implies that integrals of the form (9.8) hold that constrain the fre-
quency response of the rows of the complementary sensitivity M. These
constraints are:

1

π

∫ �

− �
log |Mk1(jω) −Mk2(jω)|

3

ω2 + 9
dω ≥ 0, k = 1, 2. (9.17)

Next we compute the product GyG−1
z , i.e.,

Gy(s)G
−1
z (s) =











s − 1

s + 3

s− 5/3

s+ 1

0
s− 4

(s + 2)2

0 0











,

which is in the Hermite form (9.14) with Q = I. If the filter F is selected to
achieve diagonalization ofM, then necessarilyM has the form (9.12) with
H = GyG

−1
z , i.e.,

M(s) = Q̄(s)









(s− 1)(s − 4)

(s+ σ1)3
0

0
s− 4

(s+ σ2)2









.
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In this case, Theorem 9.3.1 holds, giving the following integral constraints
on the diagonal elements of M:

1

π

∫ �

− �
log |M11(jω)|

3

ω2 + 9
dω = 2.6391,

1

π

∫ �

− �
log |M22(jω)|

3

ω2 + 9
dω = 1.9459.

(9.18)

Now we see that even without imposing specifications on the values of M on
the jω-axis, there are nontrivial bounds arising from the diagonalization.
Indeed, on the one hand it follows from (9.17) that

‖M11 −M12‖ � ≥ 1,
‖M21 −M22‖ � ≥ 1.

On the other hand, it follows from (9.18) — after diagonalizing, i.e.,M12 =

0 = M21 — that

‖M11‖ � ≥ 14,
‖M22‖ � ≥ 7. (9.19)

Therefore, a diagonal M is obtained at the cost of large peaks in its diag-
onal entries. These peaks might be highly undesirable if they happen to
occur at frequencies where M is required to be small. Moreover, it is not
difficult to see that if frequency specifications on the entries of M are im-
posed in addition, the design trade-offs arising from (9.19) will be even
worse. ◦

Theorem 9.3.1 has immediate application in filtering problems where
diagonal sensitivities are desirable. In the next section, we illustrate our
results by studying the problem of detection and isolation of faults in the
context of multivariable filtering.

9.4 Application to Fault Detection

Fault detection and isolation (FDI) finds application in complex multiple
component systems where, for reasons of safety or economics, tolerance to
component failure is required. An approach to achieving fault tolerance2

consists in exploiting the redundancy inherent in the system model, which
is known as model-based FDI.

A common method for model-based FDI is to design a filter that gen-
erates a residual, or fault-sensitive signal, that is distinguishable from zero

2Avoiding the expense of hardware redundancy.
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when a component of the system fails but remains close to zero otherwise.
If the residual has different properties for different component faults, then
it is also possible to isolate the faulty component. A filter that generates a
residual that allows both detection and isolation of faults is called an FDI
filter. A number of techniques are available for constructing FDI filters; see
for example Massoumnia et al. (1989) and the references therein.

Two issues are important in FDI filter design. Firstly, the residual should
be sensitive to faults at those frequencies where the energy of the fault
is likely to be concentrated. Secondly, the residual should be insensitive
to other process disturbances and noise. It is well understood that these
are conflicting objectives, since both sensitivity to faults and insensitivity
to disturbances cannot be achieved at the same frequency. However, the
implications of ORHP poles and zeros ofG for achieving design objectives
over a range of frequencies are less well appreciated.

In this section we show that, by approaching the FDI problem in the
context of multivariable filtering, the Poisson integral constraints of §9.2
are useful to quantify the limitations imposed on FDI filters by ORHP
poles and zeros of G. Furthermore, in connection with §9.3, these con-
straints are shown to be more severe due to a structural requirement of
diagonalization imposed by the condition of isolation.

We recast the FDI problem as a filtering problem within the general
framework of Figure 7.1 in Chapter 7 by taking z as the fault to be de-
tected, and ẑ to be the residual. By choosing the structure ofG, it is possible
to model a wide variety of faults. For example, the schemes of Figure 9.1
represent the important cases of actuator and sensor faults. A fault in the
i-th actuator (or sensor) is modeled by zi 6= 0. Nothing is assumed about
the mode of fault, i.e., z is an arbitrary function of time.
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FIGURE 9.1. Plant models for actuator (left) and sensor (right) faults.

In this context,Mmaps the fault z to the residual ẑ, and Pmaps the fault
to the “detection error” z̃. Thus,M and P quantify the quality of detection.

We will say that F is an FDI filter if

(i) (detection) for all initial conditions in G and F, and in the absence of
disturbances, i.e., v,w = 0, then ẑ(t) → 0; and

(ii) (isolation) if zi 6= 0, then ẑi 6= 0 and ẑj = 0, j 6= i.

Condition (i) is equivalent to the requirement that F is a BEE. Condition (ii)
is equivalent to the requirement that M is diagonal. This is not the only
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structure that allows isolation (Massoumnia et al., 1989), but is often stud-
ied because (a) it renders the problem of isolation trivial, and (b) it permits
isolation of simultaneous faults.

The filtering sensitivity functions corresponding to the problems of ac-
tuator and sensor FDI have the forms given by Table 9.1.

P M

Actuator FDI I− FGy FGy
Sensor FDI I− F F

TABLE 9.1. Filtering sensitivity functions for actuator and sensor FDI.

We illustrate the ideas for the case of sensor faults; similar analyses can
be performed for the case of actuator faults. Notice that, at first sight, the
problem of sensor FDI may appear to be unconstrained, since P and M
only depend on the filter, which is the variable of design. Yet, even for de-
tection alone, F must incorporate information of the unstable dynamics of
the plant, since the filter is a BEE. To see this, let Gy = D̃−1Ñ = ND−1,
where (D̃, Ñ), and (N,D) are left and right coprime factorizations of Gy
(Vidyasagar, 1985). Then, using a parametrization of all BEEs (see e.g.,
Seron and Goodwin, 1995), it is easy to show that F necessarily has the
form F = Q̃D̃, where Q̃ is any stable, proper transfer function of appro-
priate dimensions. Therefore,M in the case of sensor FDI has zeros at the
unstable poles of the plant. In addition, if isolation is required, then the
filter must not only be a BEE, but also diagonalize the filtering comple-
mentary sensitivity M. As we have seen in §9.3, this has the associated
cost — quantified by (9.15) — of further worsening the design limitations
arising from unstable poles of the plant with noncanonical directions.

For sensor FDI, M not only measures the quality of detection as men-
tioned above, but it also maps measurement noisew and the relative effect
of the input disturbance v to both ẑ and z̃, the residual and detection error
respectively. Hence P and M may be used to specify the properties of the
filter to adequately detect faults and reject disturbances. These objectives
can sometimes be conflicting, as is the case for input disturbances and
low frequency faults, but can successfully be achieved, for example, in the
case of low frequency faults and high frequency disturbances. In the lat-
ter case, a suitable shape for the diagonal elements of M will require that
|Mkk(jω)| be close to one at low frequencies3 and close to zero at high
frequencies where the power spectrum of the disturbance concentrates its
energy. These objectives can be translated into the following design speci-
fications:

(i) |Mkk(jω)| ≈ 1 on [0,ω1],

3For the � -residual to be sensitive to the � -fault, we require ˜� � to be small, and therefore
� � � � ��� � � � to be close to one at frequencies where the fault is assumed to occur.
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(ii) |Mkk(jω)| < εk < 1 on [ω2,∞],

with ω1 < ω2. Using these requirements and Theorem 9.3.1 it is easy to
see that the following lower bound holds for the peak ofMkk betweenω1
and ω2.

Corollary 9.4.1. Assume that the conditions of Theorem 9.3.1 hold. Then
the following inequality is satisfied:

sup
ω∈[ω1,ω2]

|Mkk(jω)| ≥
(

1

εk

)

π−Θp(ω2)

Θp(ω2)−Θp(ω1)

. (9.20)

Proof. Immediate from Theorem 9.3.1 and the given specifications. �

We can argue from the above corollary that a large peak may occur if
εk is too small, or if ω1 is too close to ω2. As just discussed, this may
have a deleterious impact on detection if there are input disturbances with
frequency content within [ω1,ω2].

Corollary 9.4.1 shows the trade-offs in sensor FDI due to the constraints
imposed by unstable poles of the plant Gy. Similar trade-offs occur in the
case of actuator FDI in connection with nonminimum phase zeros of Gy.
These results may also be extended to the case of general component FDI,
where there are trade-offs due to both ORHP zeros and poles of the plant.

9.5 Summary

In this chapter we have presented integral constraints for multivariable
filtering problems. In contrast to the SISO case, a new dimension arises in
the analysis of MIMO filtering limitations since the structural properties
of these functions have nonneglectable impact. In particular, problems in
which diagonalization is required may introduce additional limitations.
As one possible application, we have considered problems of fault detec-
tion and isolation in a multivariable filtering setting.

Notes and References

The results in this chapter follow Braslavsky et al. (1996). This latter work is the
multivariable extension along the lines of Gómez and Goodwin (1995) of the re-
sults in Seron and Goodwin (1995).

Other results on limitations for multivariable filtering are given in Weller (1996),
where integral constraints on the maximum singular values of the sensitivity func-
tions are obtained. This latter work follows the ideas of Chen (1995).
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Extensions to SISO Prediction

In Chapter 7 we defined filtering sensitivities, P and M, and showed that
they satisfy a complementarity constraint. Furthermore, for the class of
BEEs, we derived, in Chapters 8 and 9, interpolation and integral con-
straints that these sensitivities must satisfy. As seen, these constraints quan-
tify fundamental limits on the filter achievable performance.

Equivalent sensitivities and constraints are obtained for the closely re-
lated estimation problem of BEE-based linear prediction, which is the sub-
ject of the present chapter. As we will see, the additional cost associated
with the process of prediction is clearly quantifiable using the results sum-
marized below by Theorems 10.5.1 and 10.5.2. In particular, we will dis-
cuss the influence of the prediction horizon on the achievable performance,
as measured by the prediction sensitivity functions. The main conclusions
are illustrated by examples where we analyze limitations in predictors
based on Kalman filters.

10.1 General Prediction Problem

The problem of prediction consists of estimating a signal z at time t + τ,
where τ > 0 is the prediction horizon, given observations up to time t. Sim-
ilar to the filtering case, we will assume here that z is a linear combination
of states of a LTI system, of which a different combination of states is avail-
able for measurement.
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It is always possible to construct predictors from a given filter. To this
end, suppose that we want to predict the partial state z of the system

ẋ = Ax + Bv , x(0) = x0 ,

z = C1x+D1v ,

y = C2x+D2v +w ,

(10.1)

where the pair (A,C2) is detectable. For simplicity, we will also assume
that the pair (A,B) is stabilizable. As in the filtering case, we partition the
plant (10.1) as shown in Figure 10.1.
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FIGURE 10.1. Structure of the plant.

Suppose that we have already designed a full-state filter having the
(transfer function) form

X̂(s) = F(s)Y(s) . (10.2)

We will then consider predictors for z of the form

ẑ(t+ τ|t) = C1e
Aτx̂(t) , (10.3)

where x̂(t) is the estimate given by the filter (10.2) at time t, and A is the
evolution matrix of the system (10.1). The notation ẑ(t + τ|t) indicates a
prediction of z at time t+ τ given information up to time t.

To motivate the predictor given by (10.3), note from the system equa-
tions (10.1) that

z(t + τ) = C1e
Aτx(t) +

∫t+τ

t

C1e
A(t+τ−σ)Bv(σ)dσ . (10.4)

Thus, future states are a particular linear combination of the current state
x plus a function of the process input v over the interval [t, t + τ]. If we
assume that at time t we have no information about v(·) over the interval
[t, t+ τ], a natural τ-predictor is constructed as in (10.3).

Example 10.1.1. Under the same assumptions that guarantee the optimal-
ity in the least-squares sense of the Kalman filter (Kalman and Bucy, 1961),
Kailath (1968) showed that the least-squares optimal predictor for the sys-
tem (10.1) has the form (10.3), where x̂(t) is the state estimate given by the
Kalman filter. ◦
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More generally, (10.3) is a sensible choice as a predictor on the assump-
tion that we have already chosen x̂(t) to be reasonable in some sense.

We define the prediction error to be the difference between the future
value of z, i.e., z(t+ τ), and the output of the predictor, namely

z̃(t + τ|t) , z(t+ τ) − ẑ(t + τ|t),

and, using (10.3)

z̃(t + τ|t) = z(t + τ) − C1e
Aτx̂(t) . (10.5)

In the case of prediction, it is convenient to define a modified Laplace
transform. For a function h(t) we define it to be

H(s) ,

∫ �

−τ

e−sth(t)dt .

We do this to avoid an extra term in the transform of the shifted state
z(t + τ), which corresponds to the transform of the state z(t) truncated
to the interval [0, τ]. This additional term is not affine in the transforms
of the input signals (see Appendix C), and hence would prevent us from
obtaining an expression for the mapping from input v(t) to predictor error
z̃(t + τ|t), Hz̃v, as a multiplication operator.

Taking the (modified) Laplace transform of the prediction error in (10.5),
we have,

Z̃(s) = esτZ(s) − C1e
AτX̂(s) . (10.6)

We introduce the transfer function

Fp(s) , C1e
AτF(s) , (10.7)

which maps y to ẑ. Using (10.7) and (10.2) in (10.6), we have

Z̃(s) = esτZ(s) − Fp(s)Y(s) . (10.8)

The prediction loop depicting the above equation is shown in Figure 10.2.
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FIGURE 10.2. General configuration for prediction.

As in the filtering case, the definition of the prediction sensitivities uses
the mappingsHẑv andHz̃v. In the case of prediction, note that we consider
Hẑv as mapping input v(t) to predictor estimate ẑ(t + τ|t), and Hz̃v as
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mapping input v(t) to predictor error z̃(t+τ|t). The operatorHz̃v can then
be derived from (10.8) as

Hz̃v(s) = esτHzv(s) − Fp(s)Hyv(s) . (10.9)

Similarly, from (10.3), (10.2) and (10.7), we have

Hẑv(s) = Fp(s)Hyv(s) . (10.10)

In the following section we use the above mappings in the definition of
sensitivity functions for the problem of prediction.

10.2 Sensitivity Functions

Similarly to the filtering case, we define the prediction sensitivity and com-
plementary sensitivity functions, denoted by P and M, respectively, as1

P(s) , e−sτHz̃v(s)H
−1
zv (s) ,

M(s) , e−sτHẑv(s)H
−1
zv (s) ,

(10.11)

where Hz̃v and Hẑv are the transfer functions given in (10.9) and (10.10),
respectively.

Therefore, we obtain the complementarity constraint for prediction stated
below.

Theorem 10.2.1. The prediction sensitivity and complementary sensitivity
defined in (10.11) satisfy:

P(s) +M(s) = I, (10.12)

at any finite complex frequency s that is not a pole of P and M.

Proof. Using (10.10) in (10.9) yields

Hz̃v +Hẑv = esτHzv . (10.13)

The result then follows on using the definitions (10.11). �

Using the partition of Figure 10.1, we have that Hzv = Gz and Hyv =

Gy, and thus P andM are alternatively expressed by

P(s) = [Gz(s) − e−sτFp(s)Gy(s)]G
−1
z (s) ,

M(s) = e−sτFp(s)Gy(s)G
−1
z (s) .

(10.14)

In the following section, we establish a result concerning predictors de-
rived from BEEs, which essentially shows that the BEE-derived predictor
inherits properties from the originating filter.

1In Appendix C, we show the expression of the prediction sensitivities using the usual
Laplace transform.
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10.3 BEE Derived Predictors

For convenience, we recall from Chapter 7 that a stable filter F in (10.2) is
a BEE if and only if the transfer function (7.18), i.e.,

G̃0(s) = [I− F(s)C2](sI−A)−1 , (10.15)

is stable. This, in turn, implies that the filtering error transfer functionHz̃v,
from process input to filtering error, is stable.

We will show here that the prediction error transfer function Hz̃v in
(10.9) does not have finite CRHP poles whenever the generating filter, x̂,
is a BEE. Note that, due to the presence of the the entire function2 esτ in
the expression of Hz̃v for prediction, we no longer refer to the stability of
the transfer function, but rather to its analyticity for each finite complex
number s in the CRHP.

Lemma 10.3.1 (Analyticity of Hz̃v). Suppose that (10.2) is a BEE, and con-
sider the predictor given by (10.2), (10.3), for the system (10.1). Then the
transfer function Hz̃v in (10.9) is analytic for each finite complex number s
in the CRHP.

Proof. From (10.1) and Figure 10.1, we have

Hzv(s) = C1(sI−A)−1B +D1 ,

Hyv(s) = C2(sI−A)−1B +D2 .
(10.16)

Using (10.16) in (10.9), we can write

Hz̃v(s) = H̃(s) + [esτD1 − eAτF(s)D2] ,

where

H̃(s) , esτC1[I− e−(sI−A)τF(s)C2](sI−A)−1B . (10.17)

Since F is stable, the term between square brackets in the expression ofHz̃v
is analytic for each finite complex number s in the CRHP. We hence focus
on showing that the same is true for H̃.

For each finite complex number s, we can expand e−(sI−A)τ in a power
series as (cf. (A.64) in Appendix A)

e−(sI−A)τ = I+

�∑

k=1

(−τ)k

k!
(sI−A)k .

2We recall that an entire function is a complex valued function of the complex variable �
that is analytic for all finite � .
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Using the above expression and (10.15), H̃ in (10.17) can be written as

H̃(s) = esτC1G̃0(s)B − esτC1

�∑

k=1

(−τ)k

k!
(sI−A)kF(s)C2(sI −A)−1B .

(10.18)
The first term in (10.18) is analytic for each finite s in the CRHP. This is
because G̃0(s) belongs to a BEE by construction, and hence it is a stable
transfer function.

As for the second term in (10.18), the only possibility of unboundedness
in the finite CRHP comes from its value at the unstable poles of (sI−A)−1,
i.e., unstable eigenvalues of the matrix A. Let p be one such eigenvalue.
We will show that the second term in (10.18) is actually bounded when
evaluated at s = p.3

Since the generating filter F is a BEE, we know from Chapter 8 that the
transfer matrix (10.15) is stable. Pre-multiplying (10.15) from the left by
(sI −A), does not introduce extra unstable poles. Hence,

(sI−A)[I − F(s)C2](sI−A)−1 = I− (sI−A)F(s)C2(sI−A)−1

is analytic in the finite CRHP. Thus, s = p cannot be a pole of the above
expression. Evaluating its RHS at s = p, we have that the term (pI −

A)F(p)C2(pI − A)−1 is bounded. Since p is finite, it then follows that the
value at s = p of the sum in (10.18), namely

�∑

k=1

(−τ)k

k!
(pI−A)kF(p)C2(pI−A)−1B, (10.19)

is bounded, showing that the second term in (10.18) is also bounded for
each finite s in the CRHP. This completes the proof that Hz̃v is analytic in
the finite CRHP. �

The above result will be used to establish interpolation constraints in
the following section.

10.4 Interpolation Constraints

In this section we show that the prediction sensitivities satisfy similar in-
terpolation constraints to the ones that affect the filtering sensitivities, plus
additional ones introduced by the prediction process. In the remainder of

3Note that
� � ��� 	 � � � � � � may not have a pole at � � � if � � � � � is not assumed to be

stabilizable. In this case, the second term in (10.18) is trivially bounded. The analysis that
follows, however, is in fact independent of � , and hence shows boundedness of the second
term for � � 	 .
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the analysis for the case of prediction, we will assume that the originating
filter is a BEE and we focus on scalar systems.

Recall first expressions (10.14) of P and M using the partition of Fig-
ure 10.1. As was the case for the filtering sensitivities, P and M are not
necessarily analytic in the finite ORHP, since Gz may have ORHP zeros
that are not canceled in the division. The following result gives necessary
and sufficient conditions for P andM to be analytic functions in the (finite)
ORHP.

Lemma 10.4.1. Consider the prediction sensitivities given in (10.14) and
assume that F in (10.7) is a BEE. Then P and M are analytic in the (finite)
ORHP if and only if one of the following conditions hold:

(i) Gz is minimum phase, or

(ii) every ORHP zero of Gz is also a zero of the product FpGy.

Proof. Immediate from (10.14). �

The following lemma establishes the interpolation constraints that P
and Mmust satisfy at the ORHP poles and zeros of Gy and Gz.

Lemma 10.4.2 (Interpolation Constraints). Assume that the originating
filter F in (10.7) is a BEE. Then P and M must satisfy the following condi-
tions.

(i) If p ∈ � + is a pole of Gz, then

P(p) = 0, and M(p) = 1.

(ii) If q ∈ � + is a zero of Gy that is not also zero of Gz, then

P(q) = 1, and M(q) = 0.

(iii) If q ∈ � + is a zero of Gz that is not also zero of FpGy, then P(s) and
M(s) have a pole at s = q.

Proof. If p ∈ � + is a pole of Gz = C1(sI − A)−1B + D1, then p is an
eigenvalue ofA. It follows from Lemma 10.3.1 thatHz̃v(s) is analytic at s =

p. Case (i) then follows from (10.11), sinceHzv = Gz. Case (ii) is immediate
from (10.14) since F — and hence Fp in (10.7) — is stable. Finally, case (iii)
follows from Lemma 10.4.1. �

As in §8.1 of Chapter 8, we denote by ZP and ZM the sets of ORHP
zeros of P and M respectively, repeated according to their multiplicities.
Then, Lemma 10.4.2 identifies subsets of ZP and ZM. It is easy to see that
ZM is completed by those zeros of Fp that are not also zeros of Gz. As
for P, it may have (possibly infinitely many) other ORHP zeros, which are
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a result of the prediction action. Specifically, the function M in (10.14) is
analytic in a neighborhood of infinity, and, due to the factor e−sτ, it has
an essential singularity at infinity (see Example A.8.3 in Appendix A). It
then follows from the Great Picard Theorem (Conway, 1973) that, in each
neighborhood of infinity, M assumes the value 1 (and hence P assumes
the value zero) an infinite number of times.

The infinite sequence of zeros of P can be further studied by means of
Lemma A.11.1 in Appendix A. Indeed, note that the numerator of P in
(10.14) has the form of f in (A.87), for g1 equal to minus the numerator of
FpGy/Gz and g2 equal to the denominator of FpGy/Gz. Then Lemma A.11.1
applies with

δ = RD
FpGy

Gz
, (10.20)

where RDH denotes the relative degree of the transfer functionH. If δ = 0,
then η is given by

η = − lim
s � �

Gz(s)

Fp(s)Gy(s)
. (10.21)

In §10.5, we restrict our attention to those cases for which δ ≥ 0, where δ
is defined in (10.20). Using Lemma A.11.1 we conclude that P has infinitely
many zeros in the ORHP when δ = 0 and |η| < 1 in (10.21). When δ > 0,
Lemma A.11.1 indicates that the high frequency zeros of P have negative
real part. However, Pmay still have “low frequency” zeros of positive real
part, as shown in the following example.

Example 10.4.1. Let P in (10.14) be given by

P = 1 − e−sτ eaτb

e1s+ e2
,

where e1, e2, b, a are positive real constants. Assume further that b > e2.
The above sensitivity corresponds to prediction of a scalar plant having
an unstable pole at s = 1/a.

The numerator of P is

f(s) = e1s + e2 − beaτe−sτ .

It was shown in Example A.11.1 of Appendix A that f will have ORHP
zeros inside a semicircular contour of radius R < (beaτ−e2)/(e1+τ) in the
ORHP. Moreover, the number of those zeros increases with the prediction
horizon τ. ◦

In summary, ZP in (8.1), in contrast to ZM, may have an infinite number
of elements, which are zeros of P introduced by the prediction process.
Although some information about these zeros can be obtained in specific
cases (see §10.6.2), their exact location is, in general, difficult to compute.

In the following section, we will use the interpolation constraints pro-
vided by Lemma 10.4.2 to derive integral relations on the frequency re-
sponses of the prediction sensitivities.
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10.5 Integral Constraints

Before stating the Poisson integral theorems for prediction, we introduce
some notation. Let the sets (8.1) be given by

ZP = {pi : i = 1, . . . , np} ,

ZM = {qi : i = 1, . . . , nq} ,

and let the corresponding Blaschke products be4

BP(s) =

np∏

i=1

s− pi

s+ pi
, and BM(s) =

nq∏

i=1

s − qi

s + qi
. (10.22)

Note that, according to the discussion in the previous section, np, i.e., the
number of ORHP zeros of P, may be infinity.

Following the filtering case in Chapter 8, we introduce the sets of zeros:

Zz , {s ∈ � + : Gz(s) = 0 and Fp(s)Gy(s) 6= 0} ,

Zy , {s ∈ � + : Gy(s) = 0 and Gz(s) 6= 0} ,

Z1/z , {s ∈ � + : G−1
z (s) = 0} ,

(10.23)

and denote the corresponding Blaschke products by Bz,By and B1/z. Note
that Zz is the set of ORHP poles of P andM.

In order to restrict the behavior at infinity of the sensitivities, we require
the following

Assumption 10.1. δ = RD
FpGy

Gz
≥ 0. ◦

Under Assumption 10.1 the function BzP is analytic and bounded in the
ORHP. It follows from De Branges (1968, Theorem 8, p. 20) that P in (10.14)
can be factorized in the form

P = P̃BP/Bz , (10.24)

where P̃ has no zeros or poles in the ORHP. The convergence of the Blaschke
products in (10.24) also follows from De Branges (1968, Theorem 8, p. 20),
even when np = ∞.

Similarly, M in (10.14) can be factorized as

M = e−sτM̃BM/Bz , (10.25)

where M̃ has no zeros or poles in the ORHP.
The following results use the factorizations (10.24) and (10.25) to obtain

integral constraints on the functions log |P| and log |M|.

4Recall that, if the set � originating the Blaschke product � is empty, we define � � � � � 

,

∀
�
∈ � .
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Theorem 10.5.1 (Poisson Integral for P). Suppose that F in (10.7) is a BEE
and consider the prediction sensitivity, P, defined in (10.14). Let q = σq +

jωq, σq > 0, be a zero of Gy that is not also zero of Gz (i.e., q ∈ Zy in
(10.23)). Then, under Assumption 10.1,

∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω = π log

∣

∣B−1
P (q)

∣

∣ − π log
∣

∣B−1
z (q)

∣

∣ .

(10.26)

Proof. P̃ in (10.24) has no zeros or poles in the ORHP. Also, under Assump-
tion 10.1, BzP is bounded in the ORHP, and thus it is not difficult to see
that the same is true for P̃. Hence, we can apply the Poisson integral for-
mula to log P̃ as in Theorem 3.3.1 of Chapter 3. �

Theorem 10.5.2 (Poisson Integral for M). Suppose that F in (10.7) is a
BEE and consider the prediction complementary sensitivity, M, defined
in (10.14). Let p = σp + jωp, σp > 0, be a pole of Gz (i.e., p ∈ Z1/z in
(10.23)). Then, under Assumption 10.1,

∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω = πσpτ+ π log

∣

∣B−1
M (p)

∣

∣−

π log
∣

∣B−1
z (p)

∣

∣ .

(10.27)

Proof. M̃ in (10.25) has no zeros or poles in the ORHP and, since Assump-
tion 10.1 holds, it is bounded in the ORHP. We can then apply the Poisson
integral formula to log M̃ as in Theorem 3.3.1. �

The results in Theorems 10.5.1 and 10.5.2 are affected by the particular
choice of predictor. However, we readily obtain the following corollary,
which presents a constraint that is independent of the estimator parame-
ters.

Corollary 10.5.3. Consider the prediction sensitivities, P and M, given in
(10.14), and suppose that F in (10.7) is a BEE. Consider the sets of zeros
defined in (10.23), and assume further that every ORHP zero of Gz is also
a zero of Gy (i.e., Zz = ∅). Then, under Assumption 10.1,

(i) if q = σq + jωq ∈ Zy, we have that
∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω ≥ π log

∣

∣

∣B
−1
1/z

(q)
∣

∣

∣ ; (10.28)

(ii) if p = σp + jωp ∈ Z1/z, we have that if, in addition, Zz = ∅, then
∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω ≥ πσpτ + π log

∣

∣B−1
y (p)

∣

∣ .
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Proof. Same as the proof of Corollary 8.2.3. �

Note that the inequality (10.28) would become an equality if we in-
cluded a term corresponding to the Blaschke product of the zeros intro-
duced by the prediction process, which are in general not known.

Clearly from the above results, the problem of prediction is subject to
similar constraints in performance — arising from ORHP poles and zeros
of the plant — as those present in filtering. As a matter of fact, the restric-
tions in prediction are inherently more severe, as can be directly seen, for
example, from the integral constraint on M, which worsens as the pre-
diction horizon τ expands. Indeed, a worse constraint means unavoidable
higher sensitivity to noise, which is naturally expected, since the forecast
of information, i.e., prediction, generally becomes more difficult in noisy
environments (Anderson and Moore, 1979, p. 11).

10.6 Effect of the Prediction Horizon

As a way of interpreting Theorems 10.5.1 and 10.5.2, we provide here a
more detailed discussion of the influence of the prediction horizon on the
frequency responses of the prediction sensitivities and their correspond-
ing integral constraints. In order to keep the analysis simple, we assume
thatGz is minimum phase, i.e., the prediction sensitivities are analytic in the
ORHP. We consider two cases separately: (i) large values of τ, which can
be studied directly from the expressions of the sensitivities; and (ii) inter-
mediate values of τ, which we study using Theorems 10.5.1 and 10.5.2.

10.6.1 Large Values of τ
Consider the expressions of P and M given in (10.14), evaluated on the
imaginary axis. Some preliminary conclusions may be drawn for large
values of the prediction horizon by just analysing the expressions of the
prediction sensitivities. Since the analysis varies if the plant — more pre-
cisely, Gz — is stable or not, we treat these two cases separately.

Unstable Gz

If the system matrix A is unstable and at least one unstable eigenvalue is
observable from z = C1x +D1 v (i.e., Gz is unstable), then, from the defi-
nition of Fp in (10.7), C1eAτ will increase exponentially with τ. Thus, for a
sufficiently large prediction horizon, the second term in the expression of
P in (10.14) will become dominant, and hence the magnitude of both sen-
sitivities on the imaginary axis will tend to be equally large, which means
that there will be equally high sensitivity to noise in both the estimate and
the prediction error.
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Stable Gz

If the system matrix A is stable, then |M(jω)| will become negligible (i.e.,
|M(jω)| → 0) when τ goes beyond several multiples of the dominant time
constant of the system5 observable from z. Correspondingly, the magni-
tude of P(jω) will tend to one at all frequencies. This is the opposite to the
ideal desired situation, and may be attributed to the fact that, after such
a large τ, no more information about the system is carried by the filter
estimate that gives origin to the predictor, and hence there is no point in
predicting beyond this time.

10.6.2 Intermediate Values of τ
For intermediate values of the prediction horizon, we can obtain further
information from the integral constraints (10.26) and (10.27). Once more,
we analyze both unstable and stable cases separately, assuming always
that Gy has nonminimum phase zeros.

Unstable Gz

The first situation that we consider is where both P and M have zeros in-
dependent of the prediction process. This is the case when Gz is unstable
andGy is nonminimum phase (recall that we assume that Gz is minimum
phase). Note that both sensitivities are constrained already in the equiva-
lent filtering problem, as seen from Theorems 8.2.1 and 8.2.2 in Chapter 8.

Under these conditions, the term σpτ on the RHS of (10.27), (where σp is
the real part of each unstable pole ofGz), will be present. Hence, indepen-
dent of the existence of additional ORHP zeros of P originating from the
prediction process, the value of the weighted integral of M, in equation
(10.27), increases directly proportional to the prediction horizon τ, giving
an additional cost to that for filtering under the same conditions.

The corresponding situation for P is not as straightforward, but we can
still draw some conclusions. From §10.4, we know that P has infinitely
many zeros, and the asymptotic location of these zeros depends on the
relative degree δ given in (10.20). When δ > 0, the sequence of zeros of
P converge to the OLHP. However, as shown in Example 10.4.1 (see also
Example 10.6.1 below), the first zeros of the sequence are likely to lie in the
ORHP, and even increase in number with τ. Thus, the term depending on
the inverse of the Blaschke productBP(q) (where q is an ORHP zero ofGy)
on the RHS of (10.26) may be increased with respect to the corresponding
filtering term.

5The dominant time constant of a stable system can be taken as the inverse of the real part
of the eigenvalue with smallest magnitude for the real part.
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When δ = 0, the asymptotic locus of the sequence of prediction zeros of
P depends on the value of η in (10.21), i.e., of

η = − lim
s � �

Gz(s)

C1eAτF(s)Gy(s)
, (10.29)

where we have replaced Fp using (10.7). Indeed, the sequence of zeros
will converge to the ORHP if |η| < 1 in (10.29). Note that η has the vector
C1e

Aτ in its denominator. Since some unstable eigenvalues of A are ob-
servable from z (since Gz is unstable), a similar analysis as before tells us
that the denominator of |η| will grow exponentially with τ. It follows that
there exists a sufficiently large value of τ for which |η| will become smaller
than 1, and then the term depending on the inverse of the Blaschke prod-
uct BP(q) (where q is an ORHP zero of Gy) on the RHS of (10.26) will be
increased with respect to the corresponding filtering term. This produces
an increase in the value of the weighted integral of P, though this time not
directly proportional to τ. The following example illustrates some of these
points.

Example 10.6.1. We consider again the Kalman filter design given in Ex-
ample 8.4.1 of Chapter 8. Following the idea described in §10.1, here we
derive a predictor from the Kalman filter obtained with weights Q = 100

and R = 1. We take the parameter a in (8.23) as a = 1.
In contrast with the filtering case, the prediction sensitivity has an in-

finite number of zeros that may constraint its magnitude on the jω-axis.
As seen in Lemma A.11.1 in Appendix A, the asymptotic location of these
zeros depends on the sign of the number δ in (10.20). In this case we have
that δ is positive, and hence it follows that the high frequency zeros of P
converge to the OLHP. However, P has low frequency ORHP zeros whose
number increase with the prediction horizon. Figures 10.3 and 10.4 show
plots of log |P(s)| for this example in the case of filtering (τ = 0) and pre-
diction with τ = 0.41, respectively. Notice that the negative peaks in the
plots indicate the position of the zeros of P. As we see from these figures,
while there is a single ORHP zero at s = 1 in the filtering case, there are
five (one real and two complex pairs) in the case of prediction.

Figure 10.5 shows the number of zeros of P in the ORHP as a function of
the prediction horizon τ on the interval [0, 1]. Clearly, the number of ORHP
zeros of P is an increasing function of the prediction horizon. This fact will
imply that the weighted integral, on the LHS of (10.26), also increases with
the prediction horizon.

As for M, we know from (10.27) and the previous discussion, that its
weighted integral increases with the prediction horizon as well.

The frequency responses of |P| and |M| are shown in Figures 10.6 and 10.7,
respectively, for three different values of the horizon τ. Note that the fil-
tering sensitivities correspond to τ = 0 in those figures. Also note that, as
τ increases, so does the peak in the sensitivity functions, thus confirming
the additional cost associated with prediction.
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It is interesting to see that, although the magnitude of the prediction
sensitivities exceeds that of the filtering sensitivities over almost every
frequency range, their shapes approximately follow those of the filtering
sensitivities. This phenomenon is in total accordance with what we dis-
cussed before: the same weighted integrals on both sensitivities, which
already constrained the filtering problem, now achieve larger values for
prediction. ◦

Summarizing, for the case of an unstable and nonminimum phase plant,
— i.e., when both sensitivities are already constrained in the filtering case
— the prediction process worsens the constraints imposed by ORHP poles and
zeros of the plant with respect to the corresponding filtering case. Indeed, pre-
diction adds positive terms to the RHSs of (10.27) and (in general) of
(10.26) too. This means that the same weighted integrals on the LHS (with
the prediction sensitivities replacing the filtering sensitivities, of course)
will achieve higher values for prediction. Additional integral constraints on
M also appear when there are new ORHP zeros of P introduced by pre-
diction.

Stable Gz

We analize now the effect of τ when the plant is stable and Gy has ORHP
zeros. In this case onlyM has zeros independent of the prediction horizon,
and therefore, only P is already constrained in the corresponding filtering
problem. Concerning the sequence of zeros of P for τ 6= 0, when δ > 0,
the zeros converge to the OLHP and, for a stable plant, it is not clear that
the first zeros of the sequence would lie in the ORHP. In this case, The-
orems 10.5.1 and 10.5.2 do not indicate additional costs associated with
prediction. The following example illustrates this.

Example 10.6.2 (Stable Plant. Case δ > 0). Consider the plant given by
the following state-space model,

A =

[

−2 −3

1 0

]

, B =

[

1

0

]

, C1 =
[

1 2
]

, C2 =
[

1 −2
]

. (10.30)

For this stable plant, we construct a predictor based on a Kalman filter
obtained with the weights Q = 100 and R = 1, and the same noise model
of Example 8.4.1 with the parameter a in (8.23) taken as a = 1.

Since Gy has a zero at q = 2, then the weighted integral of P in (10.26)
can be evaluated with the RHS equal to 1. This, however, is the same case
as that of filtering for the same problem. The achieved |P(jω)| is shown in
Figure 10.9 for increasing values of the prediction horizon. It is seen from
this figure that, although the value of the weighted integral in (10.26) is
the same as that for filtering, the shape of |P(jω)| varies with τ.

For this example, δ in (10.21) is equal to one. This says that the sequence
of infinite zeros of P converges to the OLHP. Further, no low frequency
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ORHP zero was found for several values of τ smaller than the dominant
time constant of the system. Then, the weighted integral of M in (10.27)
cannot even be stated. Thus, for this example, no additional cost associ-
ated with prediction is given by Theorems 10.5.1 and 10.5.2. Note that, the
achieved |M(jω)|, shown in Figure 10.8, is seen to decrease to zero as τ
increases, whilst the achieved |P(jω)| tends to 1.
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◦
In the case of a stable plant, the interesting situation is then when δ =

0. Assume further that for a prediction horizon much smaller than the
dominant time constant of the system observable from z, |η| in (10.29) is
smaller than 1. For such a τ, then, P has an infinite sequence of zeros, pi
say, converging to the ORHP. Hence, the term depending on the inverse
of the Blaschke product BP(q) (where q is an ORHP zero of Gy) on the
RHS of (10.26) will be increased with respect to the corresponding filtering
term. Similarly, the integral constraint (10.27) holds for each zero pi, with
the terms Re(pi)τ and log |B−1

y (pi)|, on its RHS. The values of both RHSs
in (10.26) and (10.27) are thus clear functions of τ. But this stops when τ
is large enough so that C1eAτ in the denominator of η in (10.29) turns the
value of |η| larger than 1. Thus, unless P has low frequency zeros in the
ORHP, the RHSs of both weighted integrals become independent of τ. In
particular, the integral constraint (10.27) on M disappears.

Example 10.6.3 (Stable Plant. Case δ = 0.). Consider a Kalman filter-
based predictor (Q = 100, R = 1 and a = 1) for the system given by A, B
and C2 in (10.30), but with C1 = [0 1]. In this case, δ = 0 in (10.20). More-
over, it was found that, for τ smaller than approximately 0.77, |η| in (10.29)
was smaller than one. Thus, for 0 < τ < 0.77, P has an infinite sequence
of zeros, pi say, converging to the ORHP. Hence, the term depending on
the inverse of the Blaschke product BP(q), for q = 2 (i.e., the zero of Gy),
on the RHS of (10.26) will be increased with respect to the corresponding
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filtering term. Similarly, the integral constraint (10.27) holds for each zero
pi, with the terms Re(pi)τ and log |B−1

y (pi)|, on its RHS.
Note that the worst constraints for M come from the first zeros of the

infinite sequence of zeros of P, which are the closest to the nonminimum
phase zero of M at q = 2. This is because the magnitude of the inverse
of a Blashke product achieves it maximum at the complex point equal to
the zero that generates it, and then decreases monotonically to 1. It was
found by plotting that, for τ = 0.25 the first pair of prediction zeros of
P where approximately p1,2 = 1.9 ± j14.2. For τ = 0.5 the first pair of
prediction zeros of P where approximately p1,2 = 0.6 ± j7.8. Then, the
RHS of (10.27) is larger for τ = 0.25 than for τ = 0.5, particularly due to the
term Re(pi)τ. This effect is seen from Figure 10.11, where the magnitude
of |M(jω)| decreases as τ increases.

Figure 10.10 shows the achieved shapes of |P(jω)| for three values of τ
in the above-mentioned range. Note that peaks greater than one continue
to appear. However, since it is expected that the level of low frequency
reduction achieved by the filtering sensitivity (τ = 0) should be worsened
by the process of prediction, then the peaks outside this low frequency
range do not exceed those achieved for filtering.
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◦

Summarizing, for the case of stable and nonminimum phase plants, only
the filtering sensitivity P is constrained. In the case of δ = 0, and for a certain
range of values of the prediction horizon, the prediction process adds a
term to the RHSs of (10.26) with respect to the corresponding value for
filtering. This means that the same weighted integral on the LHS of (10.26)
will achieve higher values for prediction. Also, the complementary sensitivityM
will start to be constrained. Moreover, infinitely many integral constraints
(10.27) can be stated on M, one for each of the prediction zeros.
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10.7 Summary

This chapter has extended the sensitivity analysis developed in Chapter 8
for the problem of filtering with bounded error estimators to the case of
prediction.

The results show that there is an additional quantifiable cost associated
with prediction, summarized in Theorems 10.5.1 and 10.5.2. The exact val-
ues of the weighted integrals of P and M are, in general, not computable.
However, we have shown via different situations that the integral con-
straints can be used to study the effect of the prediction horizon on the
frequency responses of the sensitivities.

Notes and References

The sensitivity results of this chapter are based on Seron (1995). Additional mate-
rial was taken from Kailath (1981) and Kailath (1968).
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Extensions to SISO Smoothing

Following similar developments to those in the previous chapter, a the-
ory of design limitations can also be extended to problems of fixed-lag
smoothing. In this chapter, we define appropriate complementary sensi-
tivities and obtain fundamental limitations that apply to scalar smoothers
derived from BEEs.

As opposed to the case of prediction, which induces additional costs
to that encountered in the corresponding filtering problem, smoothing
accounts for an improvement in performance proportional to the extent
of the smoothing lag. This is certainly unsurprising, since more informa-
tion is taken into account in order to produce a smoothed estimate, and so
smoothers will generally be expected to perform better than filters (An-
derson and Moore, 1979, Chapter 7). Here, we cast in a sensitivity setting
this well-known improvement phenomenon due to smoothing.

11.1 General Smoothing Problem

The fixed lag smoothing problem consists of estimating a signal z at time
t − τ, where τ > 0 is the smoothing lag, given measurements up to time
t. Hence, smoothing may be seen as the counterpart of the problem of
prediction dealt with in the preceding chapter.

Many solutions to the continuous time smoothing problem appeared
in the literature during the 1960’s. Kailath and Frost (1968) showed that
many of the already existing formulae could be derived using the innova-
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tions approach to least-squares estimation. In their work it was also estab-
lished that the least-squares smoothing solution is completely determined
by the results for the least-squares filtering problem. This result is valid
for a general second order (finite-variance) signal process in white noise.
The class of smoothers that we consider here is inspired by the general
smoothing formula of Kailath and Frost (see also Kailath, 1981).

As before, we assume that the signal z is the partial state of the system

ẋ = Ax + Bv , x(0) = x0 ,

z = C1x+D1v ,

y = C2x+D2v +w ,

(11.1)

where the pair (A,C2) is detectable and the pair (A,B) is stabilizable. Sup-
pose that we have constructed the following full-state filter for (11.1):

ξ̇ = Âξ+ Kyy, ξ(0) = ξ0 ,

x̂ = Ĉξ ,
(11.2)

and let its Laplace transform be

X̂(s) = F(s)Y(s) . (11.3)

We define the associated innovations process as (see §7.2.1 in Chapter 7)

ι , y − C2x̂ , (11.4)

where y is the measured output of (11.1). The innovations process ι(t)
may be regarded as the new information that is brought into the system
at time t (Kailath, 1968).

In the present problem of smoothing, we want to estimate z(t−τ) using
all the data up to time t. A natural way to do this is to add a linear function
of the innovations process over the interval [t − τ, t] to the filtered esti-
mate at time t− τ. Motivated by the structure of the optimal least-squares
smoother (Kailath and Frost, 1968), we will then consider smoothers of the
form

ẑ(t− τ|t) = C1x̂(t − τ) +

∫t

t−τ

C1V1e
Â ′(σ−t+τ)V2ι(σ)dσ , (11.5)

where Â ′ is the transpose of the state transition matrix of the filter (11.2),
and V1, V2 are constant matrices of appropriate dimensions. The notation
ẑ(t− τ|t) indicates estimation at time t− τ given information up to time t.
Note that, for consistency with the definition of the filter (11.2), the matrix
V1 must be of the form V1 = ĈV̄1, for some matrix V̄1.

Smoothers of the form (11.5) include, for example, the least-squares
smoother of Kailath and Frost (1968).
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Example 11.1.1. Assume that, in (11.1), D1 = D2 = 0, and v and w are
uncorrelated white noises with incremental covariances equal toQ and R,
respectively. Further, assume that the initial condition x(0) is a zero-mean
random variable uncorrelated with the process noise v.

Let x̂(t) be the state estimate given by the Kalman filter for the system
(11.1) and let Φ ≥ 0 be a stabilizing solution to the Riccati equation

AΦ +ΦA ′ + BQB ′ −ΦC ′
2R

−1C2Φ = 0. (11.6)

Using the innovations technique, Kailath and Frost (1968) showed that a
fixed lag (τ > 0) least-squares smoother for the full-state x can be derived
from the Kalman filter as follows

x̂(t− τ|t) = x̂(t − τ) +

∫t

t−τ

ΦeÂ
′(σ−t+τ)C ′

2R
−1ι(σ)dσ , (11.7)

i.e., in the general expression (11.5), the special choices V1 = Φ and V2 =

C ′
2R

−1 are made in this particular design methodology. ◦
We define the smoothing error to be the difference between the past

value of z, i.e., z(t− τ), and the output of the smoother, namely

z̃(t− τ|t) , z(t − τ) − ẑ(t− τ|t) .

Using (11.5), we have

z̃(t− τ|t) = z(t− τ)−C1x̂(t− τ)−

∫ t

t−τ

C1V1e
Â ′(σ−t+τ)V2ι(σ)dσ . (11.8)

As before, we introduce the input-output operators Hẑv, mapping in-
put v(t) to smoother estimate ẑ(t − τ|t), and Hz̃v, mapping input v(t) to
smoothing error z̃(t − τ|t). In order to define the smoothing sensitivity
functions, we require the Laplace transforms of these operators. We start
deriving the transform of the integral in (11.8). Making the change of vari-
able α = t − σ in this integral, we obtain, assuming that ι(t) = 0, t < 0,

∫t

t−τ

C1V1e
Â ′(σ−t+τ)V2ι(σ)dσ =

∫τ

0

C1V1e
Â ′(τ−α)V2ι(t− α)dα

=

∫t

0

C1V1e
Â ′(τ−α)V2ι(t− α)dα

,

∫t

0

Hs(α) ι(t− α)dα

= (Hs ∗ ι)(t) , (11.9)

where the symbol “∗” denotes real convolution and where the functionHs
is defined as (Anderson and Doan, 1977)

Hs(t) =

{
C1V1e

Â ′(τ−t)V2 if 0 ≤ t ≤ τ,
0 otherwise.
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It thus follows that the Laplace transform of (11.9) is Hs(s)I(s), where I

denotes the Laplace transform of the innovations, and where

Hs(s) , C1V1(sI + Â ′)−1
[

eτÂ
′

− e−sτI
]

V2 . (11.10)

The transforms of the smoother (11.5), and of the smoothing error (11.8),
are then given by

Ẑ(s) = C1e
−sτX̂(s) +Hs(s)I(s),

Z̃(s) = e−sτZ(s) − C1e
−sτX̂(s) −Hs(s)I(s) .

(11.11)

Next, note from (11.4) and (11.3) that the transform of the innovations is
given by

I(s) = [I− C2F(s)]Y(s) . (11.12)

Hence, using (11.3) and (11.12), the equations in (11.11) can be written as

Ẑ(s) = Fs(s)Y(s) ,

Z̃(s) = e−sτZ(s) − Fs(s)Y(s) ,
(11.13)

where we have used the definition

Fs(s) , e−sτC1F(s) +Hs(s)[I− C2F(s)] , (11.14)

which is the transfer function that maps y to ẑ. The smoothing loop de-
picting equations (11.13) is shown in Figure 11.1.
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FIGURE 11.1. General configuration for smoothing.

The operators Hẑv and Hz̃v can now be derived from (11.13) as

Hẑv(s) = Fs(s)Hyv(s) , (11.15)
Hz̃v(s) = e−sτHzv(s) − Fs(s)Hyv(s) . (11.16)

In the following section we use the above mappings in the definition of
sensitivity functions for fixed-lag smoothing.

11.2 Sensitivity Functions

As for the filtering and prediction problems, we define the smoothing sen-
sitivity and complementary sensitivity functions, denoted also by P and M,
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respectively, as

P(s) , esτHz̃v(s)H
−1
zv (s) ,

M(s) , esτHẑv(s)H
−1
zv (s) ,

(11.17)

where Hz̃v and Hẑv are the transfer functions given in (11.16) and (11.15),
respectively.

Therefore, we obtain the complementarity constraint for smoothing stated
below.

Theorem 11.2.1. The smoothing sensitivity and complementary sensitiv-
ity defined in (11.17) satisfy:

P(s) +M(s) = I , (11.18)

at any finite complex frequency s that is not a pole of P and M.

Proof. Using (11.15) in (11.16) yields

Hz̃v +Hẑv = e−sτHzv . (11.19)

The result then follows on using the definitions (11.17). �

In the following section, we establish a result concerning smoothers de-
rived from BEEs.

11.3 BEE Derived Smoothers

We will show here that the smoothing error transfer functionHz̃v in (11.16)
does not have finite CRHP poles whenever the generating filter, F in (11.3),
is a BEE. Recall from Chapter 7 that a stable full-state filter F is a BEE if and
only if the transfer function (7.18) is stable.

We first show that the smoother transfer function Fs in (11.14) is analytic
in the finite CRHP if the generating filter F is stable.

Lemma 11.3.1. If F is stable then Fs(s) in (11.14) is analytic at each finite
complex number s in the CRHP.

Proof. Since F in (11.14) is stable, it only remains to show thatHs is analytic
in the finite CRHP. In fact, Hs is an entire function, i.e., analytic for all
finite complex frequency s. This is because the factor [eτÂ

′

− e−sτI] in
the expression for Hs in (11.10) cancels the unstable poles of (sI + Â ′)−1.
Indeed,

eτÂ
′

− e−sτI = e−sτ[eτ(sI+Â
′) − I]

= e−sτ

�∑

k=1

(−τ)k

k!
(sI+ Â ′)k ,
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and so

Hs = C1V1(sI + Â ′)−1[eτÂ
′

− e−sτI]V2

= e−sτC1V1

�∑

k=1

(−τ)k

k!
(sI+ Â ′)k−1

is analytic in the whole finite complex plane. Hence the result follows. �

We then have the following result on analyticity of Hz̃v.

Lemma 11.3.2. Consider the smoother given by (11.3), (11.5), for the sys-
tem (11.1). Suppose that (11.3) is a BEE. Then the transfer function Hz̃v in
(11.16) is analytic for each finite complex number s in the CRHP.

Proof. Replacing Fs from (11.14) into (11.16), we can write

Hz̃v(s) = e−sτH̃1(s) −Hs(s)H̃2(s) , (11.20)

where

H̃1 , Hzv − C1FHyv ,

H̃2 , (I − C2F)Hyv .

Using the expressions for Hzv and Hyv given in (10.16), yields

H̃1(s) = C1[I − F(s)C2](sI −A)−1B +D1 − C1F(s)D2 ,

H̃2(s) = C2[I − F(s)C2](sI −A)−1B + [I− C2F(s)]D2 ,

which are stable transfer functions since F is a BEE (i.e., F and [I−F(s)C2](sI−

A)−1 are stable). SinceHs is entire (as shown in the proof of Lemma 11.3.1),
inspection of (11.20) then shows thatHz̃v in is analytic for each finite com-
plex number s in the CRHP. This completes the proof. �

The above results will be used to establish interpolation constraints in
the following section.

11.4 Interpolation Constraints

In this section we extend the result of §10.4 in Chapter 10 to the case of
smoothing. In the remainder of the analysis of the smoothing problem,
we will assume that the originating filter is a BEE and we focus on scalar
systems.

We first express P and M in (10.11) using the partition of Figure 10.1.
Since Hzv = Gz and Hyv = Gy, we have that

P(s) = [Gz(s) − esτFs(s)Gy(s)]G
−1
z (s) ,

M(s) = esτFs(s)Gy(s)G
−1
z (s) .

(11.21)
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As was the case for the filtering and prediction problems, P andM are not
necessarily analytic in the finite ORHP. The following result gives neces-
sary and sufficient conditions for P and M to be analytic functions in the
(finite) ORHP.

Lemma 11.4.1. Consider the smoothing sensitivities given in (11.21) and
assume that F in (11.14) is a BEE. Then P and M are analytic in the (finite)
ORHP if and only if one of the following conditions hold:

(i) Gz is minimum phase, or

(ii) every ORHP zero of Gz is also a zero of the product FsGy.

Proof. Immediate from (11.21) and Lemma 11.3.1. �

The following lemma establishes the interpolation constraints that P
and Mmust satisfy at the ORHP poles and zeros of Gy and Gz.

Lemma 11.4.2 (Interpolation Constraints). Assume that the originating
filter F in (11.14) is a BEE. Then P andMmust satisfy the following condi-
tions.

(i) If p ∈ � + is a pole of Gz, then

P(p) = 0, and M(p) = 1.

(ii) If q ∈ � + is a zero of Gy that is not also zero of Gz, then

P(q) = 1, and M(q) = 0.

(iii) If q ∈ � + is a zero of Gz that is not also zero of FsGy, then P(s) and
M(s) have a pole at s = q.

Proof. Case (i) follows from (11.17), on noting thatHz̃v(s) is analytic in the
ORHP by Lemma 11.3.2 and hence it cannot cancel any unstable pole of
Gz. Case (ii) is immediate from (11.21) since Fs is stable by Lemma 11.3.1.
Finally, case (iii) follows from Lemma 11.4.1. �

Recall from §8.1 in Chapter 8 that we denote by ZP and ZM the sets of
ORHP zeros of P and M respectively, repeated according to their multi-
plicities. Then, Lemma 11.4.2 identifies subsets of ZP and ZM. However,
these zeros are in general only a proper subset of the complete set of zeros
of the smoothing sensitivities. In the case of prediction, we have shown
in §10.4 of Chapter 10, that P may have ORHP zeros other than the poles
of Gz. Here, both sensitivities P and M may incorporate other ORHP zeros
that are inherent to the process of smoothing. Indeed, it is easy to see that
P andM can be written as

P = esτ
f1

d1
, and M = esτ

f2

d2
,
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where d1 and d2 are polynomials in s, and f1 and f2 have the form of
(A.87) in Appendix A, i.e.,

fi(s) = gi1(s)e
−sτ + gi2(s) , i = 1, 2.

Therefore, from Lemma A.11.1 in Appendix A (on zeros of entire func-
tions), we have that both P and M have an infinite sequence of zeros con-
verging to infinity. Furthermore, according to the relative orders of the
pairs (gi1, g

i
2), i = 1, 2, (and depending on the ratio between the high-

est order coefficients if they have the same order), some of these zeros
(possibly infinitely many) may have positive real parts. A further anal-
ysis1 shows that P has generically infinitely many zeros converging to
the ORHP, whilst the situation for M cannot, in general, be predicted.
However, we remark that the complementary sensitivity M achieved by
the smoother derived from the Kalman filter (see Example 11.1.1) has in-
finitely many zeros converging to the OLHP.

In summary, both sets of zeros ZP and ZM may have an infinite number
of elements — other than those identified in Lemma 11.4.2 — which are
zeros of P andM introduced by the smoothing process.

In the following section, we will use the information of Lemma 11.4.2
to derive Poisson integral constraints on the frequency responses of the
smoothing sensitivities.

11.5 Integral Constraints

Let the Blaschke products corresponding to the sets ZP and ZM be given
by (10.22) in Chapter 10, where now both np and nq may be infinity. Also,
similar to Chapter 10, we introduce the sets of zeros:

Zz , {s ∈ � + : Gz(s) = 0 and Fs(s)Gy(s) 6= 0} ,
Zy , {s ∈ � + : Gy(s) = 0 and Gz(s) 6= 0} ,

Z1/z , {s ∈ � + : G−1
z (s) = 0} ,

(11.22)

and also denote the corresponding Blaschke products by Bz, By and B1/z.
In order to restrict the behavior at infinity of the sensitivities, we require

the following assumption on the relative degree of the ratio Gy/Gz.

Assumption 11.1. F in (11.14) is proper and RD
Gy

Gz
≥ 0. ◦

Under Assumption 11.1, the rational factors of P and M in (11.21) are
proper. It can then be seen by inspection of (11.21) and (11.14) that, un-
der Assumption 11.1, the functions e−sτP and e−sτM will be bounded

1See Seron (1995) for more details.
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functions for s → ∞ in the ORHP. It thus follows from De Branges (1968,
Theorem 8, p.20) that P and M in (11.21) can be factored as

P = esτP̃BP/Bz ,

M = esτM̃BM/Bz ,
(11.23)

where P̃ and M̃ have no zeros or poles in the ORHP. The convergence of
the Blaschke products in (11.23) also follows from De Branges (1968), even
when np = ∞ and/or nq = ∞.

The smoothing sensitivities satisfy the following integral constraints.

Theorem 11.5.1 (Poisson Integral for P). Suppose that F in (11.14) is a
BEE and consider the smoothing sensitivity, P, defined in (11.21). Let q =

σq + jωq, σq > 0, be a zero of Gy that is not also zero of Gz (i.e., q ∈ Zy in
(11.22)). Then, under Assumption 11.1,
∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω = π log

∣

∣B−1
P (q)

∣

∣ − π log
∣

∣B−1
z (q)

∣

∣−

πσqτ.

(11.24)

Proof. P̃ in (11.23) has no zeros or poles in the ORHP. Also, under As-
sumption 11.1, e−sτBzP is bounded in the ORHP, and it is not difficult to
see that the same is true for P̃. Hence, we can apply the Poisson integral
formula to log P̃ as in Theorem 3.3.1 of Chapter 3. �

Theorem 11.5.2 (Poisson Integral for M). Suppose that F in (11.14) is a
BEE and consider the smoothing complementary sensitivity, M, defined
in (11.21). Let p = σp + jωp, σp > 0, be a pole of Gz (i.e., p ∈ Z1/z in
(11.22)). Then, under Assumption 11.1,
∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω = π log

∣

∣B−1
M (p)

∣

∣− π log
∣

∣B−1
z (p)

∣

∣−

πσpτ.

(11.25)

Proof. Similar to the proof of Theorem 11.5.1. �

The following corollary gives integral constraints that are independent
of the estimator parameters.

Corollary 11.5.3. Consider the smoothing sensitivities, P and M, given in
(11.21), and suppose that F in (11.14) is a BEE. Consider the sets of zeros
defined in (11.22), and assume further that every ORHP zero of Gz is also
a zero of Gy (i.e., Zz = ∅). Then, under Assumption 11.1,
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(i) if q = σq + jωq ∈ Zy, we have that
∫ �

− �
log |P(jω)|

σq

σ2q + (ωq −ω)2
dω ≥ π log

∣

∣

∣
B−1
1/z

(q)
∣

∣

∣
− πσqτ;

(11.26)

(ii) if p = σp + jωp ∈ Z1/z, we have that
∫ �

− �
log |M(jω)|

σp

σ2p + (ωp −ω)2
dω ≥ π log

∣

∣B−1
y (p)

∣

∣− πσpτ.

Proof. Same as the proof of Corollary 8.2.3 in Chapter 8. �

Note that a term proportional to the smoothing lag appears with a neg-
ative sign on the RHS of the integral constraints for both sensitivities. This
effect is analyzed next.

11.5.1 Effect of the Smoothing Lag
As we discussed for the prediction problem, the effect of smoothing will
be more dramatic when the original filtering problem has both sensitivi-
ties constrained. This is the case, for example, whenGz is minimum phase
but has an unstable pole, p say, and Gy has a nonminimum phase zero, q
say. Under these conditions, there is an integral constrain on P of the form
(11.24) where σq = Re(q) is fixed independently of τ. Analogously, an in-
tegral constraint of the form (11.25) can be stated on M, with σp = Re(p)

fixed for all τ.
From the discussion at the end of §11.4, we can argue that P will gen-

erally have an infinite sequence of zeros converging to the ORHP. Also,
we may assume that the infinite sequence of zeros of M converges to the
OLHP (this is the case, for example, for the smoother derived from the
Kalman filter). Then, the term log |B−1

P (q)| on the RHS of (11.24) will be en-
larged by the inverse Blaschke product of the infinite zeros of P, whereas
the term log |B−1

M (q)| on the RHS of (11.25) will probably not be larger than
the corresponding term for filtering.

The improvement due to smoothing is now clear for M. Indeed, the
term −σpτ, for σp = Re(p) fixed for all τ, will continuously reduce the
value of the weighted integral (11.25) as the smoothing lag increases, until
the constraint finally disappears. This means that the same weighted integral
on the LHS (with the smoothing complementary sensitivity M replacing
the corresponding one for filtering) will achieve a lower value for smoothing.

The integral constraint (11.24) for P also has the negative linear term
in τ, −σqτ, but the enlarged term log |B−1

P (q)| is adding to the value of
the integral. Evidently, the lower bound given by the inequality in (11.26)
decreases with the smoothing lag. However, since we cannot, in general,
evaluate the Blaschke product, we do not have an exact estimate of how
tight this bound may be.
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11.6 Sensitivity Improvement of the Optimal
Smoother

The improvement that smoothing represents upon filtering is a well-known
fact in the filtering literature. Indeed, it has been proven for the case of op-
timal smoothers that the smoothing error variance is always lower than
the filtering error variance (Anderson and Chirarattananon, 1971).

As we have discussed in §11.5.1, there is also an improvement in sen-
sitivity associated with smoothing, in the sense that design restrictions
imposed by ORHP poles and zeros of the plant relax with the smoothing
lag. However, even for a large smoothing lag, these results only show less
stringent design constraints, and do not guarantee the reduction of peaks
in the values of |P| and |M| on the jω-axis.

In this section, we give a more precise result concerning improvement
in sensitivity by smoothing. We will see that for the class of smoothers
based on the Kalman filter, i.e., smoothers that are optimal in the least-
squares sense, the frequency responses of both smoothing sensitivities P
andM have no peak values greater than one provided that the smoothing
lag is sufficiently large. In fact, we will see that a smoothing lag of several
times the dominant time constant of the Kalman filter, essentially achieves
all the possible improvement in sensitivity reduction. We then illustrate
these results with two numerical examples.

Consider then the smoother based on least squares presented in Exam-
ple 11.1.1, where the plant is given by (11.1) with D1 = D2 = 0. We will
assume that the solution, Φ, of the Riccati equation (11.6) is positive defi-
nite. Further, we assume that the system evolution matrix A in (11.1) has
no eigenvalues on the imaginary axis. Also, we take the process noise in-
cremental covariance R = 1 for simplicity of notation.

Let τ = τ̄ � τmax(Â), where τmax(Â) is the dominant time constant2

of the Kalman filter. It is shown in Lemma D.0.3 in Appendix D that, for
τ = τ̄, the scalar smoothing sensitivities in (11.21) are approximately given
by

M[τ̄](s) = QHιv(−s)Hιv(s) ,

P[τ̄](s) = 1 −QHιv(−s)Hιv(s) ,
(11.27)

whereHιv is the transfer function from the process input, v, to the innova-
tions process ι = y − C2x̂ corresponding to the Kalman filter (see (D.2) in
Appendix D), and given by

Hιv = H(sI − Â)−1B . (11.28)

2See the footnote on page 220.
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The following result shows that the modulus of M[τ̄] and P[τ̄] on the
imaginary axis is bounded above by one.

Theorem 11.6.1. Consider the expressions (11.27) of the smoothing sensi-
tivities for a smoothing lag τ = τ̄ � τmax(Â). Assume that the evolution
matrix A of the system to be estimated has no eigenvalues on the imagi-
nary axis. Then

‖M[τ̄]‖ � < 1 ,

‖P[τ̄]‖ � = 1 .
(11.29)

Proof. We first show that ‖Hιv
√
Q‖ � < 1, where Hιv is given in (11.28).

Since Â has no imaginary eigenvalues, we can use the result that

‖Hιv
√

Q‖ � < 1

if and only if the Hamiltonian matrix

AH ,

[

Â BQB ′

−C ′
2C2 −Â ′

]

(11.30)

has no eigenvalues on the imaginary axis (Willems, 1971b).
We thus compute

|sI−AH| =

∣

∣

∣

∣

sI− Â −BQB ′

C ′
2C2 sI+ Â ′

∣

∣

∣

∣

=

∣

∣

∣

∣

[

I 0

0 Φ

] [

sI− Â −BQB ′

C ′
2C2 sI+ Â ′

] [

I 0

0 Φ−1

]∣

∣

∣

∣

=

∣

∣

∣

∣

sI− Â −BQB ′Φ−1

ΦC ′
2C2 sI+ΦÂ ′Φ−1

∣

∣

∣

∣

=

∣

∣

∣

∣

sI−A+ΦC ′
2C2 −BQB ′Φ−1

ΦC ′
2C2 sI−A − BQB ′Φ−1

∣

∣

∣

∣

=

∣

∣

∣

∣

sI−A 0

ΦC ′
2C2 sI−A− BQB ′Φ−1 +ΦC ′

2C2

∣

∣

∣

∣

=

∣

∣

∣

∣

sI−A 0

ΦC ′
2C2 sI+ΦA ′Φ−1

∣

∣

∣

∣

,

where we have used the Riccati equation (11.6) in the form ΦÂ ′Φ−1 =

Φ(A ′ − C ′
2C2Φ)Φ−1 = −(A + BQB ′Φ−1), and applied some elementary

algebra of determinants.
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It follows that AH has no eigenvalues on the imaginary axis since the
evolution matrix of the Kalman filter, Â, is a stability matrix, andA has no
eigenvalues on the imaginary axis by assumption. Hence, ‖Hιv

√
Q‖ � < 1

and thus, from (11.27),

‖M[τ̄]‖ � ≤ ‖Hιv
√

Q‖2� < 1.

Now note that 0 ≤ Q|Hιv(jω)|2 < 1 implies that P[τ̄] in (11.27) satisfies
0 < P[τ̄](jω) ≤ 1. Thus

‖P[τ̄]‖ � = 1

since Hιv is strictly proper. �

Theorem 11.6.1 shows that the frequency responses of the smoothing
sensitivities will experience no peaks above one if the smoothing lag is
chosen several times greater than the dominant time constant of the filter.
We emphasize that the result holds for unstable and nonminimum phase
systems, which were shown in Chapter 8 to produce filtering sensitivities
with large peaks above one.

The following examples illustrate Theorem 11.6.1 for the cases of unsta-
ble and stable plants.

Example 11.6.1 (Unstable Plant). We consider again the Kalman filter
given in Example 8.4.1 of Chapter 8. Here we construct a smoother as in
(11.7), derived from the Kalman filter obtained for the weights Q = 100

and R = 1. We take the parameter a in (8.23) as a = 1.
The frequency responses of |P| and |M| are shown in Figures 11.2 and

11.3, respectively, for three different values of the smoothing lag τ. Note
that the filtering sensitivities correspond to τ = 0.
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FIGURE 11.2. � � � achieved by the
Kalman filter-based smoother for the
unstable plant of Example 11.6.1.
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FIGURE 11.3. � � � achieved by the
Kalman filter-based smoother for the
unstable plant of Example 11.6.1.

These plots clearly indicate that the process of smoothing reduces the
constraints on the frequency responses of both sensitivities, which tend to
“ideal” shapes as we increase the smoothing lag. ◦
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Example 11.6.2 (Stable Plant). Consider again the stable plant used in
Example 8.4.2 of Chapter 8 and revisited in §10.6.2 of Chapter 10. For this
plant, we construct a smoother as in (11.7). The generating Kalman filter
is again designed for an aggregated plant that includes the disturbance
model (8.23) with the parameter a = 1. The weights are chosen asQ = 100

and R = 0.1.
The plots of Figures 11.4 and 11.5 show the frequency responses of P

andM for three values of τ. These figures show essentially the same effect
of an improved frequency response as for the unstable system in Exam-
ple 11.6.1.

Note that the poles of the generating Kalman filter for this example
are −2.1035 ± j2.5701 and −1.8335, which implies that τ = 0.8 is ap-
proximately 0.9 times the filter dominant time constant, taken as τf ≈
1/1.8335 ≈ 0.55, whilst τ = 2 is approximately 3.6 times τf. As seen
in §11.6, taking a smoothing lag of several times (approximately 5 times
according to Anderson (1969)) the dominant time constant of the filter,
gives all the improvement possible using smoothing. We can see that this
phenomenon of “saturation” of improvement is also present in the fre-
quency responses of the error sensitivities.
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Kalman filter-based smoother for the
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FIGURE 11.5. � � � achieved by the
Kalman filter-based smoother for the
stable plant of Example 11.6.2.

◦

11.7 Summary

This chapter has extended the sensitivity analysis developed in Chapter 8
for the problem of filtering with bounded error estimators to the case of
fixed-lag smoothing. The results indicate that, in contrast to the problem
of prediction, the constraints in sensitivity are reduced as the smoothing
lag increases.
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In particular, notice that if one considers the estimation horizon to be ei-
ther positive (for prediction) or negative (for smoothing), then the results
are seen to be consistent. This is clear from the structural relations for fil-
tering, given by (7.7), for prediction, given by (10.13) and (10.10), and for
smoothing, given by (11.19) and (11.15). These relations are recalled in Ta-
ble 11.1.

Filtering Hz̃v + FHyv = Hzv

Prediction Hz̃v + FpHyv = esτHzv

Smoothing Hz̃v + FsHyv = e−sτHzv

TABLE 11.1. Structural relations in filtering, prediction and smoothing.

The structural relations shown in Table 11.1 are the basis for the defini-
tion of the corresponding sensitivities. It should be noticed, however, that
the nature of the error transfer function Hz̃v in prediction and smoothing
is not dual.

Notes and References

The sensitivity results of this chapter are based on Seron (1995). Background infor-
mation on smoothing was collected from Kailath (1981), Kailath and Frost (1968)
and Anderson and Doan (1977).
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12

Nonlinear Operators

In Chapters 13 and 14 we will investigate fundamental constraints that
hold for the problems of nonlinear feedback control and nonlinear filter-
ing. The general framework used is that of input-output nonlinear op-
erators acting on linear signal spaces. Within this framework, the linear
concepts of nonminimum phase zeros and unstable poles of transfer func-
tions are easily handled using ideas of defect in the domain and range of
the nonlinear operators. Some properties of this approach essential to our
analysis are reviewed in this chapter.

12.1 Nonlinear Operators

Much of the research effort to date in nonlinear control theory has focused
on controller design. This area has experienced substantial progress, giv-
ing rise to numerous systematic procedures for controller design applica-
ble to different classes of nonlinear systems. For a recent survey on this
topic see Coron et al. (1995). The theory for nonlinear observers is more
incipient than that for nonlinear control, though some techniques for ob-
server construction have become available in the recent years. Most of
these nonlinear controller and observer design methods use a state space
description of the system.

The state space approach provides satisfactory answers when dealing
with synthesis problems, yet it does not appear suitable for a theory of
limitations imposed by the structure of the feedback loop. For this prob-
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lem, a more natural framework is provided by the input-output operator
approach. This approach received considerable attention during the 60’s
and 70’s (Sandberg, 1965; Zames, 1966a,b; Willems, 1971a; Desoer and
Vidyasagar, 1975; Hill and Moylan, 1980). In this input-output framework,
systems are represented by nonlinear operators acting on normed signal
spaces. Two important measures related to these operators are the maxi-
mum gain1 over the input signal space, and the maximum incremental gain,
also called Lipschitz constant or Lipschitz norm. In the linear case, both mea-
sures collapse into one. Moreover, for linear time-invariant systems (LTI)
on L2,2 they coincide with the H � norm of the transfer function. Thus,
both the L2-gain and the Lipschitz norm are possible nonlinear extensions
of the H � norm of linear systems.

We next review properties of nonlinear operators acting on linear, Ba-
nach and Hilbert spaces.

12.1.1 Nonlinear Operators on a Linear Space
Let X be a linear space and let H be a nonlinear operator on X, i.e., a map-
ping between its domain D(H) ⊂ X into X. The domain and range of H are
defined as follows:

D(H) , {x ∈ X : Hx ∈ X},

R(H) , {Hx : x ∈ D(H)}.
(12.1)

If H1 and H2 are nonlinear operators on X and D(H1) ∩ D(H2) 6= ∅, the
addition H1 +H2 : D(H1 +H2) → X is defined by

(H1 +H2)x = H1x+H2x, ∀x ∈ D(H1 +H2) = D(H1) ∩ D(H2).

If R(H2) ∩ D(H1) 6= ∅, the composition H1H2 : D(H1H2) → X is defined by

(H1H2)x = H1(H2x), ∀x ∈ D(H1H2) = H−1
2 (D(H1)).

Here, the notation H−1(U), for a set U ⊂ X, indicates the pre-image set of
U through H, i.e.,

H−1(U) = {x ∈ D(H) : Hx ∈ U}.

Similar to the notation used for the linear case, the symbol Hba will be
used to represent an open-loop nonlinear operator mapping signal a to
signal b. Also, Hba will stand for the total nonlinear operator mapping
signal a to signal b.

1I.e., the maximum ratio of the norm of the output signal to the norm of the input signal.
2The definition of the signal space � � is recalled in §12.1.3.
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12.1.2 Nonlinear Operators on a Banach Space
Let X be a Banach space. We say that the operator H is stable if its domain
is X and we say that H is unstable if its domain is a strict subset of X. This
definition of operator stability/instability can be interpreted as the usual
system stability/instability when X is taken to be a space of “physically
meaningful” signals, such as L2 or its isomorphic equivalent H2.

We say that H is nonminimum phase if the closure of its range is a strict
subset of X.

Example 12.1.1. To motivate the concept of nonminimum phase nonlinear
operator, consider the simple case of a scalar, LTI operator on H2, repre-
sented by a transfer function, H, say. Assume further that H is stable and
proper. Then, if H has a nonminimum phase zero, the range of such an
operator is the set of signals in H2 that have a zero at the same frequency,
which is not dense in H2. ◦

The closure of a set U ⊂ X will be denoted by cl U. We denote by
Lip(D,X) the class of all operators H : D(H) = D ⊂ X → X such that

‖H‖L , sup {|Hx−Hy|/|x− y| : x, y ∈ D, x 6= y} < ∞, (12.2)

where | · | is the norm in X. A member H of Lip(D,X) is called a Lipschitz
operator and ‖H‖L is the Lipschitz constant, Lipschitz gain, or incremental
gain of H. When D = X, the class will be denoted by Lip(X). Note that
members of Lip(X) are stable operators, since their domain is X.

It is easy to see, that ifH is a linear operator, then ‖H‖L in (12.2) reduces
to the operator norm induced by the norm in X. Indeed, it is claimed in
Zarantonello (1967) that the ordinary norm for linear operators naturally
extends to the Lipschitz norm in the nonlinear case. To be precise, the Lip-
schitz norm is in fact a semi-norm, thus the space (Lip(X), ‖ · ‖L) is a semi-
normed linear space.

Lip(X) is closed under operator composition. Moreover, if H1, H2 ∈
Lip(X) then the composition H1H2 ∈ Lip(X) and the sub-multiplicative
property ‖H1H2‖L ≤ ‖H1‖L‖H2‖L holds for the Lipschitz norm.

A member H of Lip(X) is said to be invertible in Lip(X) if there is an
operator Hi ∈ Lip(X) such that HHi = HiH = I. We denote Hi = H−1.
Clearly, it is necessary that R(H) = X for H to be invertible in Lip(X) and
thus a nonminimum phase operator is not invertible in Lip(X). The fol-
lowing result gives a condition for the invertibility of members of Lip(X).

Lemma 12.1.1. Let X be a Banach space and let H ∈ Lip(X). Suppose
that ‖H‖L < 1. Then I − H is invertible in Lip(X) and ‖(I − H)−1‖L ≤
(1 − ‖H‖L)−1.

Proof. See Martin Jr. (1976, Theorem 2.2, p.66). �

Lemma 12.1.1 appears to have been stated for the first time in the control
literature by Zames 1966a; 1966b, although it was probably already known
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among mathematicians. This important result is the basis of the proof of
the small gain theorem in its Lipschitz version (Sandberg, 1965; Zames,
1966a,b).
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FIGURE 12.1. Basic perturbation model.

In §13.5 we will address the issue of stability robustness and refer to
the basic perturbation model shown in Figure 12.1, where H : D(H) → X

and ∆ : D(∆) → X are nonlinear operators. We say that the feedback
loop of Figure 12.1 is stable if e, a, b ∈ X whenever d ∈ X. If H, ∆ ∈
Lip(X), we also say that the feedback loop of Figure 12.1 is Lipschitz stable
if the operator Hed ∈ Lip(X). It follows from Lemma 12.1.1 that, provided
H, ∆ ∈ Lip(X), the loop in Figure 12.1 is Lipschitz stable if ‖∆H‖L < 1.
Moreover,

‖Hed‖L = ‖(I− ∆H)−1‖L ≤ (1 − ‖∆H‖L)−1 (12.3)

and
‖Had‖L = ‖H(I− ∆H)−1‖L ≤ ‖H‖(1 − ‖∆H‖L)−1. (12.4)

12.1.3 Nonlinear Operators on a Hilbert Space
This section reviews some notation and terminology that will be used in
§13.4 of Chapter 13. Let L2 be the standard Hilbert space of real-valued
measurable square-integrable functions defined on � + (the positive real
line) with norm ‖·‖L2

and inner product< f, g >L2
. For f ∈ L2, f denotes

its Fourier transform. Let Ω ⊂ � be a set with nonzero measure. For f ∈
L2, we define ‖f‖Ω as

‖f‖Ω ,

(

1

2π

∫

Ω

|f(jω)|2dω

)1/2

.

Note that ‖ · ‖Ω represents the signal-energy distributed over the fre-
quency range Ω (Shamma, 1991). A sequence {fi} ⊂ L2 is said to weakly
converge to f0 ∈ L2 if for all g ∈ L2,

lim
i
< fi, g >L2

=< f0, g >L2
.

The L2-weak-closure of a set U is denoted wk−cl U.
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A mapping H : L2 → L2 is an I/O operator if it is unbiased (i.e., H0 = 0)
and causal. The domain and range of an I/O operator H are defined as in
(12.1) with X replaced with L2.
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FIGURE 12.2. Feedback Control Loop.

The feedback system shown in Figure 12.2 is said to be stable if u and e
belong to L2 whenever d and w belong to L2; in other words, the nonlin-
ear operators that map d andw into u and e are stable nonlinear operators.
In this case, the controller K is said to stabilize the plant G.

12.2 Nonlinear Cancelations

For the problem of nonlinear feedback control, to be discussed in Chap-
ter 13, stability of closed-loop operators is achieved via feedback, and
hence it is not necessary to address the issue of unstable “nonlinear zero-
pole (pole-zero) cancelation”. Therefore, the background on nonlinear op-
erators given so far is enough to treat this problem. By way of contrast,
the filtering problem is of open-loop nature3, and therefore, if the plant is
unstable, the stability of the estimation error operator (see (14.10) in Chap-
ter 14) has to be achieved by some nonlinear extension of the linear notion
of unstable cancelations.

To gain insight into what a possible definition of unstable “nonlinear
zero-pole cancelation” may be, let us informally discuss the case of a scalar,
LTI operator on H2, represented by a transfer function, H1, say. Assume
further thatH1 is stable and proper. Then, ifH1 has a nonminimum phase
zero, we have discussed in Example 12.1.1 that the closure of the range of
H1 does not cover H2, and this has motivated the definition of nonmin-
imum phase nonlinear operator used in §12.1.2. However, note also that
H1 has the additional property that there exist signals outside H2 (from
its orthogonal complement, H⊥

2 , in fact) that are mapped by H1 into H2,
(i.e., signals that have poles at the nonminimum phase zero of H1). Now,
assume that H1 is multiplied by (composed with) another transfer func-
tion,H2 say, that has an unstable pole at the same frequency whereH1 has
a nonminimum phase zero. If instead of restricting the domain of H2 (ac-

3See comments at the end of §7.2.2 in Chapter 7.
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cording to the definition of unstable operator given in §12.1.2) we let H2
act on all of H2, then bounded signals will be mapped into unbounded
signals. However, when composed with H1, these unbounded signals are
precisely those that H1 maps into H2, giving a stable product H1H2.

From the above discussion, it is clear that the framework used in §12.1
is insufficient to handle “nonlinear cancelations”, since signals that are
unbounded are not formally defined. The use of extended spaces, where
unbounded signals lie, becomes then necessary.

12.2.1 Nonlinear Operators on Extended Banach Spaces
We will consider nonlinear operators defined on an extended linear space
Xe ⊃ X, where X is a Banach space. The way in which Xe “extends” X is
arbitrary. The domain and range of the operator H : Xe → Xe are defined
as in (12.1) in §12.1.1. Also, the definitions of stable and unstable operators
are the same used in §12.1.1.

Given a set D ⊂ Xe, the symbol D
e

will denote its complement in
Xe, i.e.,

D
e

, {x ∈ Xe : x /∈ D}.

Similarly, for a set D ⊂ X, D will indicate its complement in X, i.e.,

D , {x ∈ X : x /∈ D}.

The set X
e
, i.e., the complement of X in Xe, will be considered to contain

“unbounded” signals.
In this context of extended spaces, we say that H : Xe → Xe is nonmini-

mum phase (NMP) if the following two conditions hold:

(i) (defect in range) the closure of the range of H, cl R(H), is a strict
subset of X.

(ii) (excess in domain) the extended domain of H, defined as the set

E(H) , {x ∈ X
e

: Hx ∈ X}

is not empty.

Property (ii) implies that a nonempty set of unbounded signals are mapped
into bounded images by H. Note that this corresponds to the property of
LTI systems previously discussed.

It may be possible for a nonlinear operator to satisfy only one of the
properties of NMP operators. If (i) holds, we will say that the operator has
the the defect-in-range property, and that it is of D-NMP type. Alternatively,
if (ii) holds, we will say that the operator has the excess-in-domain property,
and that it is of E-NMP type. Figure 12.3 illustrates a NMP operator in the
context of extended spaces, i.e., with both the defect-in-range and excess-
in-domain properties, as just described.
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FIGURE 12.3. Set interpretation of a NMP nonlinear operator.

In order to allow for cancelations, we need to adjust the definition of
domain of the composition of nonlinear operators to this setting of ex-
tended spaces. Let H1 and H2 be nonlinear operators on Xe such that
R(H2) ∩D(H1) 6= ∅. Then the domain of the composition H1H2 is defined
as

D(H1H2) = H−1
2 (D(H1)) ∪ A(H1H2), (12.5)

where

H−1
2 (D(H1)) = {x ∈ D(H2) : H2x ∈ D(H1)},

and A(H1H2) is the added domain of the composition, given by

A(H1H2) , {x ∈ D(H2) : H2x ∈ E(H1)}. (12.6)

Note that A(H1H2) 6= ∅ only if H2 is unstable and H1 is E-NMP. This is
because then there exists a signal in the complement of the domain of H2
that is mapped by H2 into E(H1), which is then nonempty. On the other
hand, ifH1 is E-NMP, then E(H1) 6= ∅ and then A(H1H2) may be nonempty
if H2 is unstable.

When the set A(H1H2) is nonempty, we say that there is an unstable non-
linear zero-pole cancelation in the composition H1H2. The nonlinear zero-
pole cancelation idea is depicted in Figure 12.4.

Note that the definition of composition domain used in §12.1.1, con-
sisted only of the first term of the set union on the RHS of (12.5), i.e., the
set H−1

2 (D(H1)). This first term is different from D(H2) only if H1 is un-
stable. When H1 is unstable and H−1

2 (D(H1)) = D(H2), we say that there
is an unstable nonlinear pole-zero cancelation in the composition H1H2.

The concepts considered in this subsection will be used in Chapter 14 to
address the issue of stability of the estimation error in nonlinear filtering.
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FIGURE 12.4. Set interpretation of unstable nonlinear zero-pole cancelation.

12.3 Summary

We have presented background on nonlinear operators, necessary for the
developments in the next two chapters. In particular, we have described
properties of nonlinear operators as mappings on Banach or Hilbert spaces,
with emphasis on Lipschitz operators. A set-based framework has been
provided to handle nonlinear extensions of the linear concepts of non-
minimum phase systems, unstable systems, and unstable zero-pole (pole-
zero) cancelations.

Notes and References

The material of §12.1 is mainly taken from Martin Jr. (1976). §12.1.2 and §12.1.3 also
have input from Doyle et al. (1993) and Shamma (1991). The set-based framework
of §12.2 is taken from Seron (1995).

The definition of unstable operator as one having a defect in its domain is used
in Doyle et al. (1993) and it is common in references dealing with the input-output
approach to feedback control (e.g., Desoer and Vidyasagar, 1975). The concept of
nonminimum phaseness that we use here is similar to the one given in Shamma
(1991).
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Nonlinear Control

This chapter analyzes performance limitations and stability robustness of
the unity feedback configuration of Figure 12.2 considered in Chapter 12.
We use the material on nonlinear operator theory developed in §12.1.1 of
Chapter 12.

13.1 Review of Linear Sensitivity Relations

For convenience, we review here the central result on linear sensitivity
limitations that we will extend to the nonlinear case in §13.3. This result
shows that the infinity norm of S is bounded below by one for nonmini-
mum phase systems and the infinity norm of T is bounded below by one
for open-loop unstable systems.

We use the notions of zeros and poles of multivariable systems intro-
duced in §2.1.1 of Chapter 2. The symbol | · | denotes here the Euclidean
norm in � n. If M is a matrix in � n×n, ‖M‖2 denotes its matrix norm in-
duced by the Euclidean vector norm.

The following result is well-known for linear systems.1

Theorem 13.1.1. Let L be the transfer matrix of a LTI open-loop system.
Assume that the closed-loop sensitivity S = (I+L)−1 and complementary
sensitivity T = L(I + L)−1 are stable transfer functions. Then:

1It can be inferred, for example, from the inequality (4.34) in and 4.
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(i) If L is nonminimum phase, then ‖S‖ � ≥ 1.

(ii) If L is unstable, then ‖T‖ � ≥ 1.

Proof. The result can be derived from Chen (1995, Corollary 4.2), but we
give here a simpler proof exploiting the fact that the H � norm is the op-
erator norm on H2, the space of Laplace transforms of signals in L2.2

(i) Let L(s) have a zero at s = q in the ORHP with output direction
Ψ ∈ � n, such that Ψ∗Ψ = 1; i.e., Ψ∗L(q) = 0. Then Ψ∗S(q) = Ψ∗ (cf.
(4.5) in Chapter 4). The infinity norm of S satisfies

‖S‖ � = sup
Re(s)>0

‖S(s)‖2

= sup
Re(s)>0

max
η∈ � n

|η|=1

|η∗S(s)|

≥ |Ψ∗S(q)|

= 1.

(ii) Let L(s) have a pole at s = p in the ORHP. Then, using (4.4) in Chap-
ter 4, we have that Φ∗T(p) = Φ∗ and the proof follows as in (i).

�

The proof of Theorem 13.1.1 uses the fact that the operator norm on
an infinite dimensional space can be bounded below by the matrix norm
on � n with the Euclidean norm. Then, the zeros and poles in the ORHP
of the open-loop system give particular interpolation values of the closed-
loop operators, which provide lower bounds on the matrix induced norm.
Although this property generally does not hold for nonlinear operators,
we will see that nonminimum phase and unstable open-loop behavior, as
defined in §12.1.2, still represent constraints on the closed-loop system.

13.2 A Complementarity Constraint

Consider the feedback interconnection of plant G and controller K as dis-
played in Figure 13.1.

We define the nonlinear sensitivity operator, S, and the nonlinear comple-
mentary sensitivity operator, T, as

S = Hyd|(w=0),

T = −Hyw|(d=0),
(13.1)

2In fact, � � (for signals) is the Banach space of functions ��� � � � � , which are analytic
in the ORHP, and satisfy sup ��� � � � � � � ��� �

�
� � � � �

� � � � �
�

� � � � .
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FIGURE 13.1. Feedback Control Loop.

where the notation Hba|(c=0) stands for the total map from signal a to
signal b when signal c is identically zero. In words, S is the mapping be-
tween output disturbance and system output in the absence of the sensor
noise, and T is the mapping between sensor noise and system output in
the absence of output disturbances.

We will consider S and T as nonlinear operators on some linear space
X, i.e., S : D(S) ⊂ X → X and T : D(T) ⊂ X → X. In fact, the domains of S
and T are the same, as shown in the following result.

Lemma 13.2.1. Assume that S and T defined in (13.1) are nonlinear oper-
ators on a linear space X. Then D(S) = D(T).

Proof. Consider Figure 13.1 and assume that d = 0 and w ∈ D(S). Then

e = Sw ∈ X.

It follows that Tw = −y = w − e ∈ X since X is a linear space. Thus
w ∈ D(T) and therefore D(S) ⊂ D(T). In a similar way it can be shown
that D(T) ⊂ D(S). Hence D(S) = D(T). �

The operators S and T satisfy the following complementarity constraint.

Theorem 13.2.2. Consider the operators defined in (13.1) as nonlinear op-
erators on a linear space. Then on D(S) = D(T)

S + T = I. (13.2)

Proof. From the definition (13.1) and Figure 13.1, the sensitivity operator
is given by

S = (GK+ I)−1, (13.3)

and the complementarity sensitivity operator is given by

T = GK(GK+ I)−1 = GKS. (13.4)

Clearly, on D(S) = D(T),

S + T = S +GKS = (GK+ I) S = I,

by definition of addition of operators. �
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Theorem 13.2.2 clearly indicates that the complementarity constraint
given by (13.2) is purely determined by the structure of the feedback con-
trol loop together with the additive nature of the disturbance inputs. Hence,
this constraint is independent of whether the plant or controller are linear
or nonlinear operators.

The following result is straightforward.

Corollary 13.2.3. Let X be a Banach space and assume that S and T in
(13.1) are nonlinear operators on X. Then S + T = I on X if and only if S
and T are stable operators on X.

Proof. Immediate from Theorem 13.2.2 and the definition of stable opera-
tor on page 247. �

13.3 Sensitivity Limitations

We consider in this section that the open loop L , GK is a nonlinear oper-
ator L : D(L) ⊂ X → X, where X is a Banach space.

Before obtaining the main result of this section on sensitivity limitations,
we need a preliminary lemma, which is a nonlinear generalization of the
interpolation constraints satisfied by the linear sensitivities.

Lemma 13.3.1. Let L : D(L) ⊂ X → X be such that the operators S and T
have a nonempty domain. Then

(i) If L is nonminimum phase, then T is nonminimum phase.

(ii) If L is unstable and D(L) is closed, then S is nonminimum phase.

Proof.

(i) Assume that L is nonminimum phase, i.e., cl R(L) is a strict subset
of X. From (13.4) it follows that R(T) ⊂ R(L) and hence cl R(T) ⊂
cl R(L), which means that T is nonminimum phase.

(ii) Assume that L is unstable, i.e., D(L) is a strict subset of X. Since T
maps D(T) = D(S) into X, it follows from (13.4) that R(S) ⊂ D(L).
Hence cl R(S) ⊂ cl D(L) = D(L) (since D(L) is closed) and thus S is
nonminimum phase.

�

Note that, for (ii) to hold, it is essential that D(T) = D(S). Indeed, if
S and T were any nonlinear operators satisfying T = LS, then D(T) =

S−1(D(L)) , {x ∈ D(S) : Sx ∈ D(L)} and hence the relation R(S) ⊂ D(L)

does not hold in general.
The following theorem gives lower bounds on the Lipschitz constants

of the nonlinear sensitivity operators for open-loop nonminimum phase
and unstable systems.
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Theorem 13.3.2. Let L : D(L) ⊂ X → X be such that the sensitivity opera-
tor S is in Lip(X). Then

(i) If L is nonminimum phase, then ‖S‖L ≥ 1.

(ii) If L is unstable, then ‖T‖L ≥ 1.
Proof. Note first that since S ∈ Lip(X), it is a stable operator. It follows
from Corollary 13.2.3 that S+T = I on X. Then, S ∈ Lip(X) ⇒ T = I−S ∈
Lip(X) since Lip(X) is a linear space (Martin Jr., 1976). Next:

(i) Assume that L is nonminimum phase. If ‖S‖L < 1, it follows from
Lemma 12.1.1 that I−S = T is invertible in Lip(X), which is not pos-
sible since T is nonminimum phase by Lemma 13.3.1. Hence neces-
sarily ‖S‖L ≥ 1.

(ii) Assume that L is unstable. Since S is in Lip(X), it is possible to show
that L is a closed operator (cf. Seron, 1995, Theorem 6.4.3), which im-
plies that D(L) is a closed set. Now, if ‖T‖L < 1, then by Lemma 12.1.1,
I−T = S is invertible in Lip(X), which is not possible since S is non-
minimum phase by Lemma 13.3.1. Hence ‖T‖L ≥ 1.

�

Theorem 13.3.2 is the nonlinear extension of Theorem 13.1.1 for the case
of a closed-loop system belonging to the class of Lipschitz operators. We
point out that the bounds given in Theorem 13.3.2 do not assume sensi-
tivity reduction and hence they represent limits for any possible control
design.

The assumption that the sensitivities of interest are Lipschitz operators
is a rather strong requirement. A relaxation would be, for example, to as-
sume that they have a finite L2-gain. We stress the fact, however, that the
Lipschitz assumption brings a substantial amount of mathematical struc-
ture to the problem, since many tools from linear functional analysis have
immediate counterparts in Lipschitz operator theory.

As a final remark, we note that the results on Lipschitz sensitivity lim-
itations given in this section, also hold if the extended-space setting of
§12.2 of Chapter 12 is used. Indeed, the crucial fact is that Lemma 13.3.1
on interpolation constraints is still valid since D(S) = D(T).

To see this, recall from (13.4) that T = GKS = LS. Then, using (12.5), the
domain of T can be computed as

D(T) = D(LS)

= S−1 (D(L)) ∪ A(LS)

= {x ∈ D(S) : Sx ∈ D(L)} ∪ {x ∈ D(S) : Sx ∈ E(L)}.

Since D(S) = D(T), it follows that A(LS) = ∅. Thus, the analysis reduces
to the definition of composition domain used in §12.1. This means that the
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conclusions of Theorem 13.3.2 are valid when the operators are assumed
to be defined on an extended Banach space.

Interestingly, if the open-loop system, L, is unstable, then, according to
the terminology introduced in §12.2, there is an unstable nonlinear “pole-
zero” cancelation between L and S. This cancelation, however, is achieved
via feedback.

13.4 The Water-Bed Effect

An important initial result on performance limitations imposed by non-
minimum phase open-loop plants, was obtained by Shamma (1991) for
the problem of nonlinear sensitivity reduction. In this section we will state
this result and give its counterpart for the complementary sensitivity.

Consider again the feedback loop in Figure 13.1. Let D be a given class
of finite-energy disturbances. We define the performance measure

µS(G,K,Ω,D) , sup
d∈D

‖Sd‖Ω , (13.5)

where S is the nonlinear sensitivity operator and ‖ ·‖Ω denotes the signal-
energy distributed over the range Ω. As mentioned in Shamma (1991),
µS(G,K,Ω,D) expresses the maximum effect of a disturbance d ∈ D on
the energy of y = Sd in the frequency interval Ω.

Shamma (1991) considered the problem of minimization of (13.5) and
derived the nonlinear counterpart of the water-bed phenomenon experi-
enced by nonminimum phase plants as stated below.

Theorem 13.4.1 (Shamma 1991). Let Ω ⊂ � have nonzero measure and
let D ⊂ L2 be a bounded set of disturbances. Let {Ki} be a sequence of I/O
operators which stabilize the I/O operator G. Suppose that

D 6⊂ wk−cl R(G).

Then µS(G,Ki,Ω,D) → 0 implies

sup
i

sup
d∈D

‖Sid‖L2
= ∞.

◦
Si in Theorem 13.4.1 is the sensitivity operator induced by the controller

K = Ki in Figure 13.1. The result shows that, if the nonlinear plant is
“nonminimum phase”, then an arbitrarily small value of the frequency-
weighted sensitivity results in an arbitrarily large response to some admis-
sible disturbance. The plantG in Theorem 13.4.1 is “nonminimum phase”
in the sense that there exists a d̃ ∈ D such that d̃ 6∈ wk−cl R(G). This
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condition may be interpreted as an inability to construct a “stable approx-
imate inverse” of the plant (Shamma, 1991). Note that, since cl R(G) ⊂
wk−cl R(G) in general, a system may be nonminimum phase according
to the definition given in §12.1.2, but the weak-closure of its range may
be the whole space. Thus, the nonminimum phaseness concept given in
§12.1.2 seems to be insufficient to prove a water-bed effect for nonlinear
feedback systems.

We consider next the corresponding phenomenon for the complemen-
tary sensitivity operator T and unstable open-loop dynamics. Let W be an
admissible class of finite-energy sensor disturbances. Define the perfor-
mance measure

µT (G,Ki,Ω,W) , sup
w∈W

‖Tiw‖Ω, (13.6)

where Ti is the complementary sensitivity operator induced by the con-
troller K = Ki in Figure 13.1. We then have the following result.

Theorem 13.4.2. Let Ω ∈ � have nonzero measure and let W ⊂ L2 be a
bounded set of sensor disturbances. Let {Ki} be a sequence of I/O opera-
tors which stabilize the I/O operator G. Suppose that

W 6⊂ wk−cl D(GKi).

Then µT (G,Ki,Ω,W) → 0 implies

sup
i

sup
w∈W

‖Tiw‖L2
= ∞. (13.7)

Proof. We follow the same line of development as in Shamma (1991).
Suppose, by contradiction, that {Ki} is such that

sup
i

sup
w∈W

‖Tiw‖L2
≤ α < ∞. (13.8)

Let w = w̃ 6∈ wk−cl D(GKi) and define yi , Tiw̃. From (13.8), the se-
quence of outputs {yi} is bounded. Hence, it contains a weakly convergent
subsequence (Conway, 1990), which we rename {yi}. Since

µT (G,Ki,Ω,W) = sup
w∈W

‖Tiw‖Ω → 0,

then ‖yi‖Ω → 0. It follows that {yi} → 0 weakly (Shamma, 1991).
Now, since each Ki stabilizes G, we have that both yi and ei ∈ L2.

Hence, since yi = GKiei, it follows that ei ∈ D(GKi). But

ei = yi + w̃. (13.9)

Since {yi} → 0 weakly, it follows from (13.9) that w̃ ∈ wk−cl D(GKi),
which contradicts the open-loop instability assumption. Hence (13.7) fol-
lows. �
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Theorem 13.4.2 states the trade-off imposed upon the complementary
sensitivity operator by unstable open-loop dynamics of the composition of
the plant and controller. Loosely speaking, the instability is interpreted as
the existence of a bounded admissible input that produces an unbounded
output.

13.5 Sensitivity and Stability Robustness

In this section we consider sufficient conditions that guarantee robust Lip-
schitz stability of the nonlinear sensitivities when the open-loop system is
perturbed in different ways. Indeed, we consider additive, output-multiplicative
and input-divisive perturbations. Each case will be reconfigured in the ba-
sic perturbation model shown in Figure 12.1 of Chapter 12 for appropriate
choices of the nonlinear operator H.

We consider the feedback loop in Figure 13.1 to be the nominal system.
We denote the nominal open-loop operator by L , GK and the nominal
sensitivity and complementary sensitivity by S and T, respectively. We use
the symbols S̃ and T̃ for the actual sensitivity operators corresponding to
the perturbed plant, which will be denoted by L̃.

We then have the following result.

Theorem 13.5.1. Let the nominal open-loop system L : D(L) ⊂ X → X be
such that the nominal sensitivity operator S is in Lip(X). Then:

(i) Assume that the perturbed system is modeled as L̃ , L − ∆, with
∆ ∈ Lip(X) (additive perturbation model, Figure 13.2). If ‖∆S‖L < 1
then the actual sensitivity operators are in Lip(X) and

‖S̃‖L ≤ ‖S‖L(1 − ‖∆S‖L)−1. (13.10)

(ii) Assume that the perturbed system is modeled as L̃ , (I− ∆)L, with
∆ ∈ Lip(X) (output-multiplicative perturbation model, Figure 13.3).
If ‖∆T‖L < 1 then the actual sensitivity operators are in Lip(X) and

‖S̃‖L ≤ ‖S‖L(1 − ‖∆T‖L)−1. (13.11)

(iii) Assume that the perturbed system is modeled as L̃ , L(I − ∆)−1,
with ∆ ∈ Lip(X) (input-divisive perturbation model, Figure 13.4). If
‖∆S‖L < 1 then the actual sensitivity operators are in Lip(X) and

‖S̃‖L ≤ 1 + ‖T‖L(1 − ‖∆S‖L)−1. (13.12)

Proof. (i) Let L̃ , L − ∆, ∆ ∈ Lip(X), as shown in the left scheme of
Figure 13.2.
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FIGURE 13.2. Additive perturbation model (left) and equivalent configuration in
terms of S (right).

Solving for y = a, we have that y = a = S(d + b), thus the loop on
the left can be drawn as the basic perturbation model on the right
of Figure 13.2. If ‖∆S‖L < 1 it follows from Lemma 12.1.1 that (I −

∆S)−1 ∈ Lip(X) and hence S̃ = Hyd|(n=0) = S(I − ∆S)−1 ∈ Lip(X)

with the bound given in (13.10) for its Lipschitz constant (see (12.4)).

(ii) Let L̃ , (I − ∆)L, ∆ ∈ Lip(X), as depicted in the left scheme of
Figure 13.3.
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FIGURE 13.3. Multiplicative perturbation model (left) and equivalent configura-
tion in terms of T (right).

Solving for y, we have that y = S(d+b) , Se, and then a = Ly = Te.
Thus the loop on the left can be drawn as the loop on the right of Fig-
ure 13.3. If ‖∆T‖L < 1 Lemma 12.1.1 shows that (I−∆T)−1 ∈ Lip(X)

and hence S̃ = Hyd|(n=0) = SHed = S(I − ∆T)−1 ∈ Lip(X). The
bound given in (13.11) for its Lipschitz constant follows using (12.3).

(iii) Let L̃ , L(I − ∆)−1, ∆ ∈ Lip(X), as depicted in the left scheme of
Figure 13.4.

Solving for a, we have that a = S(d + b) = Se (and then y = d −

La = d − Te). Thus the loop on the left can be drawn as the loop on
the right of Figure 13.4. If ‖∆S‖L < 1 it follows from Lemma 12.1.1
that (I − ∆S)−1 ∈ Lip(X) and hence S̃ = Hyd|(n=0) = I − THed =
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FIGURE 13.4. Divisive perturbation model (left) and equivalent configuration in
terms of S (right).

I − T(I − ∆S)−1 ∈ Lip(X), with the bound given in (13.12) for its
Lipschitz constant.

�

The additive perturbation model may result, for example, from an ad-
ditive perturbation of the plant, i.e., G̃ = G − (∆G), giving the values
L = GK and ∆ = (∆G)K in Figure 13.2. The output-multiplicative pertur-
bation model comes directly from an output-multiplicative perturbation
of the plant of the form G̃ = (I − ∆)G. The input-divisive perturbation
model may represent (originally unmodeled) sensor dynamics.

It can be concluded from Theorems 13.3.2 and 13.5.1 that nonminimum
phase and unstable systems allow only “small” perturbations if robust
stability is to be achieved. Indeed, consider for example robust stability
under additive perturbations; it then follows from Theorem 13.5.1 and the
sub-multiplicative property of the Lipschitz norm that

‖∆‖L‖S‖L < 1
is also a sufficient condition for robust stability. This, together with Theo-
rem 13.3.2 thus imply that ‖∆‖L < 1 is required for the sufficient condition
for stability of the perturbed system to hold.

13.6 Summary

This chapter has extended the known concept of sensitivity operators, as
used in the case of linear feedback systems, to the case of nonlinear sys-
tems. The nonlinear sensitivity operators corresponding to the unity feed-
back control problem with additive disturbance inputs satisfy the struc-
tural complementarity constraint S+T = I and “interpolation constraints”
similar to their linear counterparts. Namely, if the open-loop system is
nonminimum phase, then T is nonminimum phase, and if the open-loop
system is unstable, then S is nonminimum phase. The nonlinear exten-
sions of the linear concepts of nonminimum phase and unstable systems
are handled as properties of the domain and range of nonlinear operators.
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For the case of Lipschitz sensitivities, the complementarity and inter-
polation constraints can be used to establish the fact that the Lipschitz
constant of sensitivity is bounded below by one for nonminimum phase
open-loop systems and that the Lipschitz constant of complementary sen-
sitivity is bounded below by one for open-loop unstable systems. These
results parallel those known in linear control theory on the bounding of
the H � norms of S and T .

Probably the first result on performance limitations in general nonlinear
feedback control was given in Shamma (1991). Considering the nonlinear
sensitivity as an operator in a Hilbert space, Shamma established that,
for a nonminimum phase system, the achievement of arbitrary sensitivity
reduction over a frequency range necessarily implies an arbitrarily large
response to some admissible disturbance. This is the nonlinear extension
of the water-bed phenomenon experienced by the linear sensitivity (see
§3.2 in Chapter 3). As expected, a result parallel to that of Shamma can
also be derived on the trade-off induced by unstable open-loop dynamics
for the problem of complementary sensitivity reduction.

The nonlinear sensitivities developed here are the appropriate tool with
which to state sufficient conditions for robust stability. This shows that
the role of the linear sensitivities, S and T , in measuring closed-loop ro-
bustness against unstructured perturbations can be extended to nonlinear
systems.

Notes and References

Sensitivity Limitations
The results on nonlinear Lipschitz sensitivity limitations are based on Seron and
Goodwin (1996), Seron (1995) and Goodwin and Seron (1995).

The nonlinear extension of the water-bed effect is due to Shamma (1991).

Stability Robustness
§13.5 is based on Seron and Goodwin (1996). Robustness tests similar to those
given in §13.5 were obtained by Astolfi and Guzzella (1993) using the � � -gain
(or “nonlinear

�
� norm”) in lieu of the Lipschitz constant. Astolfi and Guzzella,

however, used a state-space approach. Other results on robustness for nonlinear
feedback systems are the works of Georgiou and Smith 1995a; 1995b; 1995c, who
use a nonlinear generalization of the gap metric.





14

Nonlinear Filtering

This chapter represents a preliminary extension to the nonlinear case of
the sensitivity approach to filtering of Chapters 8 and 9. We use the back-
ground on nonlinear operators given in Chapter 12. Indeed, we first study
the complementarity of the filtering sensitivities in the framework of §12.1
and then use the concept of nonlinear cancelations developed in §12.2 to
address the issue of stability of the estimation error.

14.1 A Complementarity Constraint

Consider the filtering problem shown schematically in Figure 14.1.
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FIGURE 14.1. General filtering configuration.

For the purposes of this chapter, the “plant”, depicted in Figure 14.2,
is characterized by two nonlinear operators. The “output” operator,Gy, is
assumed to be a nonlinear operator on a linear space, X, i.e.,Gy : D(Gy) ⊂
X → X. It maps the process input, v, into the noise-free output, y−w. The
“state” operator,Gz, is the nonlinear operatorGz : D(Gz) ⊂ X → X, which
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maps v into the signal (or internal state) to be estimated, z. Specifically,

y = Gyv+w,

z = Gzv,
(14.1)

wherew is measurement noise corrupting the system output. We will fur-
ther assume that the operator Gy is “unbiased”, i.e., Gy 0 = 0.
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FIGURE 14.2. Structure of the plant.

A nonlinear state estimator for (14.1) is chosen as

ẑ = Fy, (14.2)

where ẑ is the estimate of z and the filter, F, is a nonlinear operator F :

D(F) ⊂ X → X. F is assumed to be a stable operator, i.e., D(F) = X.
Let the estimation error be, as in Chapter 9,

z̃ = z− ẑ. (14.3)

We will assume that the operator Gz is right invertible. By this, we mean
that there exists a right inverse G−1

z such that GzG−1
z = IR(Gz), where

IR(Gz) is the restriction of the identity operator to R(Gz). Also, we will
use the set

Dz , {x ∈ R(Gz) : G−1
z x ∈ D(Gy)}. (14.4)

Observe from Figure 14.2, that Dz is the set of signals z’s such that G−1
z z

gives a signal v in the domain of the output operator Gy.
We define the nonlinear filtering sensitivity, P, and the nonlinear filtering

complementary sensitivity, M, as

P , Hz̃v|(w=0)G
−1
z ,

M , −Hz̃w|(v=0)GyG
−1
z .

(14.5)

We then have the following complementarity constraint for the filtering
loop in Figure 14.1.

Theorem 14.1.1. Consider the plant (14.1) and the filter (14.2) with esti-
mation error defined in (14.3). Assume that Gy is an unbiased operator.
Then, the following complementarity constraint holds:

P + M = IDz
, (14.6)
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where IDz
is the restriction of the identity operator to the set Dz given

in (14.4).

Proof. From (14.3), (14.1) and (14.2), we have

Hz̃v|(w=0) = Gz − FGy. (14.7)

Next, we note that, ẑ = Fw whenever v = 0, since Gy is unbiased. Then

Hz̃w|(v=0) = −Hẑw|(v=0) = F, (14.8)

where the first equality follows using the fact that Hzw = 0. From (14.7)
and (14.8), we have

Hz̃v|(w=0) = Gz −
(

−Hz̃w|(v=0)
)

Gy.

Multiplying from the right by G−1
z and using (14.5) yields

P = IR(Gz) − M.

The domain where the above relation holds, however, is not all of R(Gz),
but the intersection of R(Gz) with the domain of M. To compute D(M),
note that

M = F(GyG
−1
z ).

Since F is a stable operator, then D(M) is given by

D(M) =
(

G−1
z

)−1
(D(Gy))

= {x ∈ D(G−1
z ) : G−1

z x ∈ D(Gy)}

= {x ∈ R(Gz) : G−1
z x ∈ D(Gy)}

= Dz.

Hence (14.6) follows. �

Note that, if D(Gy) = D(Gz), then Dz = R(Gz). This is the case when
the operators Gy and Gz share the same “instabilities”. In the linear case,
it would correspond to the situation where all the unstable modes of the
plant, assumed observable from y, are also observable from the signal to
be estimated, z.

Theorem 14.1.1 proves that the complementarity constraint shown to
hold for linear filtering in Chapter 8, extends to the problem of nonlinear
filtering under process noise and additive measurement noise.
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14.2 Bounded Error Nonlinear Estimation

In this section, we will extend the concept of BEE, defined in Chapter 8,
to nonlinear filters. First, we will refine the structure of the plant in Fig-
ure 14.2. Since z is an internal variable, it is reasonable to assume that the
operators Gy and Gz have some common dynamics. We will model this
as

Gy = GyyGc,

Gz = GzzGc.
(14.9)

For convenience, we redraw the filtering loop as in Figure 14.3, indicating
the special structure that we assume for the plant.
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FIGURE 14.3. Filtering loop with special structure for the plant

From (14.7), (14.9) and (14.8), the filtering error operators have the form

Hz̃v|(w=0) = G̃Gc,

Hz̃w|(v=0) = F,
(14.10)

where G̃ , Gzz − FGyy. We introduce the following definition.

Definition 14.2.1 (Bounded Error Nonlinear Estimator). A stable nonlin-
ear operator F is said to be a bounded error nonlinear estimator (BENE)
for the system (14.9), if the error operators (14.10) are stable nonlinear op-
erators. ◦

Observe that, contrary to the linear case, the BENE concept applies only
to the particular inputs v and w. Another interesting distinction is that
there is no guarantee that the estimation error will be bounded when both
inputs act simultaneously, since superposition is not valid for nonlinear
systems.

In order to derive conditions for a nonlinear estimator to be a BENE, we
need to work with the framework of §12.2 in Chapter 12. Using definition
(12.5) to compute the domain of Hz̃v|(w=0) given in (14.10), we have

D(Hz̃v|(w=0)) = D(G̃Gc)

= G−1
c (D(G̃)) ∪ A(G̃Gc),

(14.11)
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where

G−1
c (D(G̃)) = {x ∈ D(Gc) : Gcx ∈ D(G̃)},

A(G̃Gc) = {x ∈ D(Gc) : Gcx ∈ E(G̃)}.
(14.12)

We can now state a necessary and sufficient condition for a nonlinear op-
erator to be a BENE.

Theorem 14.2.1. A stable nonlinear operator, F, is a BENE for the sys-
tem (14.9) if and only if the following two conditions hold:

(i) G−1
c (D(G̃)) = D(Gc),

(ii) A(G̃Gc) = D(Gc),

where G̃ is defined in (14.10), and where G−1
c (D(G̃)), A(G̃Gc) are given

in (14.12).

Proof. Since F is stable, it follows from Definition 14.2.1 that F is a BENE
for (14.9) if and only if Hz̃v|(w=0) in (14.10) is a stable nonlinear operator.
This, in turn, holds if and only if D(G̃Gc) = X in (14.11). Since G−1

c (D(G̃))

and the added domain A(G̃Gc) in (14.12) have no intersection, the result
then follows. �

Assuming that G̃ is stable andGc is unstable, then the stability of Hz̃v|(w=0)

in (14.10) must be achieved by an unstable nonlinear zero-pole cancela-
tion.

It is not difficult to see that condition (i) in Theorem 14.2.1 is equivalent
to the following:

R(Gc) ⊂ D(G̃) .

Similarly, condition (ii) can be written as:

Gc(D(Gc)) ⊂ E(G̃) ,

where Gc(D(Gc)) is the obvious notation for the image of the set D(Gc)

through Gc. Hence, we can alternatively say that F is a BENE if and only
if: (i’) Gc maps every x in its domain to the domain of G̃, and (ii’) Gc
maps every x outside its domain to the extended domain of G̃. Figure 14.4
illustrates this interpretation.

14.3 Sensitivity Limitations

Lemma 13.3.1 in Chapter 13 established that nonminimum phase and un-
stable characteristics of the open-loop system were inherited by the closed-
loop operators S and T. These “nonlinear interpolation constraints” ex-
tended the interpolation constraints for S and T in linear feedback control.
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FIGURE 14.4. Set interpretation of a BENE.

In Chapters 8 and 9, we showed that similar interpolation constraints can
be derived for the linear filtering sensitivities, P andM, achieved by BEEs.

By way of contrast, nonminimum phase and unstable characteristics
of the system to be estimated, do not seem to necessarily constrain, at
least within our framework, properties of the nonlinear filtering sensitiv-
ities achieved by a BENE. To see this, we will discuss the case where Gzz
in (14.9) is the identity operator. This will simplify the analysis to the com-
position of two operators rather than three, and the conclusions are still
similar.

Using Gzz = I and (14.10) in the definitions (14.5), we obtain

P = G̃ = I− FGyy,

M = FGyy.
(14.13)

Next, assume that the output operator Gy in (14.9) is such that Gc is un-
stable and Gyy is D-NMP. If the filter, F, is a BENE, it follows from The-
orem 14.1.1 that there exists an unstable nonlinear zero-pole cancelation
in the composition G̃Gc. This means that G̃ is E-NMP. It does not follow,
however, that P has a defect in the closure of its range unless G̃ is also
D-NMP.

Turning to M, the fact that Gyy is D-NMP implies that the nonlinear
operator F is acting on a set, R(Gyy), which is a strict subset of X. This yet
does not necessarily lead to a defective range for the composition FGyy.

We formalize the above discussion in the following result.

Theorem 14.3.1. Let the plant be given by (14.9) with Gzz = I. Suppose
that P in (14.13) is a Lipschitz operator on X. Then

(i) If Gyy is D-NMP, and the filter, F, maps sets whose closure are strict
subsets of X into sets whose closure are also strict subsets of X, then
‖P‖L ≥ 1.

(ii) If Gc is unstable, and G̃ is NMP, then ‖M‖L ≥ 1.
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Proof. Note that the conditions in (i) imply that M is D-NMP, and the con-
ditions in (ii) imply that P is NMP. The proof then follows similarly to the
proof of Theorem 13.3.2 in Chapter 13. �

From Theorem 14.3.1 and the previous discussion, it seems plausible
that the constraints on the filtering sensitivities, due to nonminimum phase
and unstable plant dynamics, could be avoided by a proper selection of
the filter operator, F.

14.4 Summary

For the problem of nonlinear filtering in the presence of process noise
and additive measurement noise, we have defined in this chapter ap-
propriate extensions of the filtering sensitivities considered in Chapters 8
and 9. These nonlinear filtering sensitivities are complementary operators
when the external signals affecting the loop belong to a linear space. For
bounded error nonlinear estimators, we established sensitivity limitations
under conditions expressed in terms of nonminimum phase and unsta-
ble dynamics of the plant to be estimated. These limitations, however, do
not seem to be unavoidable. Indeed, it appears possible to design nonlin-
ear bounded error filters such that the sensitivities are not constrained by
nonminimum phase and unstable dynamics of the plant.

Chapter 13 has dealt with the extension to nonlinear systems of limita-
tions known to hold for LTI systems. It is possible that relaxation of linear-
ity could circumvent some trade-offs that are unavoidable in the special
case of LTI systems. Indeed, the results for nonlinear filtering of Chap-
ter 14 hint at a positive answer to this question. This conjecture, however,
still remains an open research question.

Notes and References

The results of this chapter are based on Seron (1995).
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Appendix A

Review of Complex Variable
Theory

A central result of Complex Variable Theory is the Cauchy Integral The-
orem and its applications. In this appendix we will state and prove this
fundamental result, which is the core of Cauchy’s theory of complex inte-
gration. The theory of complex integration is one of the three avenues of
approach to complex analysis, the other two being the theory of complex
derivatives and the theory of power series. These three approaches are as-
sociated with the names of Cauchy, Riemann and Weierstrass respectively.
The review given in this appendix summarizes the essential background
on analytic functions and complex variable theory. The emphasis is on
complex integration and complex derivatives, but a brief introduction to
power series is also provided.

A.1 Functions, Domains and Regions

We will be primarily interested in complex-valued functions defined on
regions. Before defining regions, we need some concepts related to sets.
An open set is (pathwise) connected if each pair of points in it can be joined
by a polygonal path (consisting of a finite number of line segments joined
end to end) that lies entirely in the set (see Figure A.1). An open connected
set of points is called a domain. A point s0 is called a boundary point of a
set U if every neighborhood of the point s0 contains at least one point
in the set U and at least one point not in the set U. A region is a domain
together with none, some, or all of its boundary points. A region is said
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to be closed if it contains all its boundary points, and bounded if it can be
enclosed in a circle of sufficiently large radius. IfΩ is a region, the notation
Ω denotes the closed region formed by Ω together with all its boundary
points. Domains and regions are subsets of the extended complex plane, i.e.,
the set of all finite complex numbers (the complex plane � ) and the point
at infinity, ∞. We denote the extended complex plane by � e = � ∪ {∞}.

� �

� �

FIGURE A.1. Open connected set.

A function f is continuous at a point s0 if the following condition is sat-
isfied:

lim
s � s0

f(s) = f(s0),

which implies that for each positive number ε there exists a positive num-
ber δ such that

|f(s) − f(s0)| < ε whenever |s− s0| < δ. (A.1)

A function of a complex variable is said to be continuous in a region Ω if it
is continuous at each point in Ω.

A.2 Complex Differentiation

There is an important difference between real and complex derivatives.
We recall that the existence of the derivative of a function of a real vari-
able is essentially a mild smoothness condition. On the other hand, the
existence of the derivative of a function of an independent variable hav-
ing two “degrees of freedom” implies a great deal about the function. As
we will see in this section, complex differentiability leads to a pair of dif-
ferential equations — the Cauchy-Riemann equations — which must be
satisfied by the function’s real and imaginary parts.

Let w = f(s) be a given complex function of the complex variable s,
defined on a domain, D. Then w is said to have a derivative at s0 ∈ D if

lim
s � s0

f(s) − f(s0)

s− s0
(A.2)
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exists, and is independent of the direction of the increment s − s0. We
denote this limit as f′(s0) or df/ds|s0

. When the derivative of f at s0 ∈ D
exists, f is said to be differentiable at s0.

We then have the following necessary and sufficient condition for dif-
ferentiability.

Theorem A.2.1. The function f(s) is differentiable at the point s0 ∈ D if
and only if the function increment f(s) − f(s0) can be written in the form

f(s) − f(s0) = k(s − s0) + ε(s, s0)(s − s0), (A.3)

where ε(s, s0) → 0 as s → s0, and k is a constant independent of s − s0
and ε.

Proof. If f has a derivative f ′(s0) at s0 then, by definition

f(s) − f(s0)

s− s0
= f ′(s0) + ε(s, s0), (A.4)

where ε(s, s0) → 0 as s → s0. Multiplying (A.4) by (s − s0), we find that
f(s) − f(s0) can be written in the form (A.3) with k = f ′(s0). Conversely,
if (A.3) holds, then dividing by (s− s0) and taking the limit as s→ s0, we
find that f ′(s0) exists and equals k. �

The fact that the increment s− s0 in (A.2) is complex, sets a very severe
restriction on the class of functions that have a complex derivative, as we
see from the following example.

Example A.2.1. Consider the function f(s) = s = σ− jω, i.e., the complex
conjugate of s. Then,

f(s) − f(s0)

s− s0
=
s− s0

s− s0
.

If s−s0 is real, then s− s0 = s−s0 and the limit as s → s0 is 1. But if s−s0
is purely imaginary, then s − s0 = −(s− s0) and the limit is −1. Thus, this
function is not differentiable anywhere, although its real and imaginary
parts, σ and −ω, are well behaved. ◦

In the above example, the nonexistence of f ′(s) was proven by taking
limits first through real values and then through imaginary values. These
two possibilities lead to the main condition that a complex function must
satisfy in order that it have a derivative. These conditions are stated in the
following result.

Theorem A.2.2 (Cauchy-Riemann equations). Let the function f(s) =

u(σ,ω) + jv(σ,ω), where s = σ + jω, be defined on a domain D. Then
a necessary and sufficient condition for f to be differentiable at the point
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s0 = σ0 + jω0 ∈ D is that the functions u and v be differentiable (as func-
tions of the two real variables σ and ω) at the point (σ0,ω0) and satisfy
the Cauchy-Riemann equations,

∂u

∂σ
=
∂v

∂ω
and

∂u

∂ω
= −

∂v

∂σ
, (A.5)

at (σ0,ω0). Furthermore

f ′(s0) =
∂u

∂σ
+ j
∂v

∂σ
=
∂v

∂ω
+ j
∂v

∂σ
=
∂u

∂σ
− j

∂u

∂ω
=
∂v

∂ω
− j

∂u

∂ω
, (A.6)

where the partial derivatives are evaluated at (σ0,ω0).

Proof. We prove that the conditions are necessary. Let ∆w = f(s0 + ∆s) −

f(s0) = ∆u + j∆v. Since f is differentiable at s0, we have from Theo-
rem A.2.1

∆w = k∆s + ε∆s, k = f ′(s0), (A.7)

where ε goes to zero as ∆s goes to zero. Then, writing ∆s = ∆σ + j∆ω,
k = a+ jb and ε = ε1 + jε2, we have

∆u + j∆v = (a+ jb)(∆σ + j∆ω) + (ε1 + jε2)(∆σ + j∆ω).

So

∆u = a∆σ − b∆ω + ε1∆σ − ε2∆ω,

∆v = b∆σ + a∆ω + ε2∆σ + ε1∆ω,

where ε1, ε2 → 0 as ∆σ, ∆ω → 0, since

|∆s| =

√

(∆σ)2 + (∆ω)2, |ε1| ≤ |ε|, |ε2| ≤ |ε|.

It follows that the functions u and v are differentiable at (σ0,ω0) and

∂u

∂σ
= a =

∂v

∂ω
,

∂u

∂ω
= −b = −

∂v

∂σ
, (A.8)

which immediately imply (A.5) and (A.6).
The proof of sufficiency follows by reversing the preceding argument.

�

A.3 Analytic functions

The Cauchy-Riemann equations represent a necessary and sufficient con-
dition for pointwise differentiability of a complex function. We will be
generally interested, however, in differentiability throughout a region. This
motivates the following definition.
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Definition A.3.1 (Analytic Function). A function f is said to be analytic1

at a point s0 if f is differentiable throughout some neighborhood of s0. A
function is analytic in a region, if it is analytic at every point of the region.

◦
In the case of a domain (open, connected, nonempty set), differentia-

bility and analyticity are equivalent, but in other cases, differentiability is
required in a larger open set (for example, f is analytic for |s| ≤ 1 if f is
differentiable for |s| < 1 + δ, where δ > 0).

A remarkable result from the theory of functions of a complex variable
is that every analytic function is infinitely differentiable and, furthermore,
has a power series expansion about each point of its domain. We will show
this in §A.7.1 and §A.7.2.

As we know from calculus, a sufficient condition for the differentiabil-
ity of the functions u(σ,ω) and v(σ,ω) on a domain D is that the partial
derivatives

∂u

∂σ
,
∂u

∂ω
,
∂v

∂σ
,
∂v

∂ω
(A.9)

exist and are continuous on D. Therefore, a sufficient condition for the
function f = u + jv to be analytic on D is that the partial derivatives ex-
ist, are continuous and satisfy the Cauchy-Riemann equations on D. Con-
versely, it follows from Theorem A.2.2 that, if f = u + jv is analytic on
a domain D, then u and v have partial derivatives (A.9) satisfying the
Cauchy-Riemann conditions (A.5).2

We illustrate by some examples.

Example A.3.1. Consider f(s) = s2 , u(σ,ω) + jv(σ,ω). Then u(σ,ω) =

σ2 −ω2, v(σ,ω) = 2σω, and thus

∂u

∂σ
= 2σ ,

∂u

∂ω
= −2ω ,

∂v

∂σ
= 2ω ,

∂v

∂ω
= 2σ .

Hence the Cauchy-Riemann equations (A.5) hold for all σ and ω, and the
function is clearly analytic in the complex plane. ◦
Example A.3.2. Consider f(s) = |s|2. We then have that u(σ,ω) = σ2 +

ω2 and v(σ,ω) = 0. Here the Cauchy-Riemann equations require 2σ =

0, 2ω = 0, and hence they require s = 0. Since f ′(s) does not exist through-
out a neighborhood of s = 0, this function is not analytic. Nevertheless

1Also known as holomorphic or regular.
2In fact, these partial derivatives are continuous, but this does not follow from Theo-

rem A.2.2, unless analyticity is defined as continuous-differentiability. We will use this re-
stricted definition of analyticity to give a compact proof of Cauchy’s Integral Theorem in
§A.5.2.
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f ′(0) exists, as shown by the equation

lim
s � 0

f(s) − f(0)

s
= lim
s � 0

|s|2

s
= 0.

◦
Example A.3.3. Consider a rational function of the form:

H(s) =
K(s− q1) · · · (s− qm)

(s − p1) · · · (s − pn)
,
N(s)

D(s)
. (A.10)

Then

dH

ds
=
D
dN

ds
−N

dD

ds
D2

.

These derivatives clearly exist save when D = 0. Hence H is analytic save
at the points whereD has zeros. ◦
Example A.3.4. Consider H as in (A.10). Then

d logH
ds

=

[

D

N

]






D
dN

ds
−N

dD

ds
D2






=
1

N

dN

ds
−
1

D

dD

ds
. (A.11)

Hence logH is analytic save at the points whereN andD have zeros. ◦
The two previous examples were concerned with functions that are an-

alytic on a region except for some points. Those points where the function
is not analytic are called singular points or singularities, and are analyzed in
more detail in §A.8.

A.3.1 Harmonic Functions
Let f = u + jv be analytic on a domain D. Then it satisfies the Cauchy-
Riemann equations (A.5) on D. Suppose further that u and v have contin-
uous second partial derivatives (we will show in §A.7.1 that they are in
fact infinitely differentiable). Differentiating the Cauchy-Riemann equa-
tions again we get

∂2u

∂σ2
=

∂2v

∂σ∂ω
,

∂2u

∂ω2
= −

∂2v

∂ω∂σ
.

Hence,
∂2u

∂σ2
+
∂2u

∂ω2
= 0. (A.12)
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A similar relation holds for v. Equation (A.12) is known as Laplace’s equa-
tion and the LHS the Laplacian of u, usually denoted by ∇2u. We then have
the following definition.

Definition A.3.2 (Harmonic Function). Let u be a real-valued function
defined on a domain D. Then u is said to be harmonic if u has continuous
second partial derivatives that satisfy Laplace’s equation (A.12). ◦

It follows that the real and imaginary parts of an analytic function are
harmonic functions. A harmonic function v related to u by the Cauchy-
Riemann equations is said to be the harmonic conjugate of u.

The following example of a harmonic function is of particular interest
in the sequel.

Example A.3.5. Consider again logH, where H is the rational function of
Example A.3.3. We have seen that logH is analytic on any complex domain
that does not contain zeros of either the numerator or denominator ofH. It
follows that, on such domains, the function log |H| = Re logH is harmonic.

◦
Finally, a continuous real-valued function u(σ,ω), defined in some re-

gion, is said to be subharmonic if it satisfies

∇2u ,
∂2u

∂σ2
+
∂2u

∂ω2
≥ 0.

A.4 Complex Integration

In contrast to the real case, complex integration requires the specification
of not only the limits of integration but also the particular curve that con-
nects these points. We thus start this section with a review of curves.

A.4.1 Curves
A curve3 in the extended complex plane is a set of points

{σ(ζ) + jω(ζ), ζ ∈ [a, b]}

where σ andω are continuous real-valued functions of the parameter ζ in
some interval [a, b]. A concise way of denoting a curve is by means of a
complex-valued function s = s(ζ), where

s(ζ) = σ(ζ) + jω(ζ). (A.13)

3Note that there are slight differences in the literature on various definitions used in this
section.
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We will then say that the curve is defined by the function s(ζ).
A curve defined by s = s(ζ), with ζ in [a, b], is a closed curve if its ex-

treme points coincide, i.e., s(a) = s(b). A curve is simple if it does not inter-
sect itself, with the possible exception of the extreme points if the curve is
also closed. A closed simple curve is sometimes called a Jordan curve. Ac-
cording to the Jordan curve theorem (e.g., Churchill and Brown, 1984, p. 83),
a closed simple curve divides � e into two domains: an interior domain,
the interior, which is bounded, and an exterior domain, the exterior. Points
of the interior of a Jordan curve are called interior points or points within
the curve.

The derivative s ′(ζ), or d[s(ζ)]/dζ, of s with respect to the parameter ζ
is defined as

s ′(ζ) = σ ′(ζ) + jω ′(ζ) = dσ/dζ+ j dω/dζ,

provided the derivatives σ ′(ζ) and ω ′(ζ) both exist.
A curve is said to be differentiable if σ andω are differentiable functions

of the parameter ζ. A continuously differentiable curve is called an arc.
Let C, given by s = s(ζ), ζ ∈ [a, b], be an arc. Then the real valued

function

|s ′(ζ)| =

√

[σ ′(ζ)]2 + [ω ′(ζ)]2

is integrable over the interval [a, b], and the arc C is said to have length4

` =

∫b

a

|s ′(ζ)|dζ. (A.14)

An arc is smooth if among its various parametric representations, there is
at least one representation (A.13) such that the continuous derivative s ′(ζ)
is never zero on the interval [a, b]. The geometric meaning of smoothness
is clear from the fact that if s ′(ζ) 6= 0 for all ζ in [a, b], then the curve has a
tangent at every point, whose angle of inclination is arg s ′(ζ).

A contour is a curve consisting of a finite number of arcs joined end to
end. The length of a contour is the sum of the lengths of the arcs that con-
stitute the contour. If each of the arcs that form the contour is smooth, then
the contour is piecewise smooth. A piecewise smooth contour may not have
a tangent at the points where the arcs are joined to each other, in which
case it has a corner. For example, a rectangle on the plane is a piecewise
smooth contour. Figure A.2 illustrates the curves just defined.

For the purposes of this book, it suffices to assume that all the curves
considered are piecewise smooth contours. Most of the contours that we
use are in fact piecewise smooth and closed.

4This expression arises from the definition of arc length in calculus.
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� � � �

� � � �

FIGURE A.2. Simple curve, closed but not simple curve, and a contour.

A.4.2 Integrals
In this subsection we define complex integration and relate it to line and
area integrals of functions of two real variables.

As a preliminary step, we define the integral of a complex-valued func-
tion of a real variable ζ over a given interval a ≤ ζ ≤ b. Let s(ζ) =

σ(ζ) + jω(ζ), ζ ∈ [a, b], be piecewise continuous on [a, b]. The integral
of s from a to b is defined as

∫b

a

s(ζ)dζ =

∫b

a

σ(ζ)dζ+ j

∫b

a

ω(ζ)dζ. (A.15)

It is easy to show (e.g., Churchill and Brown, 1984, p. 80) that the inte-
gral (A.15) satisfies the inequality

∣

∣

∣

∣

∣

∫b

a

s(ζ)dζ

∣

∣

∣

∣

∣

≤
∫b

a

|s(ζ)|dζ, (A.16)

which also holds in cases when the integrals are improper, provided both
sides of (A.16) exist.

By complex integration we refer to the integration of complex-valued
functions of the complex variable s. Recall that a complex-valued func-
tion f(s) is said to be continuous on the arc C, defined by s = s(ζ), if the
function f(s(ζ)) is continuous for ζ in [a, b]5. Then for a function f contin-
uous6 on C, the integral of f on C is defined by

∫

C

f(s)ds =

∫b

a

f(s(ζ)) s ′(ζ)dζ. (A.17)

When f is continuous on a contour C, i.e., continuous on each arc Ci, i =

1, . . . n, that forms the contour, then we define the integral by
∫

C

f(s)ds =

∫

C1

f(s)ds+

∫

C2

f(s)ds+ · · · +
∫

Cn

f(s)ds.

5Note that � is continuous on
�

if it is continuous in a region of the extended complex
plane containing

�
.

6Piecewise continuity is, in fact, sufficient.
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Complex integration is a linear operation, that is, the following property
holds ∫

C

[α f(s) + βg(s)]ds = α

∫

C

f(s)ds+ β

∫

C

g(s)ds,

whenever α and β are complex constants and f and g are (piecewise) con-
tinuous on the arc or contour C. Also, if F is a complex function with con-
tinuous derivative7 f in a domain containing the arc C, then the funda-
mental theorem of calculus holds in the form

∫

C

f(s)ds = F(A) − F(B), (A.18)

where A and B are the initial and terminal points of C respectively.
Complex integrals can also be represented as integrals of real-valued

functions of two real variables. Indeed, by separating into real and imagi-
nary parts, any function f can be expressed in terms of two real functions,
i.e., f = u + jv. Thus, if s = σ+ jω, we can write

f(s) = u(σ,ω) + jv(σ,ω).

We can then formally replace f = u+ jv and ds = dσ+ j dω in the expres-
sion

∫
C
f(s)ds, to obtain

∫

C

f(s)ds =

∫

C

[

u(σ,ω)+jv(σ,ω)
]

(dσ + j dω)

=

∫

C

[

u(σ,ω)dσ−v(σ,ω)dω
]

+j

∫

C

[

u(σ,ω)dω+v(σ,ω)dσ
]

.

(A.19)

Hence, we can represent a complex integral using two line integrals of the
kind ∫

C

p(σ,ω)dσ + q(σ,ω)dω, (A.20)

where p and q are real-valued functions of the real variables σ andω. That
(A.19) is equivalent to (A.17) follows immediately from definition (A.15).
Now, assuming that p and q are continuous in some domainD containing
the arc C given by s = s(ζ), ζ ∈ [a, b], then the line integrals along C from
point A = s(a) to point B = s(b) are defined as

∫B

A

p(σ,ω)dσ =

∫b

a

p (σ(ζ),ω(ζ)) σ ′(ζ)dζ,

∫B

A

q(σ,ω)dω =

∫b

a

q (σ(ζ),ω (ζ))ω ′(ζ)dζ.

(A.21)

7See definition of complex derivative in §A.2.
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The line integral (A.20) can be interpreted as a vector integral (e.g.,
Widder, 1961). Indeed, consider the unit tangent vector, ~t, and the unit
outer normal, ~n, to the curve C, as shown in Figure A.3. Then ~t has com-

~
����� 


�

� �� 


�
���� 
� �� 


���

�

~
�

FIGURE A.3. Tangent and outer normal vectors.

ponents dσ/ds, dω/ds, and ~n has components dω/ds, −dσ/ds (Kaplan,
1973, p. 237). Consider next the vector (q,−p), and note that

(q,−p) · ~n = qdω/ds+ pdσ/ds,

where “·” denotes scalar product of vectors. It is then easy to see that
∫

C

pdσ + qdω =

∫

C

(q,−p) · ~nds. (A.22)

We next turn to the definition of area (or double) integral of a function
of two real variables. Let p(σ,ω) be a function defined over a closed and
bounded regionΩ of the extended complex plane. Suppose we subdivide
Ω by drawing a grid parallel to the real and imaginary axes as shown
in Figure A.4. We thus form a finite number of closed square subregions

�

�

���

��� �

� �

�
�

FIGURE A.4. Subdivision of the region
�

.

where each point of Ω lies in at least one such subregion and each sub-
region contains points of Ω. Consider those square regions that contain
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only points inside Ω (i.e., only “full” squares). Number them from 1 to
m and denote by Ωi the area of the i-th square. Choosing an arbitrary
point (σi,ωi) in the i-th square, then the double integral of p(σ,ω) over the
region Ω is defined as

∫∫

Ω

p(σ,ω)dσdω = lim
m∑

i=1

p(σi,ωi)Ωi, (A.23)

where the limit is taken as the grid becomes infinitely fine, i.e., m goes to
infinite and the maximum diagonal of all squares approaches 0.

The existence of the limit in (A.23) can be demonstrated (see e.g., Wid-
der, 1961) when p is continuous and Ω satisfies simple conditions, e.g.,
when Ω can be split into a finite number of square subregions. In fact, the
result also holds when the subregions are not necessarily square, but each
of them can be described by inequalities of any of the following forms

a ≤ σ ≤ b, g1(σ) ≤ ω ≤ g2(σ), (A.24)
c ≤ ω ≤ d, g3(ω) ≤ σ ≤ g4(ω), (A.25)

where g1, g2, g3 and g4 are continuous functions. The first of these two
situations is represented in Figure A.5.

� � � � �

�

�

�

���

��

� � � � �

FIGURE A.5. Simple region.

In both cases, the double integral (A.23) can be computed as an iterated
integral, i.e., ifΩ is given by (A.24), we have

∫∫

Ω

p(σ,ω)dσdω =

∫b

a

∫g2(σ)

g1(σ)

p(σ,ω)dωdσ,

or alternatively, ifΩ is given by (A.25),

∫∫

Ω

p(σ,ω)dσdω =

∫d

c

∫g4(ω)

g3(ω)

p(σ,ω)dσdω.
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Integrals in Limiting Cases

In many of the applications to control and filtering theory discussed in
the main body of the book, we consider integrals over the semicircular
contour shown in Figure A.6, where the radius R can be made either in-
definitely large or indefinitely small. This requires evaluation of integrals

�

�

�
�

�

FIGURE A.6. Typical path of integration.

in limiting cases, a task that is circumvented by appropriate estimates or
bounds on the integrals in question, as we show next.

Let f be any function defined on a domainD, and consider a contour, C,
inD, defined by s = s(ζ), ζ ∈ [a, b]. Suppose that f is piecewise continuous
on C and let fm be the largest value of |f(s)| over C8. It is easy to see9 that

∣

∣

∣

∣

∫

C

f(s)ds

∣

∣

∣

∣

≤
∫b

a

fm|s ′(ζ)|dζ = fm `, (A.26)

where ` is the length of the contour C.
The bound for the integral given in (A.26) can be used to obtain esti-

mates of the integral in various limiting situations, as the following exam-
ples shows.

Example A.4.1. Consider the integral of powers of s over the contour C
shown in Figure A.6. The path length of this contour is πR. Hence if f(s)
varies as s−2, then the magnitude of f(s) on C, and hence fm in (A.26),
must vary as R−2. Thus the integral on C vanishes as R goes to ∞. The
same result holds, of course, if f(s) varies as any larger negative power of s.

◦

8Such a value � � will always exist. Indeed, if � is continuous on the arc
�

, then the real-
valued function � � � ����� � � � is continuous on the closed bounded interval

�
� ���

�
, and hence it

always reaches a maximum value � � on that interval. Hence � � ���	� � has a maximum value on�
when � is continuous. It is immediate that the same is true when � is piecewise continuous

on
�

.
9Using definition (A.17), property (A.16) and the definition of the length of a contour

given in §A.4.1.
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Example A.4.2. If the semicircle of Figure A.6 has very small, rather than
very large radius then the path length vanishes in the limit. It is then clear
from (A.26) that the integral also vanishes if f(s) either approaches a con-
stant value or behaves in the vicinity of the origin as any positive power of
s. On the other hand, if f(s) behaves as s−2 or any larger negative power
of s, then fm will increase rapidly as R diminishes, and thus we can say
nothing about the integral on the basis of (A.26). ◦

When not only powers of s are involved but also exponential functions,
a handy result is found in Jordan’s Lemma, which is reviewed next.

Lemma A.4.1 (Jordan’s Lemma). Let C be the contour of Figure A.6 and
let τ be a positive real number. Then

∫

C

∣

∣e−sτ
∣

∣ |ds| <
π

τ
. (A.27)

Proof. On C we have

∫

C

∣

∣e−sτ
∣

∣ |ds| =

∫π/2

−π/2

e−τR cosθRdθ = 2

∫π/2

0

e−τR cosθRdθ. (A.28)

Now, it is easy to see that − cos θ ≤ 2
π
θ − 1 for θ ∈ [0, π/2], which, when

used in (A.28), gives

∫

C

∣

∣e−sτ
∣

∣ |ds| ≤ 2
∫π/2

0

eτR(2θ/π−1)Rdθ =
π

τ

(

1 − e−Rτ
)

<
π

τ
,

and the proof is completed. �

The following example shows the use of Jordan’s Lemma to evaluate an
integral in a limiting case.

Example A.4.3. Consider the function

f(s) =
e−sτ

s
, τ > 0.

and let C be the semicircle of the Jordan’s lemma. Then
∣

∣

∣

∣

∫

C

e−sτ

s
ds

∣

∣

∣

∣

≤
∫

C

|e−sτ |

|s|
|ds| <

π

Rτ
,

and hence

lim
R � �

∫

C

e−sτ

s
ds = 0.

Obviously the same result is true for f(s) = e−sτ/sk, k ≥ 1. ◦
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A.5 Main Integral Theorems

In complex integration, a natural question arises whether the value of the
integral is affected by the choice of the path between integration limits, or
whether the integral is invariant with respect to the path. We will see in
§A.5.2 that Cauchy’s Integral Theorem connects this question to important
properties of the function to be integrated. As a prelude, we next give
Green’s Theorem, which is part of the necessary background to prove the
Cauchy Integral Theorem.

A.5.1 Green’s Theorem
We prove in this section Green’s Theorem, which applies to real-valued
functions of two real variables defined on a simply connected domain.

Informally, a domain D is said to be simply connected if it has no holes.
More precisely, D is simply connected if for every simple closed curve
C ⊂ D, the regionΩ formed from C plus its interior lies wholly in D.

We then have the following theorem for functions defined over a simply
connected domain.

Theorem A.5.1 (Green’s Theorem). LetD be a simply connected domain
and let C be a piecewise smooth simple closed contour in D. Let p(σ,ω),
q(σ,ω) be functions that are continuous and have continuous first partial
derivatives in D. Then

∮

C

pdσ+ qdω =

∫∫

Ω

(

∂q

∂σ
−
∂p

∂ω

)

dσdω, (A.29)

whereΩ is the closed region bounded by C.

Proof. We first consider a simple case in which Ω has the form shown in
Figure A.5, i.e., it is representable in both of the forms (A.24) and (A.25).
Then the double integral

∫∫

Ω

∂p

∂ω
dωdσ

can be written as the iterated integral

∫∫

Ω

∂p

∂ω
dσdω =

∫b

a

∫g2(σ)

g1(σ)

∂p

∂ω
dωdσ.
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One can now integrate to achieve

∫∫

Ω

∂p

∂ω
dσdω =

∫b

a

[p (σ, g2(σ)) − p (σ, g1(σ))] dσ

=

∫b

a

p (σ, g2(σ)) dσ +

∫a

b

p (σ, g1(σ)) dσ

= −

∮

C

p(σ,ω)dσ.

By a similar argument we obtain
∫∫

Ω

∂q

∂σ
dσdω =

∮

C

qdω.

The result follows on adding the two double integrals for the simple type
of region Ω represented as in (A.24) and (A.25).

It is easy to prove the result for more complex regions that can be de-
composed into a finite number of simple regions. For the most general
case, it is necessary to approximate the region by the latter and then per-
form a limiting process. �

Green’s formula (A.29) connects a double integral over a region with
a line integral over its boundary, and it is at the basis of the proof of
Cauchy’s Integral Theorem. We next give a version of this formula that
is used in Chapter 4 to obtain integral constraints for multivariable sys-
tems.

For a real-valued function f(σ,ω) with continuous second partial deriv-
atives in some domain, let ∇f and ∇2f be the gradient and Laplacian of f,
respectively, given by

∇f =

(

∂f

∂σ
,
∂f

∂ω

)

, and ∇2f =
∂2f

∂σ2
+
∂2f

∂ω2
.

We then have the following corollary.

Corollary A.5.2. Let C be a piecewise smooth, simple closed contour in a
simply connected domain, D, and let Ω be the closed region bounded by
C. Let f(σ,ω), g(σ,ω) be functions that are continuous and have continu-
ous second partial derivatives in D. Then

∮

C

(

f
∂g

∂~n
− g

∂f

∂~n

)

ds =

∫∫

Ω

(f∇2g − g∇2f)dσdω, (A.30)

where ∂f/∂~n = ∇f ·~n is the directional derivative of f along ~n, the exterior
normal of C.
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Proof. We use the identity

div(f∇g) = f∇2g + ∇f · ∇g,

where the symbol div denotes the divergence of a vector field (see e.g.,
Kaplan, 1973). Integrating the above equation over Ω, we have

∫∫

Ω

div(f∇g)dσdω =

∫∫

Ω

f∇2gdσdω +

∫∫

Ω

∇f · ∇gdσdω. (A.31)

Using the definitions of divergence and gradient, and equations (A.29)
and (A.22), the LHS above can be written as

∫∫

Ω

div(f∇g)dσdω =

∫∫

Ω

[

∂

∂σ

(

f
∂g

∂σ

)

+
∂

∂ω

(

f
∂g

∂ω

)]

dσdω

=

∮

C

f∇g · ~nds

=

∮

C

f
∂f

∂~n
ds.

Hence, (A.31) can alternatively be expressed as
∮

C

f
∂f

∂~n
ds =

∫∫

Ω

f∇2gdσdω+

∫∫

Ω

∇f · ∇gdσdω.

Using the above identity with f and g interchanged, and subtracting, leads
to (A.30). �

A.5.2 The Cauchy Integral Theorem
In §A.3, we introduced the class of analytic functions, which are at the core
of the results presented in the book. For these functions, a fundamental
result — Cauchy’s Integral Theorem — can be stated which allows one to
evaluate the integral of such functions on closed contours.

Before addressing this result, let us motivate it with a simple example
of integration of powers of s over a circle around the origin.

Example A.5.1. Let f(s) = s−1 and consider the contour C shown in Fig-
ure A.7. The integral over C is computed in the clockwise direction, i.e.,
from s1 to s2. On C, we have that s = Rejθ, and so ds = jRejθ dθ. Hence

∫

C

ds

s
=

∫θ2

θ1

jRejθ dθ

Rejθ

= −j (θ1 − θ2) . (A.32)
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FIGURE A.7. Path of integration used in Example A.5.1.

Note that this result is independent of the value of R. We will next use
(A.32) to evaluate the integral of powers of s around a full circle of radius
R centered at the origin of the complex plane. In this case,

∮
smds =

∫π

−π

(

Rmejmθ
)

jRejθ dθ

= jRm+1

∫π

−π

[cos(m + 1)θ + j sin(m + 1)θ]dθ

=

{
0 form 6= −1,

−j2π form = −1, (integration clockwise).
(A.33)

In particular, note that the integral of positive power of s over the circle
vanishes. This is not casual, as we see next. ◦
Theorem A.5.3 (Cauchy Integral Theorem). If f is analytic on some sim-
ply connected domain D, then

∮

C

f(s)ds = 0,

where C is any piecewise smooth simple closed contour in D.

Proof. We will prove this theorem assuming the restricted definition of an-
alyticity referred to in the footnote on page 279, i.e., a function is analytic
if it is continuously differentiable.10

Let f = u + jv. From (A.19), we have
∮

C

f ds =

∮

C

(udσ − v dω) + j

∮

C

(v dσ + u dω).

10This restricted definition allows us to obtain a simple proof of the theorem. Moreover,
there is no loss of generality in this assumption since the original definition not requiring
continuity ultimately leads to the conclusion that the derivative of the function is, in fact,
continuous.
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Since f is analytic (and hence f ′ is continuous) on a simply connected do-
main D, it follows from Theorem A.2.2 that u and v have continuous par-
tial derivatives (A.9). Since D is simply connected, we can apply Green’s
theorem (Theorem A.5.1) to the real and imaginary parts of the integral in
the above equation to obtain

∮

C

f ds =

∫∫

Ω

(

−
∂v

∂σ
−
∂u

∂ω

)

dσdω+ j

∫∫

Ω

(

∂u

∂σ
−
∂v

∂ω

)

dσdω,

where Ω is the region bounded by C. Since the partial derivatives of u
and v satisfy the Cauchy-Riemann conditions (A.5) (Theorem A.2.2), the
integrands of these two double integrals are zero throughoutD and hence
the result follows. �

The above proof follows the original setting used by Cauchy in his proof
in the early part of the last century. Several decades later, it was discovered
by Edouard Goursat that the hypothesis of continuity of the derivative in
Cauchy’s theorem can be dispensed with, which led to the modern, more
general version of this important result11. The relaxation of this assump-
tion allows us to use Cauchy’s Integral Theorem to show that, in fact, con-
tinuity of the derivative follows from analyticity of the function.

Theorem A.5.3 is readily illustrated using Example A.5.1, as seen below.

Example A.5.2. Suppose that f(s) is the polynomial

f(s) = a0 + a1s+ · · · + ansn.

Then f(s) is analytic on and within a circle about the origin, and, according
to the Cauchy integral theorem, the integral on the complete circle must
vanish. But this was indeed the result of Example A.5.1, which showed
that the integral of each term of the polynomial vanishes. ◦

The simple piecewise smooth closed contour in Theorem A.5.3 can be
replaced by less trivial contours without compromising the result. These
extensions are discussed in the following subsection.

A.5.3 Extensions of Cauchy’s Integral Theorem
As a first extension, we note that the contour in Theorem A.5.3 can be
replaced by a piecewise smooth closed contour C that is not necessarily
simple. For if C intersects itself a finite number of times, it consists of a
finite number of simple closed contours, as illustrated in Figure A.2 in
§A.4.1. By applying the Cauchy Integral Theorem to each of those simple

11Some authors even refer to this theorem as the Cauchy-Goursat Theorem (e.g., Levinson
and Redheffer, 1970; Churchill and Brown, 1984).
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closed contours, the desired result for C is obtained. Also, a portion of
C may be traversed twice in opposite directions since the integrals along
these portions in the two directions cancel each other.

Another useful extension of Cauchy Integral Theorem covers the case
where the contour C is the oriented boundary of a multiply connected domain.
To see how this extension can be established, let C0 be a simple closed
contour and let Ci, i = 1, 2, · · · , n, be a finite number of simple closed
contours inside C0 such that the interiors of each Ci have no points in
common. Let Ω be the closed region consisting of all points within and
on C0 except for points interior to each Ci (Figure A.8). Let C denote the

`2

� � �

� �
� �

�
�

�
�

�
�

� �

�
�

�

FIGURE A.8. Multiply connected domain.

entire connected boundary of Ω consisting of C0 and all the contours Ci,
described in a direction such that the interior points of Ω lie to the left of
C. Next, we introduce a polygonal path `1, consisting of a finite number
of line segments joined end to end, to connect the outer contour C0 to the
inner contour C1. We introduce another polygonal path `2 that connects
C1 to C2; and we continue in this manner, with `n+1 connecting Cn to C0.
As indicated in Figure A.8, two simple closed contours Γ1 and Γ2 can be
formed, each consisting of polygonal paths `i or −`i and pieces of C0 and
Ci. Then, if f is analytic throughout Ω, the Cauchy Integral Theorem can
be applied to f on Γ1 and Γ2, and the sum of the integrals over those con-
tours is found to be zero. Since the integrals in opposite directions along
each path `i cancel, only the integral along C remains. Thus,

∫

C

f(s)ds = 0.

The following examples show how the extension of Theorem A.5.3 to
the boundary of a multiply connected domain can be used.

Example A.5.3. Let C0 be a simple closed piecewise smooth contour ly-
ing on the interior of a simple closed piecewise smooth contour C, where
both C and C0 are equally oriented, e.g., in the counter-clockwise direc-
tion (Figure A.9). Let f be analytic in the closed region bounded by C and
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C0. Then, the extension of the Cauchy Integral Theorem to its boundary
gives that the integral of f around the outer contour, C, minus the integral
around the interior contour, C0, must equal zero, i.e.,

∮

C

f(s)ds =

∮

C0

f(s)ds.

◦
Example A.5.4. When integration on closed contours is extended to func-
tions having isolated singularities, the value of the integral is not zero, in
general, but each singularity contributes a term called the residue.12

Say that f(s) can be expanded as

f(s) =
c−1

s− s0
+ c0 + c1(s− s0) + c2(s− s0)

2 + · · · . (A.34)

The number c−1 is called the residue of f at s0.

���
�

�

�
�

�

�

� �

FIGURE A.9. Region for Example A.5.4.

Now consider the region Ω with boundary consisting of the piecewise
smooth contour C and the smaller circle C0 centered at s0, as shown in
Figure A.9. Since f(s) is analytic on Ω, Example A.5.3 shows that the in-
tegral around the outer curve, C in Figure A.9, equals the integral around
the inner circle, C0. The counter-clockwise circular integral around s0 is
j2πc−1 using (A.33). Thus, we may conclude that

∮

C

f(s)ds = j2πc−1. (A.35)

◦

12The residue is formally defined in §A.9.1; here we give only a preview that will motivate
Cauchy’s Integral Formula.
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A.5.4 The Cauchy Integral Formula
A general problem of central importance in this book is that of relating
the values assumed by an analytic function within a given region, to its
values on the boundary of the region. A remarkable tool for dealing with
this problem is found in Cauchy’s Integral Formula.

Theorem A.5.4 (Cauchy’s Integral Formula). Let f be analytic within and
on a simple closed piecewise smooth contour, C. If s0 is any point interior
to C, then ∮

C

f(s)

s− s0
ds = j2π f(s0), (A.36)

where the integral is computed in the counter-clockwise direction.

Proof. Since f is continuous at s0, given ε > 0 there is a δ > 0 such that

|f(s) − f(s0)| < ε whenever |s− s0| < δ.

Choose 0 < ρ < δ such that the counter-clockwise oriented circle |s− s0| =

ρ, denoted by C0 in Figure A.9, is interior to C. Then

|f(s) − f(s0)| < ε whenever |s− s0| = ρ. (A.37)

Next, observe that the function f(s)/(s− s0) is analytic at all points within
and on C except at s0. Hence, by the Cauchy Integral Theorem for multi-
ply connected domains, its integral around the oriented boundary of the
region between C and C0 has value zero, i.e.,

∮

C

f(s)

s− s0
ds =

∮

C0

f(s)

s− s0
ds.

Subtracting the constant term f(s0)
∮
C0
ds/(s− s0), which equals j2π f(s0)

by (A.33), from both sides of the above equation yields
∮

C

f(s)

s − s0
ds− j2π f(s0) =

∮

C0

f(s) − f(s0)

s − s0
ds. (A.38)

Referring to (A.37) and noting that the length of C0 is 2πρ, we may apply
property (A.16) to the RHS of (A.38), to obtain

∣

∣

∣

∣

∮

C0

f(s) − f(s0)

s − s0
ds

∣

∣

∣

∣

<
ε

ρ
2πρ = 2πε.

From (A.38), then
∣

∣

∣

∣

∮

C

f(s)

s − s0
ds − j2π f(s0)

∣

∣

∣

∣

< 2πε.

Since the LHS of this inequality is a nonnegative number that is less than
an arbitrarily small positive number, it must be equal to zero, giving the
desired result. �
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We note from Theorem A.5.4 that the value f(s0) can be obtained by in-
tegrating f(s)/(s−s0) on a contour encircling s0. Hence we can determine
the value of an analytic function inside a region by its behavior on the
boundary. We extensively exploit this result in the book to examine the
characteristics that a function must have on the boundary (typically the
imaginary axis) when it is known to achieve certain values in the interior.

The Cauchy integral formula can be extended to cases in which the sim-
ple closed contour C is replaced by the oriented boundary of a multiply
connected domain, as described in §A.5.3. The following example shows
how this can be accomplished.

Example A.5.5. LetC0 andC1 be two counter-clockwise oriented, concen-
tric circles, where C1 is smaller than C0 (Figure A.10). Assume that f is an-

�
�

�
�

�

� �

FIGURE A.10. Annular domain for Example A.5.5.

alytic on both circles and throughout the annular domain between them.
Let s0 be a point inside the annulus and construct a counter-clockwise
oriented circle γ about s0, small enough to be completely contained in
the annular domain, as shown in Figure A.10. It then follows from the
adaptation of the Cauchy integral theorem to the boundary of a multiply
connected domain that

∮

C0

f(s)

s− s0
ds−

∮

C1

f(s)

s− s0
ds−

∮

γ

f(s)

s− s0
ds = 0.

But, according to Cauchy’s integral formula, the value of the third integral
above is 2πj f(s0). Hence,

f(s0) =
1

2πj

∮

C0

f(s)

s− s0
ds −

1

2πj

∮

C1

f(s)

s− s0
ds. (A.39)

◦

In the following section we discuss an important application of the Cauchy’s
integral theorem and formula.



298 Appendix A. Review of Complex Variable Theory

A.6 The Poisson Integral Formula

An application of the integral theorems of the previous section, central to
the purposes of this book, is found in the Poisson integral formula for both
the half plane and the unit disk.

A.6.1 Formula for the Half Plane
In the case of the right half plane, we are faced with integration over a
contour that becomes arbitrarily long. To deal with this, we will consider
a class of functions with restricted behavior at infinity, and then use the
bounding technique of (A.26) to estimate the integral over the infinite con-
tour.

In particular, given a function f, define

m(R) = sup
θ

|f(Rejθ)|, θ ∈ [−π/2, π/2]. (A.40)

Then f(s) is said to be of class R if

lim
R � �

m(R)

R
= 0. (A.41)

For example, the functions considered in Examples A.4.1 and A.4.3 are in
this class. More generally, if f is analytic and of bounded magnitude in the
CRHP, then f is of class R.

The Poisson integral formula for the half plane is given in the following
result.

Theorem A.6.1 (Poisson Integral Formula for the Half Plane). Let f be
analytic in the CRHP and suppose that f is of class R. Let s0 = σ0 + jω0
be a point in the complex plane with σ0 > 0. Then

f(s0) =
1

π

∫ �

− �
f(jω)

σ0

σ20 + (ω0 −ω)2
dω. (A.42)

Proof. Let f be as in the statement of the theorem and let s0 = σ0 + jω0 be
any point such that σ0 > 0. Consider the clockwise oriented semicircular
contour C shown in Figure A.11, where R is large enough so that s0 is
interior to the contour.13 Thus C consists of the segment s = jω, ω ∈
[−R, R], together with the arc CR given by s = Rejθ, θ ∈ [−π/2, π/2].

Since f is analytic on and insideC, then Cauchy’s integral formula (A.36)
gives

f(s0) = −
1

2πj

∮

C

f(s)

s− s0
ds.

13Recall that the interior is the domain bounded by the curve, and it is defined independent
of the orientation.
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FIGURE A.11. Contour for the Poisson integral formula

Now consider the point −s0, which is outsideC. Thus, the Cauchy integral
theorem gives

0 =
1

2πj

∮

C

f(s)

s + s0
ds.

Adding the above two equations, we obtain

f(s0) = −
1

2πj

∮

C

f(s)
s0 + s0

(s − s0)(s + s0)
ds, (A.43)

which can be decomposed into the sum of two integrals as

f(s0) = −
1

π

∫R

−R

f(jω)
σ0

(jω− s0)(jω+ s0)
dω

−
1

πj

∫

CR

f(s)
σ0

(s − s0)(s + s0)
ds.

(A.44)

As R→ ∞, the first integral in (A.44) becomes

1

π

∫ �

− �
f(jω)

σ0

σ20 + (ω0 −ω)2
dω. (A.45)

Comparing to (A.42), it thus remains to show that the second integral in
(A.44) vanishes as R→ ∞. Using (A.40) and the fact that, for R sufficiently
large, the denominator in the second integral has magnitude R2, we have

∣

∣

∣

∣

1

πj

∫

CR

f(s)
σ0

(s− s0)(s + s0)
ds

∣

∣

∣

∣

≤ 1

π

m(R)σ0 πR

R2
,

which tends to zero as R → ∞ since f is of class R and hence satisfies
(A.41). The result then follows. �

If f is analytic in the ORHP and on the imaginary axis except for singu-
larities of a particular type, then the Poisson integral formula is still valid,
as shown next.
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Lemma A.6.2. Let f be analytic in the CRHP, except for singular points sk
on the imaginary axis that satisfy

lim
s � sk

Re s≥0

(s− sk)f(s) = 0. (A.46)

Suppose further that f is of class R. Then the Poisson integral formula
(A.42) holds at each complex point s0 = σ0 + jω0 with σ0 > 0.

Proof. Consider the contour shown in Figure A.12, i.e., a semicircle of ra-
dius R encircling the point s0 and such that the portion of curve on the
imaginary axis has semicircular indentations of radius δ into the ORHP at
each singularity sk of f.
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FIGURE A.12. Contour for
�

with singularities on the �
� -axis.

We next proceed as in the proof of Theorem A.6.1, but in this case the
integral (A.43) will be decomposed into the sum of the integral over the
semicircular contourCR, the integrals over the small semicircular contours
of radii δ, and the integrals over the remaining portions of the imaginary
axis. This last sum of integrals over the portions of imaginary axis between
the small semicircles will tend to (A.45) as R → ∞ and δ → 0. The integral
over CR vanishes as in the proof of Theorem A.6.1. It thus remains to show
that the integrals over each semicircle of radius δ also vanish as δ→ 0.

Consider then one of the semicircles Cδ in Figure A.12, centered at sk,
say. On this contour, s = sk + δejθ, θ ∈ [−π/2, π/2]. Then

∫

Cδ

f(s)σ0

(s− s0)(s + s0)
ds = j

∫π/2

−π/2

f(sk + δejθ) δejθ σ0

(sk + δejθ − s0)(sk + δejθ + s0)
dθ.

Note that (A.46) implies that limδ � 0 f(sk + δejθ) δejθ = 0. Hence the inte-
grand on the RHS above vanishes and the result follows. �

Other forms of the Poisson formula are obtained by separating into real
and imaginary parts. For example, if f(s) = u(σ,ω) + jv(σ,ω), then the
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formula (A.42) gives two real equations of the same structure, namely

u(σ0,ω0) =
1

π

∫ �

− �
u(0,ω)

σ0

σ20 + (ω0 −ω)2
dω,

v(σ0,ω0) =
1

π

∫ �

− �
v(0,ω)

σ0

σ20 + (ω0 −ω)2
dω.

(A.47)

Since u and v are harmonic when f is analytic, each of the formulae (A.47)
is the Poisson integral formula for harmonic functions.

Note that the integrals in (A.47) are improper integrals of the form

I =

∫ �

− �
w(ω)dω.

Every such integral will be evaluated based on its Cauchy principal value,
i.e.,

I = lim
R � �

∫R

−R

w(ω)dω.

Existence of the Cauchy principal value of an integral does not, in gen-
eral, guarantee the existence of the two limits limR � �

∫0
−R
w(ω)dω and

limR � �
∫R
0
w(ω)dω. However, ifw(ω) is even, i.e.,w(−ω) = w(ω), then

existence of the Cauchy principal value implies existence of these two lim-
its.

A useful result for a particular harmonic function is given next.14

Corollary A.6.3. Let f be analytic and nonzero in the CRHP except for
possible zeros on the imaginary axis and/or zeros at infinity. Assume that
log f is in class R. Then, at each complex point s0 = σ0 + jω0, σ0 > 0,

log |f(s0)| =
1

π

∫ �

− �
log |f(jω)|

σ0

σ20 + (ω0 −ω)2
dω. (A.48)

Proof. If f is as in the statement of the theorem, then log f is analytic in the
CRHP except for singularities at the imaginary zeros of f and/or at zeros
of f at infinity. If f has imaginary zeros sk, it is not difficult to prove that
log f satisfies (A.46), and hence Lemma A.6.2 shows that these singulari-
ties do not affect the Poisson integral. If f has zeros at infinity, then log f
has a singularity at infinity, but the contour of integration in Figure A.12
has an indentation around the point at infinity (i.e., the large semicircle
into the ORHP). The fact that log f is in class R shows that the integral on
this semicircle vanishes as the radius tends to infinity. Then (A.42) holds
for log f(s) and (A.47) holds for log |f(s)| = Re log f(s). �

14This result, to the best of our knowledge, first appeared in Freudenberg and Looze (1985).
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Note that zeros of f at infinity can be treated as zeros of f on the imagi-
nary axis, since both types of zeros are in fact singularities of log f on the
contour of integration that encircles the ORHP. The procedure that we take
to deal with these singularities consists of two steps: first, indentations
around these singularities have to be made on the contour of integration;
second, precautions should be taken to show that the integrals on those
indentations converge (go to zero in our case) as the indentations vanish,
i.e., condition (A.46) is assumed for imaginary zeros, and the property of
log f being in class R is assumed for zeros at infinity.

A.6.2 Formula for the Disk
Let s = rejθ, and consider the unit circle |s| = 1 described in a counter-
clockwise sense by s = ejθ, with −π ≤ θ ≤ π. We then have the following
result.

Theorem A.6.4 (Poisson Integral Formula for the Disk). If f is a function
analytic on � , then for any interior point s0 = r0e

jθ0 , r0 < 1,

f(r0e
jθ0) =

1

2π

∫π

−π

f(ejθ)
1 − r20

1 − 2r0 cos(θ− θ0) + r20
dθ. (A.49)

Proof. Let f be a function analytic on � . For any point s0 = r0e
jθ interior

to � , the Cauchy integral formula expresses f(s0) as

f(s0) =
1

2π

∫π

−π

f(ejθ)

ejθ − s0
ejθ dθ. (A.50)

�

�

� ��

� �

� �

FIGURE A.13. The unit disk.

Introduce the inverse of the point s0 with respect to the unit circle, say
s1, which lies on the same ray from the origin as does s0, but is exterior
to � , i.e., s1 = 1/s0 (see Figure A.13). It then follows from the Cauchy
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integral theorem that the integral in (A.50) equals 0 when s0 is replaced
by s1 in the integrand, i.e.,

0 =
1

2π

∫π

−π

f(ejθ)

ejθ − s1
ejθ dθ. (A.51)

Subtracting (A.51) from (A.50), and replacing s1 = 1/s0, yields

f(s0) =
1

2π

∫π

−π

f(ejθ)

(

ejθ

ejθ − s0
−

ejθ

ejθ − s1

)

dθ

=
1

2π

∫π

−π

f(ejθ)

(

ejθ

ejθ − s0
+

s0

e−jθ − s0

)

dθ.

The term within parenthesis in the integrand above can be written as

ejθ

ejθ − s0
+

s0

e−jθ − s0
=

1 − r20
|ejθ − r0ejθ0 |2

=
1 − r20

1 − 2 cos(θ − θ0) + r20
,

where 1−2 cos(θ−θ0)+r
2
0 > 0 represents the distance between the points

s = ejθ and s0. Hence, the formula (A.49) follows. �

Taking the real or imaginary part of (A.49) we obtain the Poisson inte-
gral formula for harmonic functions on the unit circle.

For our purposes, we will require a version of Theorem A.6.4 that re-
constructs the values of a harmonic function at any point outside the unit
disk from the values on the border. This follows as an easy corollary.

Corollary A.6.5. If u is a function harmonic outside � , then for any point
exterior to the unit disk s0 = r0e

jθ0 , r0 > 1,

u(r0e
jθ0) =

1

2π

∫π

−π

u(ejθ)
r20 − 1

1 − 2r0 cos(θ − θ0) + r20
dθ. (A.52)

Proof. Straightforward from Theorem A.6.4 on taking the real part of (A.49)
and considering u(1/s). �

Both versions of the Poisson integral formulae, for the half plane and
the disk, were obtained following the same procedure: the Cauchy inte-
gral formula was applied to a point inside the contour of interest and then
added to (subtracted from) the Cauchy integral theorem applied to a par-
ticular point outside the contour of interest. The reader may wonder if the
same procedure applied to other points outside the contour would lead
to other interesting relationships. The answer is indeed yes (see §2.3.2 in
Chapter 2 for other applications).
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A.7 Power Series

This section gives three applications of the Cauchy integral formula that
are related with derivatives and series expansions of analytic functions.

A.7.1 Derivatives of Analytic Functions
Theorem A.5.4 has an immediate application in showing that an analytic
function possesses derivatives of all orders, and these derivatives are them-
selves analytic, as we see next.

Theorem A.7.1. Let f be analytic in an arbitrary domainD. Then its deriva-
tives of all orders exist in D and are analytic functions. Moreover, if C is
any closed contour contained in D, then the n-th derivative of f at any
point s0 inside C is computed as

f(n)(s0) =
n!

2πj

∮

C

f(s)

(s − s0)n+1
ds. (A.53)

Proof. Let f be analytic in a domainD and let α be any point ofD. We will
show that f has all derivatives at α. Since α is arbitrary, this will establish
the existence of all derivatives in D.

If C is a sufficiently small circle with α as center (see Figure A.14), then
it follows from (A.36) that for any point s0 inside C

f(s0) =
1

2πj

∮

C

f(s)

s− s0
ds, (A.54)

where C is now traversed in the counter-clockwise direction. If (A.54) is
differentiated formally n times with respect to s0, we have

f(n)(s0) =
n!

2πj

∮

C

f(s)

(s − s0)n+1
ds. (A.55)

We will next show the validity of (A.55).

�
�

�
� �

FIGURE A.14. Contour for Theorem A.7.1.

Let ∆s be such that 0 < |∆s| < d, where d is the shortest distance from
s0 to points on C, as shown in Figure A.14. Using (A.54) for s0 and s0+∆s,
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we have

f(s0 + ∆s) − f(s0)

∆s
=

1

2πj

∮

C

(

1

s− s0 − ∆s
−

1

s− s0

)

f(s)

∆s
ds

=
1

2πj

∮

C

f(s)

(s − s0)2
ds+ J, (A.56)

where

J =
∆s

2πj

∮

C

f(s)

(s − s0 − ∆s)(s − s0)2
ds.

Let fm be the maximum value of |f(s)| on C and let ` be the length of C.
Since |s− s0| ≥ d by construction, and

|s− s0 − ∆s| ≥ ||s− s0| − |∆s|| ≥ d− |∆s|,

we readily obtain the following bound for J in (A.56):

|J| ≤ |∆s|fm`

2πj(d − |∆s|)d2
,

where the last fraction approaches zero as∆s approaches zero. Taking lim-
its in (A.56), it then follows that

lim
∆s � 0

f(s0 + ∆s) − f(s0)

∆s
=

1

2πj

∮

C

f(s)

(s − s0)2
ds,

and the expression (A.55) is then seen to hold for n = 1.
Repeating the above procedure starting with (A.55) forn = 1 establishes

the existence of f ′′ and proves (A.55) for n = 2. This shows that if f is
analytic so is f ′. The result for f(n) then follows by induction. �

Note that, if we agree that f(0)(s) = f(s) and that 0! = 1, then the for-
mula (A.53) for n = 0 is the Cauchy integral formula.

In particular, when a function

f(s) = u(σ,ω) + jv(σ,ω)

is analytic in a domain D, the analyticity of f ′ ensures the continuity of f ′

there. Then, since

f ′ =
∂u

∂σ
+ j
∂v

∂σ
=
∂v

∂ω
− j

∂u

∂ω
,

Theorem A.2.2 shows that the first order partial derivatives of u and v are
continuous in D. Similarly, Theorem A.7.1 shows that the partial deriva-
tives of u and v of all orders are continuous in D. This result was antici-
pated in §A.3.1 in the discussion of harmonic functions.

As was the case with the Cauchy integral formula, (A.53) can be ex-
tended to the case in which the circle C is replaced by the oriented bound-
ary of a multiply connected domain.
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A.7.2 Taylor Series
We will next give a result that adapts the familiar Taylor series expansion
from calculus, to functions of a complex variable.

We briefly review some terminology. The partial sums of a power series

a0 + a1(s − s0) + a2(s− s0)
2 + · · · ,

where the ai are complex numbers, are defined by

Σn(s) = a0 + a1(s− s0) + a2(s − s0)
2 + · · · + an(s − s0)

n.

The partial sums form a sequence of polynomials
{
Σn(s)

}
, n = 0, 1, 2, · · · .

Let f(s) and a sequence of functions
{
Σn(s)

}
be given in a region Ω of

the complex plane. Then the sequence is said to converge uniformly to the
function f in Ω if, given any ε > 0, there exists an integer N, which can
depend on ε (but not on s ∈ Ω), such that

|f(s) − Σn(s)| < ε, for n ≥ N and s in Ω. (A.57)

The uniform convergence of
{
Σn(s)

}
to f in a regionΩ is sometimes stated

in the form

f(s) = lim
n � � Σn(s), uniformly in the region Ω. (A.58)

In particular, if Σn(s) are the partial sums of a power series, (A.58) is some-
times written as

f(s) =

�∑

k=0

ak(s − s0)
k, uniformly in the region Ω.

Theorem A.7.2 (Taylor Series). Let f(s) be analytic in a domain D. Let s0
be in D and let R be the radius of the largest circle with center at s0 and
having its interior in D. Then the power series

f(s) =

�∑

k=0

ak(s − s0)
k, (A.59)

converges uniformly to f(s) for all s such that |s − s0| ≤ r < R. The coeffi-
cients in (A.59) are given by

ak =
f(k)(s0)

k!
=

1

2πj

∮

C1

f(s)

(s − s0)k+1
ds, k = 0, 1, · · · , (A.60)

where C1 is any circle with center at s0 and radius r1 such that r < r1 < R.
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�
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� �

�

�

� �
� �

FIGURE A.15. Contours for Theorem A.7.2.

Proof. Let R be as in the statement of the theorem and let s be a point such
that |s − s0| ≤ r < R. Pick r1 such that r < r1 < R, defining a circle C1
(Figure A.15).

Since s is interior to C1 and f is analytic on and within C1, Cauchy’s
integral formula (A.36) holds, i.e.,

f(s) =
1

2πj

∮

C1

f(ξ)

ξ − s
dξ , (A.61)

where the contour is traversed counter-clockwise.
Next notice that we can write

1

ξ− s
=

1

ξ− s0

1

1 −
s− s0

ξ− s0

,

which, for all s such that
∣

∣

∣

∣

s− s0

ξ− s0

∣

∣

∣

∣

≤ r

r1
< 1, converges uniformly to

1

ξ − s
=

�∑

k=0

(s− s0)
k

(ξ − s0)k+1
. (A.62)

Substituting the RHS of (A.62) into (A.61) yields

f(s) =
1

2πj

∮

C1

f(ξ)

�∑

k=0

(s − s0)
k

(ξ − s0)k+1
dξ .

Due to the uniform convergence of (A.62) in |s − s0| ≤ r, we can inter-
change integration and summation to obtain

f(s) =

�∑

k=0

(

1

2πj

∮

C1

f(ξ)

(ξ − s0)k+1
dξ

)

(s− s0)
k.
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Note that, using (A.55), the coefficient between parenthesis corresponds
to f(k)(s0)/k!. We then have

f(s) =

�∑

k=0

f(k)(s0)

k!
(s − s0)

k, uniformly in |s− s0| ≤ r < R,

thus proving the theorem. �

Example A.7.1. Let f(s) = cos s. The derivatives are − sin s, − cos s, sin s,
cos s, etc., and hence f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0. Since
f(iv)(s) = f(s), the sequence repeats, so that

cos s = 1 −
s2

2!
+
s4

4!
−
s6

6!
+ · · · , (A.63)

is the Taylor series of f(s) = cos s about the point s0 = 0. Since cos s is
analytic in |s| < R for every R, Theorem A.7.2 shows that the convergence
is uniform in |s| ≤ r for each fixed r <∞.

Similarly,

es = 1 + s +
s2

2!
+
s3

3!
+ · · · , (A.64)

sin s = s −
s3

3!
+
s5

5!
− · · · , (A.65)

uniformly for |s| ≤ r < ∞. ◦

The Taylor series shows that the values f(k)(s0), k = 0, 1, · · · , at a point
s0 of a domain D in which f is analytic, determine f(s) in a disk |s − s0| <

R centered at s0. Thus, if f(s) is known on some infinitely differentiable
short arc in |s − s0| < R, then f is uniquely determined in |s − s0| < R,
since by differentiation of f on the arc, its derivatives at a point are also
known. This is not implied by the Cauchy integral formula, since in that
case, knowledge of f on the entire boundary of the region was required to
determine f inside.

A.7.3 Laurent Series
If a function f has an isolated singular point at s0, we cannot apply The-
orem A.7.2 at that point. It is often possible, however, to find a series rep-
resentation for f(s) involving both positive and negative powers of s− s0,
as shown in the following theorem.

Theorem A.7.3 (Laurent Series). Let C0 and C1 be two circles centered at
a point s0, counter-clockwise oriented, and such that C1 is smaller thanC0
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(Figure A.16). Let f be analytic on both circles and throughout the annular
domain between them. Then the Laurent series

f(s) = f1(s) + f2(s) ,

�∑

k=0

ak(s − s0)
k +

�∑

k=1

bk

(s− s0)k
, (A.66)

where

ak =
1

2πj

∮

C0

f(s)

(s − s0)k+1
ds, k = 0, 1, · · · , (A.67)

and

bk =
1

2πj

∮

C1

f(s)

(s − s0)−k+1
ds, k = 1, 2, · · · , (A.68)

converges uniformly to f(s) in any closed annulus contained in the do-
main enclosed between C0 and C1.

Proof. Let s be any point interior to the annular domain between C0 and
C1, as shown in Figure A.16. It then follows, as in Example A.5.5, that

f(s) =
1

2πj

∮

C0

f(ξ)

ξ − s
dξ+

1

2πj

∮

C1

−f(ξ)

ξ − s
dξ. (A.69)

Select a closed annulus with internal radius r1 and external radius r, con-

�
�

�
�

� �

�
� �

� �

FIGURE A.16. Contours for Theorem A.7.3.

tained in the domain enclosed between C0 and C1, and such that r1 ≤
|s− s0| ≤ r, as depicted in Figure A.16.

We proved in Theorem A.7.2 that the first integral in (A.69) converges
to f1(s) in (A.66) uniformly for all s in |s− s0| ≤ r.

As for the second integral, we note that −1/(ξ − s) = 1/(s − ξ). Thus,
interchanging s and ξ in (A.62), and following the proof of Theorem A.7.2,
we show that the second integral in (A.69) converges to f2(s) in (A.66)
uniformly for all s in |s− s0| ≥ r1.
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It follows that (A.69) converges uniformly to f(s) = f1(s) + f2(s) in
(A.66) for all s in the annulus r1 ≤ |s− s0| ≤ r, thus proving the theorem.

�

Note that the two integrands f(s)/(s − s0)
k+1 and f(s)/(s − s0)

−k+1

in the coefficient expressions (A.67) and (A.68) are analytic throughout
the annular domain R1 < |s − s0| < R0 and on its boundary. Then, as
in Example A.5.3, any simple closed piecewise smooth contour C around
that domain in the counter-clockwise direction, as shown in Figure A.16,
can be used as a path of integration in place of the circular paths C0 and
C1. Thus, the Laurent series (A.66) can be written as

f(s) =

�∑

k=− �

ck(s − s0)
k, (A.70)

where

ck =
1

2πj

∮

C

f(s)

(s− s0)k+1
ds, k = 0, ±1, ±2, · · · . (A.71)

Corresponding to the decomposition f = f1 + f2 in (A.66), are the two
parts of the Laurent series, namely,

f1(s) =

�∑

k=0

ak(s − s0)
k, f2(s) =

�∑

k=1

bk

(s − s0)k
.

The function f1(s) involves nonnegative powers of s − s0 and is called
the regular part of f(s) at s0. The function f2(s) involves negative powers
of s − s0 and is called the singular or principal part of f(s) at s0. In the
following section, we show that there is an intimate connection between
the principal part and the nature of the singularity at s0.

A.8 Singularities

A.8.1 Isolated Singularities
In this subsection we examine functions that are analytic in a punctured
disk (an open disk with the center removed). We will then consider that
the center of the disk is an isolated singularity and classify it according to
the behavior of the function near that point.

Denote by B(s0, R) the disk of center s0 and radius R, i.e., B(s0, R) = {s :

|s− s0| < R}. We then have the following definition.

Definition A.8.1 (Isolated Singularities). A function f has an isolated sin-
gularity at s = s0 if there is an R > 0 such that f is defined and analytic in
B(s0, R) − {s0} but not in B(s0, R).

Let s = s0 be an isolated singularity of f. Then:
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(i) s = s0 is called a removable singularity if there is an analytic function
g : B(s0, R) → � such that g(s) = f(s) for 0 < |s− s0| < R;

(ii) s = s0 is called a pole if lims � s0
|f(s)| = ∞, that is, for anyK > 0 there

is a number ε > 0 such that |f(s)| ≥ Kwhenever 0 < |s− s0| < ε;

(iii) s = s0 is called an essential singularity if s0 is neither a pole nor a
removable singularity.

◦
An alternative definition of a pole is as follows: an isolated singularity

s = s0 is called a pole of f if

f(s) =
g(s)

(s− s0)m
, (A.72)

where m ≥ 1 is an integer, g(s) is analytic in a neighborhood of s0 and
g(s0) 6= 0. This definition and (ii) are equivalent and can be derived from
each other. Also, if f has a pole at s = s0 and m is the smallest positive
integer such that (s− s0)

mf(s) has a removable singularity at s = s0, then
f has a pole of order m at s = s0.

In the following theorem, we show how the Laurent series expansion is
used to classify isolated singularities.

Theorem A.8.1. Let s = s0 be an isolated singularity of f and let f(s) =∑ �

k=− � ck(s − s0)
k be its Laurent series expansion in 0 < |s − s0| < R.

Then:

(i) s = s0 is a removable singularity if and only if ck = 0 for k ≤ −1;

(ii) s = s0 is a pole if and only if c−m 6= 0 and ck = 0 for k ≤ −(m+ 1);

(iii) s = s0 is an essential singularity if and only if ck 6= 0 for infinitely
many negative integers k.

Proof. (i) If ck = 0 for k ≤ −1 then let g(s) be defined in B(s0, R) by
g(s) =

∑ �

k=0 ck(s− s0)
k. Thus, g is analytic and agrees with f in the

punctured disk 0 < |s − s0| < R. Thus s0 is a removable singularity
according to Definition A.8.1. The converse is equally as easy.

(ii) Suppose that ck = 0 for k ≤ −(m + 1). Then (s − s0)
mf(s) has a

Laurent expansion that has no negative powers of s− s0. By part (i),
(s − s0)

mf(s) has a removable singularity at s = s0. The converse is
established by an equally straightforward argument.

(iii) Since f has an essential singularity at s = s0 when it has neither
a removable singularity nor a pole, part (iii) follows from parts (i)
and (ii).

�
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We next give some examples of the different types of singularities.

Example A.8.1. The function f(s) = sin s/s has a removable singularity at
s = 0. Indeed, using L’Hospital’s rule (e.g., Levinson and Redheffer, 1970,
p. 152) we have that

lim
s � 0

sin s
s

= lim
s � 0

cos s = 1,

and hence f(s) = g(s) for |s| > 0, where g : � → � is the analytic function
defined as

g(s) =






sin s
s

if s 6= 0,
1 if s = 0.

◦
Example A.8.2. As an example of poles, consider the rational function
(A.10) in Example A.3.3. Assume that the numbers q1, · · · , qm, p1, · · · , pn
are all different. Then H has simple (i.e., of order one) poles at the n zeros
of its denominator. ◦
Example A.8.3. The function e1/s has an essential singularity at s = 0.
Indeed, since for real positive σ, with ν = 1/σ, and for all m > 0,

lim
σ � 0

σme1/σ = lim
ν � 0

eν

νm
= ∞,

it follows that e1/s is not bounded at s = 0 nor can it have a pole of order
m for anym at s = 0. Hence it has an essential singularity. ◦

If f has a removable singularity at s = s0, it follows from the definition
that f can be redefined to be analytic in the disk B(s0, R) by assigning a
value to f at s = s0. Because an analytic function is continuous, it is clear
that we need only define f(s0) so as to make f continuous at s = s0. This
implies that lims � s0

f(s) must exist (see Example A.8.1).
If f has a pole at s = s0, then lims � s0

|f(s)| exists and equals infinity.
On the other hand, f has an essential singularity at s = s0 when the

limit lims � s0
|f(s)| fails to exist. Moreover, a remarkable feature of essen-

tial singularities is that the function f in any neighborhood of an essential
singularity assumes all values except possibly one. This fact is known as
Picard’s theorem (e.g., Conway, 1973). For example, given any complex
number γ 6= 0 and any small δ > 0, then it is easy to show that e1/s takes
on the value γ an infinite number of times in 0 < |s| < δ.

We end this section with a discussion of singularities at infinity. The
behavior of a function f(s) at s = ∞ is defined by considering the behavior
of f(1/ξ) at the point ξ = 0. For example, f(s) is continuous at s = ∞ if
f(1/ξ) is continuous at ξ = 0. Let f(s) be analytic for R < |s| < ∞ but not
analytic in R < |s| ≤ ∞. Then, by using s = 1/ξ and considering ξ = 0, it
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follows that the point s = ∞ is an isolated singular point. This may be a
removable singularity, a pole, or an essential singularity of f.

As a final remark, notice that the Laurent expansion of a function f(s)
at s = ∞ is computed by first obtaining the Laurent expansion of the
function g(ξ) = f(1/ξ) at ξ = 0, and then evaluating this series at ξ = 1/s.

Example A.8.4. Consider a function f analytic at s = ∞. Then, the function
g(ξ) = f(1/ξ) is analytic at ξ = 0, and so admits a Taylor series g(ξ) =∑ �

k=0 akξ
k that converges uniformly in |ξ| ≤ r for some r > 0. Therefore,

f is represented, uniformly in |s| ≥ 1/r, by the (Laurent) series expansion
at s = ∞

f(s) =

0∑

k=− �

cks
k,

where c−k = ak. Notice that, as opposed to the case of a function analytic
at a finite point, this series has only nonpositive powers of s. This is pre-
cisely because, in defining regular and principal parts at infinity, the roles
of positive and negative powers of s are interchanged. ◦

A.8.2 Branch Points
A special kind of singularity arises when multiple-valued functions are in-
volved. A particular function of this type, which is of central interest in
this book, is the logarithm

log s = log |s| + j arg s.

The function log s is multiple-valued due to the presence of arg s. Indeed,
at every point s in the complex plane arg s has infinitely many values dif-
fering by 2πk, with k = 0,±1,±2, . . ..

The function log s can be defined to be single-valued by restricting its do-
main; for example, by letting −π < arg s < π. The function so obtained is
called the principal branch of log s. Other branches are obtained by consid-
ering different restrictions on arg s, i.e., for k = ±1,±2, . . .. Any of these
branches can be shown to be analytic in their domain of definition, i.e.,
the extended complex plane with the negative real axis deleted (includ-
ing infinity). Such a domain is called a cut plane and the deleted portion
is a branch cut. Every point of a branch cut is a singularity of the branch
function (since the function cannot be defined to be continuous there) and,
moreover, it is nonisolated.

A singular point common to any branch cut is called a branch point. For
example, the branch points of log s are s = 0 and s = ∞. Special care must
be taken when performing contour integration of functions with branch
points, as we will see in §A.9.2.
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Example A.8.5. The function logH considered in Example A.3.4 has branch
points at the zeros and poles of the transfer function H, i.e., at the zeros of
N andD. ◦
Example A.8.6. Since the principal branch of log s is analytic in its cut
plane, it admits a Taylor series expansion around any interior point s0.
Then, since

dk

dsk
log s = (−1)k−1 (k − 1)!

sk
, k = 1, 2, · · · ,

it follows from (A.59) and (A.60), with s0 = 1, that

log s =

�∑

k=0

(−1)k−1 (s − 1)k

k
. (A.73)

The distance between the point s0 = 1 and the boundary of the cut plane
equals 1, and thus the expansion (A.73) is valid for |s−1| < 1. Replacing s−
1 by swe obtained the following series for log(1+s), called the logarithmic
series:

log(1 + s) =

�∑

k=0

(−1)k−1 (s− 1)k

k
, in |s| < 1. (A.74)

A useful observation that is used in Chapter 3 is obtained by noting that,
if |s| < 1 then

∣

∣

∣

∣

1−
log(1 + s)

s

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
s −

1

3
s2 + · · ·

∣

∣

∣

∣

≤ 1

2

(

|s| + |s|2 + · · ·
)

=
1

2

|s|

1 − |s|
.

If we further require that |s| < 1/2 then |1− log(1+ s)/s| ≤ 1/2. This gives
that for |s| < 1/2

1

2
|s| ≤ | log(1 + s)| ≤ 3

2
|s|.

◦
Example A.8.7. As an application of the logarithmic series, we will show
that the function f : � × � → � , given by

f(s, η) = η log
(

1 +
s

η

)

,

satisfies
lim
η � � f(s, η) = s, (A.75)

uniformly on any compact set in � .15

15A compact set in � is bounded.



A.9 Integration of Functions with Singularities 315

Indeed, let s belong to a compact set in � . Then there exists a finite
constant K > 0 such that |s| ≤ K for all s in the set. For η > K, the following
expansion, of the form (A.74), holds

log
(

1 +
s

η

)

=
s

η
−
s2

2η2
+ · · · .

(A.75) then follows on multiplying both sides of the above series by η and
taking the limit as η → ∞. ◦

A.9 Integration of Functions with Singularities

A.9.1 Functions with Isolated Singularities
The Cauchy integral theorem tells us that if a function is analytic at all
points interior to and on a simple closed contour C, the value of the in-
tegral of the function around that contour is zero. As we anticipated in
Example A.5.4, if the function fails to be analytic at a finite number of
points interior to C, there is a specific number, called the residue, which
each of those points contributes to the value of the integral.

Let then f have an isolated singularity at s = s0 and let

f(s) =

�∑

k=− �

ck(s− s0)
k

be its Laurent series expansion. The residue of f at s = s0, denoted by
Ress=s0

f(s), is defined as the coefficient c−1, i.e.,

Res
s=s0

f(s) , c−1. (A.76)

According to (A.71), we have that

Res
s=s0

f(s) =
1

2πj

∮

C

f(s)ds, (A.77)

where the curve C encircles the point s = s0 in the counter-clockwise
direction.

The generalization of (A.77) to the case where f has a finite number of
singular points interior to C is given in the following theorem.

Theorem A.9.1 (Residue Theorem). Let C be a simple closed piecewise
smooth contour, counter-clockwise oriented. Let f be analytic on and within
C except for a finite number of singular points s1, s2, · · · , sn interior to
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C. If Ress=s1
f(s), Ress=s2

f(s), · · · , Ress=sn
f(s) denote the residues of f

at those respective points, then
∮

C

f(s)ds = 2πj

n∑

k=1

Res
s=sk

f(s). (A.78)

Proof. Let the singular points s1, s2, · · · , sn be centers of counter-clockwise
oriented circles Ck, which are interior to C, and are so small that no two
of the circles have points in common, as shown in Figure A.17.

�

� �
�
� �

�

� �

�

� � �

�

���

FIGURE A.17. Contours for Theorem A.9.1.

The circles Ck together with the contour C form the boundary of a
closed region throughout which f is analytic and whose interior is a mul-
tiply connected domain. Hence, according to the extension of the Cauchy
integral theorem to such regions

∮

C

f(s)ds −

∮

C1

f(s)ds − · · · −
∮

Cn

f(s)ds = 0.

but this reduces to (A.78) by using (A.77) for each of the integrals around
the circles. �

Residue at Infinity

We have just introduced the definition of residue of a function at an iso-
lated singular point. This definition could in fact be extended to any point
that is at the center of a punctured disk where the function is analytic —
whether the function is analytic or not at the point itself. Evidently, the
residue of a function at a finite regular point is zero.

Analogously, we can define the residue of a function at s = ∞ as

Res
s= �

f(s) =
1

2πj

∮
f(s)ds, (A.79)

where the integral is computed clockwise along a circle of radius R so large
that the only possible singularity of f in |s| ≥ R is the point s = ∞. The
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clockwise direction is used because the point s = ∞ is thus “enclosed” by
the contour of integration.16

Let the Laurent expansion at infinity of f be

f(s) = · · · + c−k

sk
+ · · · + c−1

s
+ c0 + c1s + · · · ,

uniformly convergent in R ≤ |s| < ∞. Then, in virtue of Example A.5.1,

Res
s= �

f(s) = −c−1, (A.80)

which is consistent with the definition of the residue at a finite point given
by (A.76).

It is interesting to note that, for a function f having a finite number, n
say, of isolated singularities, the sum of all the residues in the extended
complex plane is zero. Indeed, integrating f around a circle large enough
to contain all finite singularities, the Residue Theorem together with (A.79)
give

n∑

k=1

Res
s=sk

f(s) = − Res
s= �

f(s). (A.81)

Example A.9.1. Consider the function

f(s) =
1

s− 1
.

This function has a single pole at s = 1 and it is analytic at s = ∞. The
residue of f(s) at s = 1 is Ress=1 f(s) = 1. To obtain the residue at infinity,
let

g(ξ) = f(1/ξ) =
ξ

1 − ξ
.

The Laurent expansion of g(ξ) at ξ = 0 is

g(ξ) =

�∑

k=1

ξk , in 0 < |ξ| < 1,

and so the Laurent expansion of f(s) at s = ∞ is

f(s) =

�∑

1

1

sk
, in 1 < |s| < ∞.

The residue of f at s = ∞ is then Ress= � f(s) = −1. ◦

16This assumes the convention that a counter-clockwise oriented curve “encloses” its inte-
rior whereas a clockwise oriented curve “encloses” its exterior.
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Notice that the residue at infinity can be nonzero even if the function is
analytic at s = ∞.

We end this subsection with an example of application to SISO control
systems.

Example A.9.2. Let L be a proper rational function and consider the sen-
sitivity function S = 1/(1+L) (see e.g., (1.5) in Chapter 1). Assume further
that the closed-loop system is stable, i.e., the numerator of 1 + L is Hur-
witz and L(∞) 6= −1. We are interested in evaluating the residue at infin-
ity of the function log S, which is analytic at infinity by the assumptions of
closed-loop stability and the properness of L.

Since L is a proper rational function, it has a Laurent expansion at infin-
ity of the form

L(s) = L(∞) +
c−1

s
+
c−2

s2
+ · · · , (A.82)

in |s| > r, for some r > 0. Then log S = − log(1 + L) can be written as

log S(s) = − log
[

1 + L(∞) +
c−1

s
+
c−2

s2
+ · · ·

]

= − log[1 + L(∞)] − log
[

1 +
c−1

1 + L(∞)

1

s
+

c−2

1 + L(∞)

1

s2
+ · · ·

]

= log S(∞) − log
[

1 +
S(∞)c−1

s
+
S(∞)c−2

s2
+ · · ·

]

.

Then

log
S(s)

S(∞)
= − log[1 + L̃(s)], (A.83)

where

L̃(s) =
S(∞)c−1

s
+
S(∞)c−2

s2
+ · · · .

The power series expansion of log(1 + s) for |s| < 1 is (see Example A.8.6)

log(1 + s) = s−
s2

2
+ · · · , in |s| < 1.

Using this expansion in (A.83) yields

log
S(s)

S(∞)
= −L̃(s) +

L̃2(s)

2
+ · · · , in |L̃(s)| < 1

= −
S(∞)c−1

s
−
S(∞)c−2

s2
+ · · · , in |s| > r̃,

for some r̃ > r. We have thus obtained the Laurent expansion at infinity of
the function log S, whose residue at infinity can be computed from (A.80)
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as

Res
s= �

log S(s) = Res
s= �

log
S(s)

S(∞)

= S(∞)c−1

=
1

S(∞)
lim
s � � s[S(∞) − S(s)], (A.84)

where the last line follows from (A.82) on noting that

c−1 = lim
s � � s[L(s) − L(∞)] = lim

s � � s

[

1

S(s)
−

1

S(∞)

]

.

If L in (A.82) has relative degree one, then

Res
s= �

log S(s) = lim
s � � s[1 − S(s)].

Alternatively, if L has relative degree two or more, then

Res
s= � log S(s) = 0.

◦

A.9.2 Functions with Branch Points
When integration is to be performed around a region where the integrand
has branch points, the residue theorem cannot be used in the form of The-
orem A.9.1 but an extended version that handles this situation can be
derived (Levinson and Redheffer, 1970, Theorem 9.1). Since our require-
ments of integration of functions with branch points are limited to the
logarithm, we will concentrate on an example of contour integration of
this function around a branch cut.

Consider the semicircular contour of Figure A.6, and the integral on this
contour of function log S, where S is a stable system transfer function. If
S(s) has a zero at s = p in the ORHP then log S(s) has a branch point at
s = p. It is then necessary to indent the contour to avoid the branch cut, as
shown in Figure A.18 for p real.

For simplicity, we will next assume that S(s) has a simple zero at s = p

on the positive real axis. Consider the integral of log S(s) on the indenta-
tion, C, shown in detail in Figure A.19.

Since log S(s) = log(s−p)+log S̄(s), where S̄(s) is analytic on and inside
the indentation, then

∫

C

log S(s)ds =

∫

C

log(s − p)ds+

∫ jε

−jε

log S̄(jω)dω.



320 Appendix A. Review of Complex Variable Theory
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FIGURE A.18. Contour for log ��� � � � .
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�

FIGURE A.19. Indentation around branch cut.

We will thus concentrate on
∫
C

log(s− p)ds.
Since C is in the domain of analyticity of log(s − p), the fundamental

theorem of calculus, given by (A.18), yields
∫

C

log(s − p)ds = [(s− p) log(s − p) − (s− p)]

∣

∣

∣

∣

jε

−jε

= jp[arg(−p − jε) − arg(−p+ jε)].

The limit when ε → 0 is then

lim
ε � 0

∫

C

log(s − p)ds = −j2πp.

As an aside, note that the integral around the semicircle II in Figure A.19
goes to zero when ε → 0. Indeed,

∣

∣

∣

∣

∫

II

log(s− p)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫π/2

−π/2

(log ε + jθ)ε ejθ dθ

∣

∣

∣

∣

∣

≤ ε log ε
∫π/2

−π/2

+ε

∫π/2

−π/2

|θdθ|,

which goes to 0 as ε → 0. Since the total integral on C is non zero, this
means that the integrals on I and III, which are in different sides of the
branch cut, do not cancel. This is in contrast to what happens with func-
tions with at most isolated singularities.
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It is easy to see that if the function S has zeros p1, p2, . . . , pn with the
same imaginary part (possibly different than zero and possibly with the
same real part), the same branch cut can be used for all of them to obtain

∫

C

log[(s − p1)(s − p2) · · · (s − pn)]ds = −j2π

n∑

i=1

Repi. (A.85)

A.10 The Maximum Modulus Principle

Another result that relates characteristics of a function, analytic in a re-
gion, with its behavior on the boundary of the region is the maximum mod-
ulus principle of analytic functions. This is interesting but less informative
than Poisson integrals. We will give two versions of this principle.

Theorem A.10.1 (Maximum Principle). Let f be analytic in a domain D.
Then |f| cannot have a maximum anywhere in D unless f is a constant.

Proof. Assume that f is not a constant in D and suppose that s0 is a point
in D such that |f(s0)| is maximum. Let n be the smallest integer such that
f(n)(s0) 6= 0, which exists since f is not constant. Then the Taylor series of
f around s0 has the form17

f(s) = f(s0) +
f(n)(s0)

n!
(s− s0)

n + o ((s − s0)
n) . (A.86)

Let h be a complex number such that

hn = n!
f(s0)

f(n)(s0)
εn, ε > 0,

where ε is small enough such that s = s0 + h is inside the disk of conver-
gence of the Taylor series (A.86). Then, evaluating this series at s = s0+h,
we have

f(s0 + h) = (1 + εn)f(s0) + o (εn) .

This implies
|f(s0 + h)| > |f(s0)|,

which contradicts the assumption that |f(s0)| was a maximum. Since s0 is
generic, it follows that |f| cannot achieve a maximum anywhere in D, and
the result follows. �

17Here we use the notation � ���	� ��� ����� � to mean that � � � � � ��� � � when � is near to
some given limit.
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Theorem A.10.2 (Maximum Principle, second version). Let f(s) be ana-
lytic in a bounded region R and let |f(s)| be continuous in the closed region
R. Then |f(s)| assumes its maximum on the boundary of the region.

Proof. The theorem trivially holds if f(s) is constant. Suppose then that
f(s) is not a constant. Since |f(s)| is continuous, by a well-known theo-
rem in real variables |f(s)| assumes a maximum somewhere in the closed
bounded region R. By Theorem A.10.1, this maximum cannot be assumed
at any interior point and hence must be assumed on the boundary. �

The maximum modulus principle is used in Chapter 3 to show the
“push-pop” or “water-bed” phenomenon in linear control theory.

A.11 Entire Functions

An entire function, f, is a function defined and analytic for all finite values
of the complex variable s. An entire function that is not a polynomial is
called an entire transcendental function.

In Chapters 10 and 11, we use the following result on zeros of transcen-
dental functions of a particular form.

Lemma A.11.1. Consider an entire function having the particular form

f(s) = g1(s)e
−sτ + g2(s), (A.87)

where τ > 0 and g1(s) and g2(s) are polynomials. Let

δ = deg(g2) − deg(g1). (A.88)

We then have the following implications.

(i) If δ > 0, then the high frequency zeros (s→ ∞) of f(s) have negative
real part.

(ii) If δ < 0, then the high frequency zeros of f(s) have positive real part.

(iii) If δ = 0, then the high frequency zeros of f(s) converge to the se-
quence

sk = −
1

τ
log η+ jk

2π

τ
, k = 0,±1,±2, · · · . (A.89)

And η is the ratio between the highest order coefficients of g2(s) and
g1(s), i.e.,

η = lim
s � �

g2(s)

g1(s)
. (A.90)
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Proof. The zeros of f in (A.87) satisfy the identity

e−sτ = −
g2(s)

g1(s)
.

Taking logarithms yields

s = −
1

τ
log
∣

∣

∣

∣

g2(s)

g1(s)

∣

∣

∣

∣

− j
1

τ
arg

[

g2(s)

g1(s)

]

+ jk
2π

τ
. (A.91)

Assume δ > 0. Then clearly, for s a high frequency zero of f, the argument
of the log function in (A.91) will be greater than one and thus the zero
will have negative real part. This shows that case (i) is true. The proof of
case (ii) follows similarly.

Finally, for δ = 0, we note that, for large s, the right hand side of (A.91)
converges to (− log |η| − j arg(η) + jk2π)/τ, with η given in (A.90). Hence
(A.89) follows. �

Example A.11.1. Even in the case of δ > 0, the function f may have zeros
with positive real part. For example, let f be given by

f(s) = e1s+ e2 − beaτe−sτ, (A.92)

where e1, e2, b, a are positive real constants. Assume further that b > e2.
Consider the functions

p(s) = e2 − beaτe−sτ,

q(s) = e1s,
(A.93)

and the closed curve γ = γ1 ∪ γ2 defined as

γ1 = {s = jω : ω ∈ [−R, R ]},

γ2 = {s = Rejθ : θ ∈ [−π/2, π/2 ]}.
(A.94)

On γ1 we have

|p(s)| = |e2 − beaτejωτ | ≥ ||e2| − |beaτ|| = beaτ − e2,

|q(s)| = e1ω ≤ e1R. (A.95)

Then |q(s)| < |p(s)| on γ1 if

R < R1 ,
beaτ − e2

e1
. (A.96)

On the other hand, on γ2, we have

|p(s)| ≥ |e2 − |beaτe−Rτ cosθ||,

|q(s)| = e1R.
(A.97)
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Some simple calculations show that |q(s)| < |p(s)| on γ2 if

R < R2 ,
beaτ − e2

e1 + τ
. (A.98)

Since τ > 0, we have that R2 < R1. It follows that, if R < R2, |q(s)| < |p(s)|

on the semicircular contour γ. Note also that both p and q are analytic on
and inside γ. By Rouche’s Theorem (Conway, 1973) we then know that p
and p+ q = f have the same number of zeros inside γ.

The zeros of p(s) are given by

sk = −
1

τ
log

e2

beaτ
+ jk

2π

τ
. (A.99)

Since e2 < beaτ, the real parts of sk are positive. this establishes the claim
that f can have low frequency zeros having positive real part. (Actually,
the imaginary parts are spaced by 2π/τ. Hence, as τ increases, then R2
given in (A.98) increases and the spacing between zeros decreases. It fol-
lows that the number of roots of f in the ORHP increases with τ). ◦

Notes and References

The material of this chapter is based mainly on Levinson and Redheffer (1970) and
Churchill and Brown (1984). These are standard textbooks on Complex Variable
Theory. Some specific results and definitions were obtained from Widder (1961),
Kaplan (1973), Markushevich (1965) and Conway (1973).

In particular, §A.4.2 contains important input from Widder (1961); §A.5.1 and
§A.8 are largely based on Widder (1961) and Conway (1973), respectively.

Equations (A.5), which are usually called the Cauchy-Riemann equations, are of
central importance in the theory of analytic functions. However, it should be noted
that this universally encountered attribution is not historically justified. In fact,
equations (A.5) had already been studied in the eighteenth century by D’Alembert
(1717-1783) and Euler (1707-1783), in research devoted to the application of func-
tions of a complex variable to hydrodynamics (D’Alembert and Euler), and to car-
tography and integral calculus (Euler) (Markushevich, 1965, p. 111).



Appendix B

Proofs of Some Results in the
Chapters

B.1 Proofs for Chapter 4

In this section, we prove the Bode integral constraints for the logarithm of
the singular values of the sensitivity function, given in Theorem 4.2.2 of
Chapter 4. We follow Chen (1995). A few preliminary technical results are
needed in order to prove this theorem.

Fact B.1.1. Let f : � × � → � given by

f(η,ω) =
η2

η2 +ω2
.

Then f(η,ω) → 1 as η→ ∞, uniformly on any compact interval. ◦

Fact B.1.2 (Levinson and Redheffer 1970, p.337). Consider f : � × � → � .
Suppose that f(s, η) is analytic in a domain D ⊂ � , and that f(s, η) →
g(s) uniformly in D as η → ∞. Write s = rejθ. Then, ∂f(rejθ, η)/∂r →
∂g(rejθ)/∂r uniformly in D as η → ∞. ◦

Lemma B.1.3. The following limit converges uniformly on any compact
set

lim
η � � η log

∣

∣

∣

∣

η+ s

η− s

∣

∣

∣

∣

= 2Re s. (B.1)
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Proof. The result follows from Example A.8.7 in Appendix A, and the ob-
servation that

η log
∣

∣

∣

∣

η+ s

η− s

∣

∣

∣

∣

= Reη log
(

1 +
s

η

)

− Reη log
(

1 −
s

η

)

.

�

Lemma B.1.4. The following limit converges uniformly on any compact
set

lim
η � � η

∂

∂R

(

log
∣

∣

∣

∣

η+ Rejθ

η− Rejθ

∣

∣

∣

∣

)

= 2 cos θ. (B.2)

Proof. Immediate from Lemma B.1.3 and Fact B.1.2. �

Consider next the sensitivity function S corresponding to the feedback
system of Figure 4.1. Let pi, i = 1, . . . , np, be the poles of the open-loop
system L in the ORHP, repeated according to their geometric multiplici-
ties. Recall that, if the open-loop system is unstable, then S can be factored
as

S = Sm

np∏

i=1

Bi, (B.3)

where Sm is minimum phase and Bi is the all-pass factor corresponding
to the pole pi.

We make the following assumption.

Assumption B.1.

(i) The closed-loop system of Figure 4.1 is stable.

(ii) lim
R � �

sup
s∈ � +

|s|≥R

Rσ(L(s)) = 0.

(iii) The singular values of Sm in (B.3), i.e., σi(Sm(s)), i = 1, · · · , n, have
continuous second order derivatives for all s ∈ � +.

◦
We first prove the Bode integral for open-loop stable system, i.e., Sm = S

in (B.3).

Theorem B.1.5 (Bode Integral for S – Stable systems). Let S be the sensi-
tivity function of the feedback loop of Figure 4.1. Assume that the open-
loop system, L, is stable. Then, under Assumption B.1 (with Sm = S),

∫ �

0

logσj(S(jω))dω =
1

2

∫∫

� +

σ∇2 log σj(S(σ + jω))dσdω. (B.4)
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FIGURE B.1. Contour for the Poisson integral formula

Proof. Consider the half disc DR depicted in Figure B.1. Denote by γR =

{−jω : −R ≤ ω ≤ R} and CR = {Rejθ : −π/2 ≤ θ ≤ π/2}. Then the
boundary of DR is given by γR ∪ CR. Let η > R and consider the real
function g : � → � defined by

g(s) = log
∣

∣

∣

∣

η+ s

η− s

∣

∣

∣

∣

.

It is easy to see that g is harmonic in DR, and hence for any s ∈ DR,
∇2g(s) = 0. Also, g(jω) = 0, ∀ω ∈ � . Let

f(s) = logσj(S(s)).

Since Assumption B.1 holds, then each σj(S) has continuous second order
derivative in DR, and so does log σj(S) since σj(S(s)) > 0. We can now
apply Green’s formula (A.30) of Appendix A to f and g, with the contour
C = γR ∪ CR and the domain Ω = DR. We have

∫

γR

f
∂g

∂~n
ds+

∫

CR

(

f
∂g

∂~n
− g

∂f

∂~n

)

ds = −

∫∫

DR

g∇2f dσdω. (B.5)

We next compute each of the integrals in (B.5). Notice that, on γR, the outer
normal ~n is in the direction of the negative real axis. Thus, we have that
∂g/∂~n = −∂g/∂σ, and

∂g

∂σ
=
∂

∂σ

(

Re log
η+ s

η− s

)

= Re
∂

∂σ

(

log
η+ s

η− s

)

= Re
(

1

η+ s
+

1

η− s

)

.
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Setting σ = 0 in the last equality gives, on γR

∂g

∂~n
= −

2η

η2 +ω2
,

which leads to
∫

γR

f
∂g

∂~n
ds = −

∫R

−R

log σj(S(jω))
2η

η2 +ω2
dω.

Multiplying both sides of the above equality by η, taking limits as η →
∞, and using the uniform convergence theorem (Levinson and Redheffer,
1970, p. 335) and Fact B.1.1, it follows that

lim
η � � η

∫

γR

f
∂g

∂~n
ds = − lim

η � �

∫R

−R

logσj(S(jω))
2η2

η2 +ω2
dω

=

∫R

−R

log σj(S(jω)) lim
η � �

2η2

η2 +ω2
dω

= −2

∫R

−R

log σj(S(jω))dω. (B.6)

Turning to the second integral in (B.5), we have
∫

CR

(

f
∂g

∂~n
− g

∂f

∂~n

)

ds = I1 − I2,

where

I1 ,

∫π/2

−π/2

R
∂

∂R

(

log
∣

∣

∣

∣

η+ Rejθ

η− Rejθ

∣

∣

∣

∣

)

logσj(S(Rejθ))dθ,

I2 ,

∫π/2

−π/2

R log
∣

∣

∣

∣

η+ Rejθ

η− Rejθ

∣

∣

∣

∣

∂

∂R
[logσj(S(Rejθ))]dθ.

As before, we have, using the uniform convergence theorem and Lem-
mas B.1.3 and B.1.4,

lim
η � � ηI1 = lim

η � � η

∫π/2

−π/2

R
∂

∂R

(

log
∣

∣

∣

∣

η+ Rejθ

η− Rejθ

∣

∣

∣

∣

)

logσj(S(Rejθ))dθ

= 2

∫π/2

−π/2

R logσj(S(Rejθ)) cos θdθ,

and

lim
η � � ηI2 = lim

η � � η

∫π/2

−π/2

R log
∣

∣

∣

∣

η+ Rejθ

η− Rejθ

∣

∣

∣

∣

∂

∂R
[log σj(S(Rejθ))]dθ

= 2

∫π/2

−π/2

R2
∂

∂R
[log σj(S(Rejθ))] cos θdθ.
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These inequalities lead to

lim
η � � η

∫

CR

(

f
∂g

∂~n
− g

∂f

∂~n

)

ds = 2I3 − 2I4, (B.7)

where

I3 ,

∫π/2

−π/2

R logσj(S(Rejθ)) cos θdθ,

I4 ,

∫π/2

−π/2

R2
∂

∂R
[log σj(S(Rejθ))] cos θdθ.

As for the integral on the RHS of (B.5), we use the same limiting tech-
nique to obtain

lim
η � � η

∫∫

DR

g∇2f dσdω = 2

∫∫

DR

σ∇2 logσj(S(σ + jω))dσdω. (B.8)

Combining (B.6)-(B.8) yields

∫∫

DR

σ∇2 log σj(S(σ + jω))dσdω =

∫R

−R

log σj(S(jω))dω − I3 + I4.

The next step is to take limits of both sides of the above equation as R →
∞. This gives

∫∫

� +

σ∇2 log σj(S(σ + jω))dσdω =

∫ �

− �
logσj(S(jω))dω

− lim
R � �

I3 + lim
R � �

I4.

(B.9)

We claim that limR � � I3 = 0. To see this, we first note that for j = 1, 2, . . . , n,
we have that σ(S(s)) ≤ σj(S(s)) ≤ σ(S(s)) for any s ∈ � +. Furthermore,
under Assumption B.1 (ii), σ(L(s)) < 1 for any |s| > R if R > 0 is suffi-
ciently large. As a result, I3 can be bounded as follows

|I3| ≤
∫π/2

−π/2

R| logσj(S(Rejθ))| cos θdθ

≤ 2 max
θ∈[−π/2,π/2]

R| logσj(S(Rejθ))|

≤ 2 max
θ∈[−π/2,π/2]

max {R| logσ(S(Rejθ))|, R| logσ(S(Rejθ))|}

≤ 2 max
θ∈[−π/2,π/2]

max {R| log[1 − σ(L(Rejθ))]|, R| log[1+ σ(L(Rejθ))]|}.
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From Assumption B.1 (ii) and the logarithm series expansions (see Exam-
ple A.8.6 in Appendix A)

log[1 − σ(L(Rejθ))] = −σ(L(Rejθ)) −
1

2
σ2(L(Rejθ)) + · · · ,

log[1 + σ(L(Rejθ))] = σ(L(Rejθ)) −
1

2
σ2(L(Rejθ)) + · · · ,

which hold for |s| > R and R > 0 sufficiently large, we conclude that

lim
R � �

R| log[1 − σ(L(Rejθ))]| = 0,

lim
R � �

R| log[1 + σ(L(Rejθ))]| = 0,

and thus
lim
R � �

I3 = 0, (B.10)

proving our claim. We next show that

lim
R � �

I4 = 0. (B.11)

We do this by showing that limR � � I4 = − limR � � I3. First we write,
using the Leibniz rule (see e.g., Kaplan, 1973, p. 219)

∫π/2

−π/2

∂

∂R
[log σj(S(Rejθ))] cos θdθ =

d

dR

∫π/2

−π/2

log σj(S(Rejθ)) cos θdθ.

Then we have

lim
R � �

I4 = lim
R � �

R2
d

dR

∫π/2

−π/2

logσj(S(Rejθ)) cos θdθ

= − lim
R � �

d
dR

∫π/2
−π/2

log σj(S(Rejθ)) cos θdθ

d(1/R)/dR

= − lim
R � �

R

∫π/2

−π/2

log σj(S(Rejθ)) cos θdθ

= − lim
R � �

I3, (B.12)

where the third equality holds from L’Hospital’s rule (e.g., Widder, 1961,
p. 260). Thus, (B.11) follows on using (B.12) and (B.10).

Finally, combining (B.9)-(B.11), and observing that
∫ �

− �
log σj(S(jω))dω = 2

∫ �

0

log σj(S(jω))dω,

due to conjugate symmetry of S(jω), (B.4) is then obtained. �
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It remains to establish Theorem 4.2.2 for open-loop unstable systems.
This is done in the following theorem by using the factorization of S given
in (B.3).

Theorem B.1.6 (Bode Integral for S – Unstable systems). Let S be factor-
ized as in (B.3). Then, under Assumption B.1,

∫ �

0

log σj(S(jω))dω = Fj + Kj,

where

Fj =
1

2

∫∫

� +

σ∇2 log σj(Sm(σ + jω))dσdω, and

Kj = lim
R � �

∫π/2

−π/2

R logσj

(

np∏

i=1

B−1
i (Rejθ)

)

cos θdθ.

Proof. We use (the proof of) Theorem B.1.5 for the minimum-phase factor
Sm in (B.3). If then follows from (B.9) and (B.12) that

∫ �

− �
logσj(Sm(jω))dω = 2Fj + 2 lim

R � �
I3, (B.13)

where

I3 =

∫π/2

−π/2

R logσj(Sm(Rejθ)) cos θdθ.

Since eachBi in (B.3) is all-pass for i = 1, . . . , np, we have that S(jω)S∗(jω) =

Sm(jω)S∗m(jω), and hence

σj(Sm(jω)) = σj(S(jω)), j = 1, . . . , n. (B.14)

Also, for |s| ≥ R ≥ max1≤i≤np
|pi|, both B−1

i (s) and S(s) are well-defined.
By using norm inequalities (see e.g., Golub and Van Loan, 1983), we have

σ(S(Rejθ))σj (Π) ≤ σj(Sm(jω)) ≤ σ(S(Rejθ))σj (Π),

where

Π ,

np∏

i=1

B−1
i (Rejθ).

This leads to

I3 ≥
∫π/2

−π/2

R logσ(S(Rejθ)) cos θdθ +

∫π/2

−π/2

R logσj (Π) cos θdθ,

and

I3 ≤
∫π/2

−π/2

R logσ(S(Rejθ)) cos θdθ +

∫π/2

−π/2

R logσj (Π) cos θdθ.
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As shown in the proof of Theorem B.1.5, however, the first terms on the
RHSs of the two inequalities above tend to zero as R → ∞, and thus

lim
R � �

I3 = lim
R � �

∫π/2

−π/2

R logσj

(

np∏

i=1

B−1
i (Rejθ)

)

cos θdθ. (B.15)

The proof is completed by substituting (B.14) and (B.15) into (B.13), and
by using the conjugate symmetry of S(jω). �

B.2 Proofs for Chapter 6

B.2.1 Proof of Lemma 6.2.2
In this subsection, we provide the proof of Lemma 6.2.2 on steady-state
frequency response of sampled-data systems. First, we need two prelimi-
nary lemmas.

Lemma B.2.1. Suppose that h is the pulse response of a hold device as de-
scribed on page 138 of §6.1.2, i.e., h is a function of bounded variation with
finite support on the interval [0, τ]; let H = Lh be its frequency response
function. Then, there exist finite constants c1 and c2 such that

|sH(s)| ≤ c1 + c2e
− Re sτ if s is in � − , (B.16)

|sH(s)| ≤ c2 + c1e
− Re sτ if s is in � + . (B.17)

Proof. Using the definition of H and integration by parts, we can write

|sH(s)| =

∣

∣

∣

∣

∫τ

0

s e−sζ h(ζ)dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

h(0+) − e−sτ h(τ−) +

∫τ

0

e−sζ ḣ(ζ)dζ

∣

∣

∣

∣

≤ ‖h‖ �
(

1 + e− Re sτ)+

∫τ

0

e− Re sζ
∣

∣ḣ(ζ)
∣

∣dζ , (B.18)

where ‖h‖ � = sup
[0,τ]

|h(t)|, and ḣ denotes dh/dt, which exists almost
everywhere on [0, τ] because h is of bounded variation. If s is in � −, then
e− Re sζ ≤ e− Re sτ for ζ ∈ [0, τ], and we have from (B.18) that

|sH(s)| ≤ ‖h‖ � +
(

‖h‖ � + ‖ḣ‖1
)

e− Re sτ ,

where ‖ḣ‖1 =
∫τ
0

∣

∣ḣ(ζ)
∣

∣dζ, which is finite also because h is assumed of
bounded variation (e.g., see Rudin (1987, p. 157)). The bound (B.16) then
follows. If s is in � +, then (B.17) follows from (B.18) on using the bound
e− Re sζ ≤ 1 for ζ ∈ [0, τ]. �
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Lemma B.2.2. Suppose that G is a proper transfer function, which may
include a time delay, and let H be the frequency response of a hold, as in
Lemma B.2.1. Let ρ be a finite number in � − that is not a pole of G, and
define ρk , ρ+ jkωs, with k = ±1,±2, . . .Assume further that ρk is not a
pole of G for any k. Then,

lim
K � �

K∑

k=−K

|G(ρk)H(ρk)|
2 < ∞ . (B.19)

Proof. Since G is assumed to be proper, then |G(ρk)| converges to a finite
constant as k → ∞. Denote this constant by MG. Using this bound, and
B.16 from Lemma B.2.1 yields

lim
K � �

K∑

k=−K

|G(ρk)H(ρk)|
2 ≤M2

G(c1 + c2e
−ρτ)2

�∑

k=− �

1

|ρk|2
< ∞ ,

and the result follows. �

Proof of Lemma 6.2.2. We consider only the disturbance response, calcula-
tions for the noise response follow similarly. For convenience, we recall
the expression for Yd from (6.9) in Chapter 6, which we rewrite as

Yd(s) = D(s) −G(s)H(s)Kd(e
sτ)Sd(esτ)Vd(esτ), (B.20)

where Vd(esτ) is given by (cf. the proof of Lemma 6.2.1)

Vd(e
sτ) =

1

τ

�∑

k=− �

Fk(s)Dk(s).

To evaluate the steady-state response to d(t) = ejωt, we must first eval-
uate the inverse Laplace transform of Yd, and then discard all terms due
to those poles lying in � −. Inverting the Laplace transform requires that
we evaluate the Bromwich integral (Levinson and Redheffer, 1970)

yd(t) =
1

2πj

∫γ+j �

γ−j �
estYd(s) ds , (B.21)

where γ > 0. This integral may be evaluated using the residue theorem
(Theorem A.9.1 in Appendix A).

It follows from (B.20) that Yd has poles due to the disturbance located
along the imaginary axis at s = j(ω + kωs), k = 0,±1,±2, . . .. By the
assumption of closed loop stability all other poles of Yd lie in � −. Using
(B.20), it may be shown that these poles have the following properties:

(i) they all lie to the right of some vertical line Re s = c < 0,
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(ii) there are finitely many poles due to G and no poles due to H,

(iii) there are finitely many sequences of poles due to Kd(esτ), Sd(esτ),
and F(s+ jkωs), k = 0,±1,±2, . . . lying on vertical lines and spaced
at intervals equal to ωs.

Next, it is straightforward to verify from (B.20) and Definition 6.2.1 that
the residues of estYd at the jω-axis poles are given by

lim
s � j(ω+kωs)

(

s− j(ω+ kωs)
)

estYd(s) =

{
S0(jω)ejωt if k = 0 ,

−Tk(jω)ej(ω+kωs)t if k 6= 0 .

(B.22)
We need not calculate explicitly the residues at the other poles; as we will
show, they do not contribute to the steady-state response.

Consider the contours of integration Cn, n = 1, 2, 3, . . . depicted in Fig-
ure B.2, and chosen so that (i) C1 encloses only that jω-axis pole lying in
ΩN, (ii) the horizontal line Im s = R1 does not contain any OLHP poles of
Yd, and (iii) Rn+1 = Rn +ωs.

��

�
�

�

�

Re �

� Im �

(II)

(I)

(III)

(IV)

� � �
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	�

� �
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 �

� � �
�
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 �
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� � �
�
� 
	�

�
N

FIGURE B.2. Contours of integration.

Figure B.2 and subsequent calculations are appropriate for the case that
ω is in ΩN (modifications to the general case are straightforward). Our
construction of the contour of integration guarantees that forn sufficiently
large no poles of Yd will lie on CN. Hence the residue theorem may be
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applied to yield

1

2πj

{∫

I
estYd(s)ds+

∫

II
estYd(s)ds+

∫

III
estYd(s) ds +

∫

IV
estYd(s)ds

}

= S0(jω)ejωt −

n∑

k=−n
k6=0

Tk(jω)ej(ω+kωs)t + Ψ(t) ,

(B.23)

where Ψ(t) denotes the contribution of the poles in � −.
We now sketch a proof that as t→ ∞, Ψ(t) → 0. First, it is clear that the

contribution to Ψ from each pole ofG converges to zero. Consider next the
contribution of one of the finitely many sequences of poles described in
(iii) above. Let this sequence be denoted ρk , ρ+ jkωs, k = 0,±1,±2, . . .,
and Re ρ < 0. We will assume that ρ is real for notational simplicity, and
will also assume for simplicity that each ρk is a simple pole. Then, for any
fixed value of t, the contribution to Ψ from this sequence of poles is given
by

yρ(t) , eρt lim
K � �

K∑

k=−K

Res
s=ρk

Yd(s)ejkωst , (B.24)

where Ress=ρk
Yd(s) = lims � ρk

(s − ρk)Y
d(s) (see §A.9 in Appendix A).

From (B.20) we have

Res
s=ρk

Yd(s) = −G(ρk)H(ρk) lim
s � ρk

(s − ρk)Kd(e
sτ)Sd(e

sτ)Vd(e
sτ) . (B.25)

Because Kd(esτ), Sd(esτ), and Vd(esτ) are each periodic in s along vertical
lines, it may be shown that the limit on the RHS of (B.25) is independent
of k. Denote the common value of this limit by −Lρ. Then (B.24) becomes

yρ(t) = eρtLρ lim
K � �

K∑

k=−K

G(ρk)H(ρk)e
jkωst . (B.26)

By Lemma B.2.2, the sequence {G(ρk)H(ρk)} is square-summable. There-
fore, by the Riesz-Fischer Theorem (Riesz and Sz.-Nagy, 1990, p.70), the
series in (B.26) converges to a bounded periodic function of t. Since ρ < 0,
it thus follows that yρ(t) → 0 as t → ∞. Since there are only finitely many
sequences of the form (B.26), we then have that Ψ(t) → 0.

The desired result (6.17) will hold if it may be shown that the last three
integrals on the LHS of (B.23) converge to zero as n → ∞. We now show
that the integral (II) converges to zero; similar calculations apply to (IV).
Consider values of s such that s = σ + jRn, c ≤ σ ≤ γ, and Rn is suffi-
ciently large that Rn > ω and that Cn encloses all poles of G. It may be
shown that there exist constants M and MG, independent of n, such that
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|Kd(e
sτ)Sd(e

sτ)Vd(e
sτ)| ≤ M and |G(s)| ≤ MG for all such s. Also, it fol-

lows from Lemma B.2.1 that, for t ≥ τ, there exists some constant c3 such
that

|sestH(s)| ≤ c3eγt, for all s with Re s ≤ γ. (B.27)

Using these bounds in conjunction with (B.20) and the fact that D(s) =

1/(s − jω), yields

|estYd(s)| ≤ eγt(1 +MMGc3)

Rn −ω
. (B.28)

Using (B.28) in integral (II) yields

∣

∣

∣

∣

∫

II

estYd(s)ds

∣

∣

∣

∣

≤ (γ− c)eγt(1 +MMGc3)

Rn −ω
,

which converges to zero as Rn → ∞.
It remains to show that the integral (III) converges to zero as Rn → ∞.

Parametrize (III) by s = c + Rne
jθ, with π/2 ≤ θ ≤ 3π/2, and define

ξ = s− c; contour (III) is then a semicircle ϕn centered at the origin of the
ξ-plane and extended into the left half plane. We then have that

∣

∣

∣

∣

∫

III

est Yd(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ϕn

ect eξ(t−τ) eξτ Yd(ξ + c)dξ

∣

∣

∣

∣

≤ ect
∫

ϕn

∣

∣

∣e
ξτ Yd(ξ + c)

∣

∣

∣

∣

∣eξ(t−τ) dξ
∣

∣ . (B.29)

Now, following similar steps to those used to obtain (B.28),
∣

∣

∣
eξτ Yd(ξ+ c)

∣

∣

∣

can be bounded on ϕn as

∣

∣

∣
eξτ Yd(ξ+ c)

∣

∣

∣
≤ e(γ−c)τ(1 +MMGc3)

Rn −ω
,

This bound and the application of Jordan’s Lemma (Lemma A.4.1 from
Appendix A) to obtain a bound on the integral

∫
ϕn

|eξ(t−τ) dξ|, for t > τ,
gives, from (B.29),

∣

∣

∣

∣

∫

III

est Yd(s)ds

∣

∣

∣

∣

≤ eγt(1 +MMGc3)π

(Rn −ω)(t− τ)
,

which converges to zero as Rn → ∞, concluding the proof. �

The following subsections give the proofs of the results in §6.2.2 on ro-
bust stability of sampled-data systems.
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B.2.2 Proof of Lemma 6.2.4
It is necessary for closed loop stability that

S̃d(z) = [I+ Kd(z)(FG̃H)d(z)]−1 (B.30)

have no poles in � c. Rearranging yields

S̃d(z) = [I+ Sd(z)Kd(z)(FW∆GH)d(z)]−1Sd(z). (B.31)

Since the nominal system is stable, S̃d will have no poles in � c if and only
if

det[I+ Sd(ejωτ)Kd(e
jωτ)(FW∆GH)d(ejωτ)] 6= 0 for all ω. (B.32)

The proof proceeds by contradiction. We follow the argument used in
Chen and Desoer (1982, Theorem 2). Denote Q(jω) , T 0(jω)W(jω), and
suppose that (6.23) is violated. Then there exists a frequencyω1 such that
σ1 , σ(Q(jω1)) > 1, where σ(·), recall, denotes the maximum singular
value. Performing a singular value decomposition of Q(jω1) yields

Q(jω1) = Udiag[σ1 . . .]V
∗,

where U , {uij} and V , {vij} are unitary matrices. Now assume for the
moment that there exists an admissible ∆̂ that also satisfies

∆̂(jω1) =







v11
...
vn1






(−σ1)

−1
[

u∗
11 . . . u∗

n1

]

= V diag[(−σ1)
−1, 0, . . . , 0]U∗,

(B.33)

and

∆̂(j(ω1 + kωs)) = 0 for k = ±1,±2, . . ., and k 6= −2ω1/ωs. (B.34)

The assumptions on W, and ∆, imply that a formula similar to (6.7) may
be used to calculate (FW∆̂GH)d. Using (B.33) and (B.34) yields

(FW∆̂GH)d(e
jω1τ) = −

1

τ
F(jω1)W(jω1)V

× diag[−
1

σ1
, 0, . . . , 0]U∗G(jω1)H(jω1),

(B.35)
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and therefore1

det[I+ Sd(ejω1τ)Kd(e
jω1τ)(FW∆̂GH)d(e

jω1τ)]

= det[I+ SdKd
1

τ
FWV diag[(−σ1)

−1, 0, . . . , 0]U∗GH]

= det[I+ V diag[(−σ1)
−1, 0, . . . , 0]U∗ 1

τ
GHSdKdFW]

= det[I+ V diag[(−σ1)
−1, 0, . . . , 0]U∗Q(jω1)]

= [I + V diag[−1, 0, . . . , 0]V∗]

= det[V ] det[diag[0, 1, 1, . . . , 1]] det[V∗]

= 0.

Hence, (B.32) fails and so the perturbed system is unstable.
It remains to show that ∆̂ satisfying the required properties exists. We

do this following a construction used in Chen and Desoer (1982). Consider

∆̂(s) ,







α1(s)
...

αn(s)







(

−
1

σ1

)

fq(s)
k ′

z(s)
[

β1(s), . . . , βn(s)
]

,

where k ′ is a natural number, and

fq(s) ,
ω1s

q(s2 +ω21) +ω1s
, q > 0,

αi(s) ,
s

ω1
Im vi1 + Re vi1,

βi(s) , −
s

ω1
Imui1 + Reui1,

z(s) ,
HZOH(s− jω1)HZOH(s + jω1)

τ|HZOH(j2ω1)|
η(s),

η(s) ,

(

−
s

ω1
sin(^HZOH(j2ω1)) + cos(^HZOH(j2ω1))

)

,

and where HZOH(s) is the frequency response function of the ZOH, and
^ denotes the phase of a complex number. It is then straightforward to
verify that

(i) ∆̂(jω1) satisfies (B.33) and (B.34), and

(ii) by choosing both k ′ and q large enough, ∆̂ is exponentially stable
and, for all ω 6= ±ω1, limω � � σ(∆̂(jω)) → 0, i.e., ‖∆̂‖ � < 1 is
satisfied.

�

1We suppress dependence on the transform variable when convenient and where the
meaning is clear from the context.
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B.2.3 Proof of Lemma 6.2.5
The proof follows the same lines of that of Lemma 6.2.4 after noting that
we can alternatively write the perturbed discrete sensitivity function as

S̃d =
[

1 + Kd(FG̃H)d
]−1

=

[

1 + Kd(FGH)d − Kd

(

F∆WGH

1 +W∆ d

)]−1

=

[

1 − SdKd

(

F∆WGH

1 +W∆ d

)]−1

Sd. (B.36)

That the nonsingularity of the term between brackets in (B.36) implies
(6.25) may be shown by an argument by contradiction, similar to that used
in the proof of Lemma 6.2.4, and is omitted to avoid repetition. �





Appendix C

The Laplace Transform of the
Prediction Error

Throughout Chapter 10 we have used a modified Laplace transform that
shifts the lower limit of integration from t = 0 to t = −τ, i.e., the shifted
Laplace transform of a function h(t) was defined to be

H(s) ,

∫ �

−τ

e−sth(t)dt.

Obviously, this modification leaves unchanged the transforms of signals
starting at t = 0, but it over-evaluates the transform of the shifted state
x(t+τ). Despite this overmeasure, the results given in Chapter 10 provide
a good indication of the performance limits in prediction.

In this appendix, we will obtain the conventional Laplace transform (de-
noted by L) of the estimation error and point out the difficulties of using
this version in sensitivity analysis.

We recall the prediction error from (10.5) (for full-state prediction, i.e.,
z = x in (10.1)),

x̃(t+ τ|t) = x(t+ τ) − eAτx̂(t).

Taking the Laplace transform, we have

X̃(s) = esτ
[

X(s) −

∫τ

0

x(t)e−stdt

]

− eAτX̂(s).

The second term above was not considered in our analysis in Chapter 10.
We will see that this second term cannot be written as affine in the trans-
forms of the input signals.
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The contribution to the prediction error due to the process input v is
given by1

X̃v(s) = esτ
[

Hxv(s)V(s) −

∫τ

0

xv(t)e
−stdt

]

− eAτHx̂v(s)V(s),

where xv(t) =
∫t
0
eA(t−θ)Bv(θ)dθ, 0 ≤ t ≤ τ, and V = Lv. The above

equation can be expressed as

X̃v(s) = esτ
[

Hxv(s)V(s) −

∫ �

0

xv(t)hτ(t)e
−stdt

]

− eAτHx̂v(s)V(s)

= esτ
[

Hxv(s)V(s) − L[xv(t)hτ(t)](s)

]

− eAτHx̂v(s)V(s)

(C.1)

where hτ is the pulse function given by

hτ(t) =

{
1 if 0 ≤ t ≤ τ,
0 otherwise.

Solving the transform of the real multiplication in (C.1), we further obtain

X̃v(s) = esτ
[

Hxv(s)V(s) − [Hxv(s)V(s)]⊗Hτ(s)
]

− eAτHx̂v(s)V(s), (C.2)

where Hτ = Lhτ, and where ‘⊗’ denotes complex convolution (Gardner
and Barnes, 1949), i.e.,

[Hxv(s)V(s)] ⊗Hτ(s) ,

∫c+jω

c−jω

Hxv(θ)V(θ)Hτ(s− θ)dθ

=

∫c+jω

c−jω

Hxv(θ)V(θ)
1 − e−(s−θ)τ

s− θ
dθ.

(C.3)

The real constant c in the integration limits of (C.3) is chosen such that
σv < c < ∞, where σv is the abscissa of absolute convergence ofHxv(s)V(s).2

From (C.2), we can define a “transfer function” (although not in the
usual multiplicative form) from the process input to the prediction error
as

Hx̃v(s) , esτ
[

Hxv(s) − Kτ[ · ](s)
]

− eAτHx̂v(s), (C.4)

where the linear operator

Kτ[v](s) , [Hxv(s)V(s)] ⊗Hτ(s)

1In the sequel, the symbol � � � will stand for the mapping from signal � to signal � .
2Since � � � � � is an entire function, the integral in (C.3) converges absolutely in the half

plane Re � � � � � � .
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is clearly not a multiplication operator. With the expression for Hx̃v given
in (C.4), the corresponding prediction sensitivities would be defined as

P , e−sτHx̃v

(

Hxv − Kτ[ · ]
)−1

,

M , e−sτHx̂v

(

Hxv − Kτ[ · ]
)−1

.

It is clear from the above definitions that the derivation of interpolation
and integral constraints for this version of the prediction sensitivities is
nontrivial. Moreover, it cannot be performed with the tools developed in
this book.





Appendix D

Least Squares Smoother
Sensitivities for Large τ

In this appendix, we derive an expression for the smoothing sensitivities
of Chapter 11 that holds for large values of the smoothing lag.

Consider, in system (11.1) of Chapter 11, that D1 = D2 = 0, i.e.,

ẋ = Ax+ Bv,

z = C1x,

y = C2x+w,

(D.1)

where v andw are uncorrelated white noises with incremental covariances
equal to Q and R, respectively.

Let the Kalman filter for the above system be given by

˙̂x = Âx̂+ Kyy,

ẑ = C1x̂,
(D.2)

where

Â = A − KyC2,

Ky = ΦC ′
2R

−1,
(D.3)

and Φ ≥ 0 is a stabilizing solution of the Riccati equation (11.6), repro-
duced here for convenience

AΦ +ΦA ′ + BQB ′ −ΦC ′
2R

−1C2Φ = 0.

Let F be the Laplace transform from y to x̂ for the Kalman filter (D.2), i.e.,

F(s) = (sI− Â)−1Ky.
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Using (D.3) and the matrix inversion lemma (e.g., Kailath, 1980, p. 656) we
can further write F as

F(s) = (sI−A)−1Ky[I− C2(sI − Â)−1Ky]. (D.4)

Consider next the least squares smoother (11.7) of Example 11.1.1. We then
have the following result.

Lemma D.0.3. Consider the least squares smoother of Example 11.1.1 for
the system given in (D.1). Assume that the solution,Φ, of the Riccati equa-
tion (11.6) is positive definite. Then, for τ = τ̄ � τmax(Â), where τmax(Â)

is the dominant time constant1 of the Kalman filter, the smoothing sensi-
tivities (11.17) can be approximated by

M[τ̄](s) = Hzv(s)QH
′
ιv(−s)R

−1Hιv(s)H
−1
zv (s),

P[τ̄](s) = I−Hzv(s)QH
′
ιv(−s)R

−1Hιv(s)H
−1
zv (s),

(D.5)

where Hιv is the transfer function from the process input, v, to the inno-
vations process ι = y − C2x̂ corresponding to the Kalman filter (D.2), and
given by

Hιv = C2(sI − Â)−1B.

Proof. For the least squares smoother of Example 11.1.1, the expression of
the smoother function (11.10) is

Hs = C1Φ(sI+ Â ′)−1
[

eτÂ
′

− e−sτI
]

C ′
2R

−1

= C1Φ(sI+ Â ′)−1eτÂ
′

C ′
2R

−1 − e−sτΦ(sI + Â ′)−1C ′
2R

−1.

Note that the expression eτÂ
′

C ′
2R

−1 can be thought of as the state of the
filter at time t = τ, in response to the initial conditions given by the
columns of C ′

2R
−1. Then, for τ = τ̄ � τmax(Â), where τmax(Â) is the

dominant time constant of the Kalman filter, eτ̄Â
′

C ′
2R

−1 will be negligi-
ble compared to the value of C ′

2R
−1. Hence, for τ = τ̄, we may neglect the

first term on the RHS above and assume that Hs is of the form

Hs[τ̄] = −e−sτ̄C1Φ(sI+ Â ′)−1C ′
2R

−1. (D.6)

For convenience, we will use the Riccati equation (11.6) to express Â ′ in
(D.3) as

Â ′ = A ′ − C ′
2R

−1C2Φ

= −Φ−1(A+ BQB ′Φ−1)Φ

, −Φ−1ĀΦ,

1Recall that the dominant time constant of a stable system can be taken as the inverse of
the real part of the eigenvalue with smallest magnitude for the real part.
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with the obvious definition for Ā. Hence

(sI+ Â ′)−1 = Φ−1(sI − Ā)−1Φ. (D.7)

Using (D.7) in (D.6), we have

Hs[τ̄] = −e−sτ̄C1(sI− Ā)−1Ky, (D.8)

where Ky = ΦC ′
2R

−1 is the Kalman filter gain given in (D.3).
Next, recall from (11.21) the expression for the smoothing complemen-

tary sensitivity, M
M = esτFsHyvH

−1
zv ,

where Hzv = Gz and Hyv = Gy. Replacing Fs using (11.14), we have

M = [C1F + esτHs(I − C2F)]HyvH
−1
zv , (D.9)

where F is given in (D.4). Using (D.4) and (D.8) in (D.9), we have, for τ�
τmax(Â),

M[τ̄] = C1
[

(sI−A)−1−(sI−Ā)−1
]

Ky[I−C2(sI−Â)−1Ky]HyvH
−1
zv . (D.10)

Next note that, using (D.3) and Hyv = C2(sI−A)−1B, we can write

[I − C2(sI− Â)−1Ky]Hyv = C2(sI− Â)−1B

= Hιv,

whereHιv is the transfer function from the process input, v, to the innova-
tions process, ι. Using this expression in (D.10), we have

M[τ̄] = C1
[

(sI−A)−1 − (sI− Ā)−1
]

KyHιvH
−1
zv .

Using Ā = A+ BQB ′Φ−1 and replacing Ky from (D.3) in the above equa-
tion, and rearranging, yields

M[τ̄] = −C1(sI −A)−1BQB ′Φ−1(sI− Ā)−1ΦC ′
2R

−1HιvH
−1
zv .

Using Hzv = C1(sI−A)−1B, and (D.7) again, we further get

M[τ̄] = −HzvQB
′(sI+ Â ′)−1C ′

2R
−1HιvH

−1
zv

= HzvQ[C2(−sI− Â)−1B] ′R−1HιvH
−1
zv

= Hzv(s)QH
′
ιv(−s)R

−1Hιv(s)H
−1
zv (s),

(D.11)

where we have explicitly indicated the arguments s or −s to avoid confu-
sion. This establishes (D.5) for M. By complementarity, the result for P is
also as given in (D.5). The result then follows. �
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